Thermal Energy Conversion Utilizing Magnetization Dynamics and Two-Carrier Effects Dissertation Presented in Partial Fulfillment

Total Page:16

File Type:pdf, Size:1020Kb

Thermal Energy Conversion Utilizing Magnetization Dynamics and Two-Carrier Effects Dissertation Presented in Partial Fulfillment Thermal Energy Conversion Utilizing Magnetization Dynamics and Two-Carrier Effects Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sarah June Watzman Graduate Program in Mechanical Engineering The Ohio State University 2018 Dissertation Committee Joseph P. Heremans, Advisor Nandini Trivedi Fengyuan Yang Igor Adamovich Copyrighted by Sarah June Watzman 2018 Abstract This dissertation seeks to contribute to the field of thermoelectrics, here utilizing magnetization dynamics in two-carrier systems, employing unconventional thermoelectric materials. Thermoelectric devices offer fully solid-state conversion of waste heat into usable electric energy or fully solid-state cooling. The goal of this dissertation is to elucidate key transport phenomena in ferromagnetic transition metals and Weyl semimetals in order to positively contribute to the overarching effort of using thermoelectric materials as a clean energy source. The first subject of this dissertation is magnon drag in Fe, Co, and Ni. Magnon drag is shown to dominate the thermopower of elemental Fe from 2 to 80 K and of elemental Co from 150 to 600 K; it is also shown to contribute to the thermopower of elemental Ni from 50 to 500 K. Two theoretical models are presented for magnon-drag thermopower. One is a hydrodynamic theory based purely on non-relativistic electron-magnon scattering, and the other is based on microscopic spin-motive forces. In spite of their very different origins, the two give similar predictions for pure metals at low temperature, providing a semi-quantitative explanation for the observed thermopower of elemental Fe and Co without adjustable parameters. Magnon- drag may also contribute to the thermopower of Ni, but not dominantly as it does in Fe and Co. A spin-mixing model is presented, in which spin-up and spin-down electrons are seen as separate carriers in independent conduction channels. This model describes the magnon-drag ii contribution to the anomalous Nernst effect in Fe, again enabling a semi-quantitative match to the experimental data without fitting parameters. This work suggests that particle non-conserving processes may play an important role in other types of drag phenomena and also gives a predicative theory for improving metals as thermoelectric materials. The second subject of this dissertation is the Nernst effect in the Weyl semimetal NbP. Weyl semimetals expand research on topologically protected transport by adding bulk Berry monopoles with linearly dispersing electronic states and topologically robust, gapless surface Fermi arcs terminating on bulk node projections. Here, the Nernst effect, combining entropy with charge transport, is shown to give a unique signature for the presence of Dirac bands. The Nernst thermopower of NbP, maximum of 800 V K-1 at 9 T and 109 K, exceeds its conventional thermopower by a hundredfold and is significantly larger than the thermopower of traditional thermoelectric materials. Both the low-field and high-field Nernst coefficients also have pronounced maxima at separate temperatures. A self-consistent theory without adjustable parameters shows that this results from electrochemical potential pinning to the Weyl point energy at temperatures above the maximum temperature of the Nernst coefficients, driven by charge neutrality and Dirac band symmetry. The charge neutrality condition dictates that the Fermi level shifts with increasing temperature toward the energy that has the minimum density of states. In NbP, the agreement of the Nernst and Seebeck data with a model that assumes this minimum density of states resides at the Dirac points is taken as strong experimental evidence that the trivial (non-Dirac) bands play no role in high-temperature transport. The third subject of this dissertation, which is a study currently in progress, is the Nernst effect of YbMnBi2, a Weyl semimetal that breaks time-reversal symmetry, in the absence of an iii externally applied magnetic field. While NbP demonstrates a very large Nernst thermopower, transverse transport in that material also requires a large externally applied magnetic field, making NbP commercially unviable for use in energy generation devices. The breaking of time-reversal symmetry in YbMnBi2 gives rise to a net Berry curvature of its electronic band structure, which functions like an internal magnetic field. Here, the applied temperature gradient and measured voltage are mutually perpendicular to the predicted direction of net Berry curvature in YbMnBi2, producing a large Nernst thermopower in the absence of an externally applied magnetic field. This isothermal Nernst thermopower peaks above 1000 V K-1 at 60 K and is expected to be due directly to the material’s internal Berry curvature. The zT at 60 K is also calculated to be 2.4, exceeding the state-of-the-art zT for thermoelectric materials in the advantageous transverse geometry and eliminating the need for an externally applied magnetic field when using the transverse geometry. Nevertheless, this huge Nernst thermopower has currently only been seen on one sample; repeatability studies are in progress. Additionally, adiabatic thermomagnetic transport data presently do not align with results seen isothermally, even when parasitic temperature gradients are considered. These confirmation studies and their explanations are left in progress. iv Dedication To my mom. v Acknowledgments This work would not have been possible without the support of my advisor, Joseph P. Heremans. Thank you for being excited about new research ideas and for helping me grow into an independent researcher. I sincerely appreciate the enthusiasm with which I was met every day. One of the most important things I have learned from you is the “of course you can measure that” attitude, which forced me to be creative in developing new measurement techniques and approach projects with an open mind. Additionally, I greatly appreciate being (not so) subtly pushed in the direction of a more fundamental project, especially as an engineer. I am incredibly thankful for the instigating collaborator in my work in Weyl semimetals - Claudia Felser. I am so glad you pursued collaboration in the Weyl semimetal field with myself and my group as working with you has been a complete pleasure. I am so appreciative for your positive energy and support since the first day I met you, especially while I was a visitor in your group in Dresden, Germany. Another instrumental collaboration is that with Nandini Trivedi. I have greatly enjoyed our extensive scientific conversations, trying to understand what is actually going on and how we can explain it. Thank you for offering a theoretical point of view and explanation that pairs with my work, and thank you doing so with such passion for your work. Your support and collaboration has greatly enhanced my graduate career. vi I will forever be grateful for my labmates throughout my PhD, especially Arati, Bin, and Mike. Thank you for teaching me so much in the lab, always listening, and being my friend. Hyun and Steve – thank you for your patience and assistance as I began my PhD. Koen, Yuanhua, and Dung – thank you for always being supportive, positive, and patient. Renee – thank you for going above and beyond in everything you do. And for finding that tiny sample of NbP, thank you Koen, Bin, and Renee for crawling on the floor and sorting through dust with me. I would like to thank Tim McCormick for collaboration in the Weyl semimetal projects – thank you for all the discussions, physics explanations, and shared weary glances at our advisors. I would also like to thank the postdocs at the Max Planck Institute for Chemical Physics of Solids who helped me in every way they could to make my time there as productive as possible, especially Satya Guin, Kaustuv Manna, and Chengyuang Fu. Additionally, I would like to thank Johannes Gooth for all of his time and discussions regarding not only my data but the future of the field – thank you for bringing so much energy to this project and being supportive of my work. I would like to acknowledge my committee members, Nandini Trivedi, Fengyuan Yang, and Igor Adamovich. Thank you for your participation in this process, for supporting me, and for always being open to questions and scientific discussion. I would not have started this PhD process if it hadn’t been for encouragement from Jim Saunders and Rob Siston. Jim – thank you for identifying that graduate school was definitely for me and offering support throughout my time pursuing my PhD. Rob – thank you for guiding me vii through the twists and turns of choosing research projects and advisors, muddling through the middle of a PhD, and pursuing an academic career path. This PhD would not have been possible without the constant support and encouragement of my friends and family – thank you all for listening to more details about research than you ever wanted to hear and encouraging me to keep going. I would especially like to thank Rachel for being a constant, unending source of positivity, insight, and advice, and for listening to all of my interview talks. Joe – thank you for your infinite patience, love, and encouragement, and for always believing in me more than I believe in myself. Above all else, thank you mom and Josh. I wouldn’t have loved science, stuck with a PhD, or become the person I am today if it weren’t for you. Thank you for driving my confidence in myself and constantly reminding me that I can do anything I set my mind to throughout my entire life. You are the best. Content in Chapter 2 is published in the following: “Magnon-drag thermopower and Nernst coefficient in Fe, Co, and Ni.” S. J. Watzman, R. A. Duine, Y. Tserkovnyak, S. R. Boona, H. Jin, A. Prakash, Y. Zheng, and J. P. Heremans.
Recommended publications
  • Design and Construction of a Nernst Effect Measuring System
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Summer 8-6-2013 Design and Construction of a Nernst Effect Measuring System Warner E. Sevin University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Condensed Matter Physics Commons Recommended Citation Sevin, Warner E., "Design and Construction of a Nernst Effect Measuring System" (2013). University of New Orleans Theses and Dissertations. 1684. https://scholarworks.uno.edu/td/1684 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Design and Construction of a Nernst Effect Measuring System A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science In Applied Physics By Warner Earl Sevin B.S. Loyola University New Orleans, 2011 August 2013 Table of Contents List of Figures iv List of Tables v Abstract vi Chapter 1.
    [Show full text]
  • Intrinsic Anomalous Nernst Effect Amplified by Disorder in a Half
    Intrinsic Anomalous Nernst Effect Amplified by Disorder in a Half-Metallic Semimetal Linchao Ding, Jahyun Koo, Liangcai Xu, Xiaokang Li, Xiufang Lu, Lingxiao Zhao, Qi Wang, Qiangwei Yin, Hechang Lei, Binghai Yan, et al. To cite this version: Linchao Ding, Jahyun Koo, Liangcai Xu, Xiaokang Li, Xiufang Lu, et al.. Intrinsic Anomalous Nernst Effect Amplified by Disorder in a Half-Metallic Semimetal. Physical Review X, American Physical Society, 2019, 9 (4), pp.041061. 10.1103/PhysRevX.9.041061. hal-02434941 HAL Id: hal-02434941 https://hal.sorbonne-universite.fr/hal-02434941 Submitted on 10 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW X 9, 041061 (2019) Intrinsic Anomalous Nernst Effect Amplified by Disorder in a Half-Metallic Semimetal Linchao Ding ,1 Jahyun Koo,2 Liangcai Xu,1 Xiaokang Li ,1 Xiufang Lu,1 Lingxiao Zhao,1 Qi Wang,3 † ‡ Qiangwei Yin,3 Hechang Lei,3 Binghai Yan ,2,* Zengwei Zhu ,1, andKamranBehnia 4,5, 1Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China 2Department of Condensed Matter Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel 3Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China 4Laboratoire de Physique et Etude des Mat´eriaux (CNRS/Sorbonne Universit´e), Ecole Sup´erieure de Physique et de Chimie Industrielles, 10 Rue Vauquelin, 75005 Paris, France 5II.
    [Show full text]
  • Potential of Thermoelectric Power Generation Using Anomalous Nernst Effect in Magnetic Materials
    Scripta Materialia 111 (2016) 29–32 Contents lists available at ScienceDirect Scripta Materialia journal homepage: www.elsevier.com/locate/scriptamat Viewpoint Paper Potential of thermoelectric power generation using anomalous Nernst effect in magnetic materials Yuya Sakuraba National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Japan article info abstract Article history: This article introduces the concept and advantage of thermoelectric power generation (TEG) using Received 27 March 2015 anomalous Nernst effect (ANE). The three-dimensionality of ANE can largely simplify a thermopile struc- Revised 27 April 2015 ture and realize TEG systems using heat sources with a non-flat surface. The improvement of ZT can be Accepted 29 April 2015 expected because of the orthogonal relationship between thermal and electric conductivities. The calcu- Available online 3 June 2015 lations of an achievable electric power predicted that an improvement of thermopower by one order of magnitude would open up a usage of practical applications. Keywords: Ó 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Thermoelectric power generation Anomalous Nernst effect Spincaloritornics 1. Introduction Nernst effect is a three-dimensional effect where the electric field ~ occurs to the perpendicular direction to both Bex and rT. Since the Seebeck effect (SE), which originates from a diffusion of charged magnitude of Nernst effect can be enlarged by increasing magnetic carrier excited by applying a temperature gradient to conductive field Bex, Nernst effect has been studied to enhance thermoelectric materials, is a representative thermoelectric phenomenon. power generation and cooling effects by applying strong mag- Thermoelectric power generation (TEG) using SE has been netic field [1–5].
    [Show full text]
  • Thermoelectricity from Waste Heat of Flue Gases
    JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN MECHANICAL ENGINEERING THERMOELECTRICITY FROM WASTE HEAT OF FLUE GASES 1 MR. H. G. SUTHAR 1M.E. [Energy Engineering] Student, Department Of Mechanical Engineering, Government Engineering College Valsad, Gujarat [email protected] ABSTRACT : The three top operating expenses are often to be found in any industry like energy (both electrical and thermal), labour and materials. If we were found the manageability of the above equipments the energy emerges a top ranker. So energy is best field in any industry for the reduction of cost and increasing the saving opportunity. Thermoelectric methods imposed on the application of the thermoelectric generators and the possibility application of Thermoelectrity can contribute as a “Green Technology” in particular in the industry for the recovery of waste heat. Finally the main attention is too focused on selecting the thermoelectric system and representing the analytical and theoretical calculation to represent the Thermoelectric System. Keywords— Thermoelectricity and its effect, thermocouples types, analytical model. I: INTRODUCTION The thermopile was developed by Leopoldo Nobili The thermoelectric effect is the direct conversion of (1784-1835) and Macedonio Melloni (1798-1854). It temperature differences to electric voltage and vice- was initially used for measurements of temperature versa. A thermoelectric device creates a voltage when and infra-red radiation, but was also rapidly put to there is a different temperature on each side. use as a stable
    [Show full text]
  • 1 Nernst Effect in the Electron-Doped Cuprate Superconductor La2
    Nernst effect in the electron-doped cuprate superconductor La2-xCexCuO4 P. R. Mandal1, 2*, Tarapada Sarkar1, 2*, J. S. Higgins1, 2, Richard L. Greene1, 2 1Center for Nanophysics & Advanced Materials, University of Maryland, College Park, Maryland 20742, USA. 2Department of Physics, University of Maryland, College Park, Maryland 20742, USA. We report a systematic study of the Nernst effect in films of the electron doped cuprate superconductor La2-xCexCuO4 (LCCO) as a function of temperature and magnetic field (up to 14 T) over a range of doping from underdoped (x=0.08) to overdoped (x=0.16). We have determined the characteristic field scale HC2* of superconducting fluctuation which is found to track the domelike dependence of superconductivity (TC). The fall of HC2* and TC with underdoping is most likely due to the onset of long range antiferromagnetic order. We also report the temperature onset, Tonset, of superconducting fluctuations above TC. For optimally doped x=0.11 Tonset (≅ 39 K) is high compared to TC (26 K). For higher doping Tonset decreases and tends to zero along with the critical temperature at the end of the superconducting dome. The superconducting gap closely tracks HC2* measured from the temperature and field dependent Nernst signal. Correspondence: [email protected] *These authors have contributed equally to this work. 1 I. Introduction The nature of the normal state and the origin of the high TC- superconductor (HTSC) in the cuprates is still a major unsolved problem. In the hole-doped cuprates a mysterious “pseudo gap” is found, whose origin and relation to the HTSC is still not understood.
    [Show full text]
  • A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications
    Jaziri, Nesrine; Boughamoura, Ayda; Müller, Jens; Mezghani, Brahim; Tounsi, Fares; Ismail, Mohammed: A comprehensive review of thermoelectric generators: technologies and common applications Original published in: Energy reports. - Amsterdam [u.a.] : Elsevier. - 6 (2020), Supplement 7, p. 264-287. Original published: 2019-12-24 ISSN: 2352-4847 DOI: 10.1016/j.egyr.2019.12.011 [Visited: 2021-02-22] This work is licensed under a Creative Commons Attribution 4.0 International license. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/ TU Ilmenau | Universitätsbibliothek | ilmedia, 2021 http://www.tu-ilmenau.de/ilmedia Energy Reports 6 (2020) 264–287 Contents lists available at ScienceDirect Energy Reports journal homepage: www.elsevier.com/locate/egyr Review article A comprehensive review of Thermoelectric Generators: Technologies and common applications ∗ Nesrine Jaziri a,b,c, , Ayda Boughamoura d, Jens Müller b, Brahim Mezghani a, Fares Tounsi a, Mohammed Ismail e a Micro Electro Thermal Systems (METS) Group, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Université de Sfax, 3038, Sfax, Tunisia b Electronics Technology Group, Institute of Micro and Nanotechnologies MacroNano, Technische Universität Ilmenau, Germany, Gustav-Kirchhoff-Straße 1, 98693, Ilmenau, Germany c Université de Sousse, Ecole Nationale d'Ingénieurs de Sousse, 4023, Sousse, Tunisia d Université de Monastir, Ecole Nationale d'Ingénieurs de Monastir (ENIM), Laboratoire d'Etude des Systèmes Thermiques et Energétiques (LESTE), LR99ES31, 5019, Monastir, Tunisia e Department of Electrical and Computer Engineering, College of Engineering, Wayne State University, Detroit, MI48202, USA article info a b s t r a c t Article history: Power costs increasing, environmental pollution and global warming are issues that we are dealing Received 18 July 2019 with in the present time.
    [Show full text]
  • A Review on Thermoelectric Generators: Progress and Applications
    energies Review A Review on Thermoelectric Generators: Progress and Applications Mohamed Amine Zoui 1,2 , Saïd Bentouba 2 , John G. Stocholm 3 and Mahmoud Bourouis 4,* 1 Laboratory of Energy, Environment and Information Systems (LEESI), University of Adrar, Adrar 01000, Algeria; [email protected] 2 Laboratory of Sustainable Development and Computing (LDDI), University of Adrar, Adrar 01000, Algeria; [email protected] 3 Marvel Thermoelectrics, 11 rue Joachim du Bellay, 78540 Vernouillet, Île de France, France; [email protected] 4 Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans No. 26, 43007 Tarragona, Spain * Correspondence: [email protected] Received: 7 June 2020; Accepted: 7 July 2020; Published: 13 July 2020 Abstract: A thermoelectric effect is a physical phenomenon consisting of the direct conversion of heat into electrical energy (Seebeck effect) or inversely from electrical current into heat (Peltier effect) without moving mechanical parts. The low efficiency of thermoelectric devices has limited their applications to certain areas, such as refrigeration, heat recovery, power generation and renewable energy. However, for specific applications like space probes, laboratory equipment and medical applications, where cost and efficiency are not as important as availability, reliability and predictability, thermoelectricity offers noteworthy potential. The challenge of making thermoelectricity a future leader in waste heat recovery and renewable energy is intensified by the integration of nanotechnology. In this review, state-of-the-art thermoelectric generators, applications and recent progress are reported. Fundamental knowledge of the thermoelectric effect, basic laws, and parameters affecting the efficiency of conventional and new thermoelectric materials are discussed. The applications of thermoelectricity are grouped into three main domains.
    [Show full text]
  • A Steady Approach
    editorial A steady approach From the discovery of the Seebeck efect in the nineteenth century to its application in the latest space probes, thermoelectrics have carved out a niche for reliable applications. t was the so-called seven minutes of in heating or cooling. A Perspective by terror. The NASA Perseverance rover Zhifeng Ren and colleagues discusses recent Isuccessfully completed atmospheric progress in materials for thermoelectric entry and a controlled soft landing on Mars. cooling. In comparison with thermoelectric Its mission is to use its large suite of tools power generation, which relies on a large to assess not only the past habitability of temperature gradient with the hot side the Jezero Crater but also to select which several hundred kelvin hotter than the cool mineral samples to cache for a future side, thermoelectric coolers are typically sample-return mission. This will require An artist’s impression of the Perseverance rover used near ambient temperature, reducing a sizable and stable energy source for a on Mars. Credit: Neko / Alamy Stock Photo thermal stress on the thermocouple. The long-range, long-duration drive, and this researchers note that the low-temperature energy supply is provided by the heat thermoelectric properties of many materials emitted by PuO2 pellets during radioactive are yet to be comprehensively investigated decay in a radioisotope thermoelectric In this issue, a Letter by Yuya Sakuraba and so have been overlooked for cooling generator. This uses a thermocouple, and colleagues outlines an alternative applications. They also note that a large composed of two different thermoelectric methodology for large transverse mobility difference ratio between electrons materials, to generate voltage.
    [Show full text]
  • Integrated; ;: ;; Silicon Thermopile Infrared Detectors
    INTEGRATED; ;: ;; SILICON THERMOPILE INFRARED DETECTORS * , i *Fs - ^ ■^ ^ c^ INTEGRATED SILICON THERMOPILE INFRARED DETECTORS INTEGRATED SILICON THERMOPILE INFRARED DETECTORS Infrarooddetectoren op basis van geintegreerd silicium thermozuilen Proefschrift ter verkrijging van de graad van doctor in de technische wetenschappen aan de Technische Universiteit Delft op gezag van de Rector Magnificus, prof.dr. J.M. Dirken, in het openbaar te verdedigen ten overstaan van een commissie, door het College van Dekanen daartoe aangewezen, op donderdag 1 oktober 1987, te 16.00 uur door Pasqualina Maria Sarro geboren te Piedimonte Matese, Italië dottore in Fisica TR diss 1571 Dit proefschrift is goedgekeurd door de promotor Prof.dr.ir. S. Middeihoek ai miei genitori aan René en Marco ed alia mia nonna TABLE OF CONTENTS Page 1. INTRODUCTION 1 1.1 Aim of the work 1 1.2 Organization of the thesis 2 2. OVERVIEW OF INFRARED DETECTORS 3 2.1 Introduction 3 2.2 Detection of infrared radiation 3 2.2.1 Infrared radiation 3 2.2.2 The photon detection process 6 2.2.3 The thermal detection process 10 2.3 Thermal detectors 10 2.3.1 Thermopile detectors 11 2.3.2 Bolometer detectors 13 2.3.3 Pyroelectric detectors 15 2.2.4 Others 17 2.4 Optical detectors versus thermal detectors 18 3. THE SILICON THERMOPILE INFRARED DETECTOR 21 3.1 Introduction 21. 3.2 Thermoelectric effects 22 3.2.1 The Seebeck effect 22 3.2.2 The Peltier effect 25 3.2.3 The Thomson effect 27 3.2.4 The Seebeck coefficient 28 3.2.5 Figure of merit 33 3.3 Integrated silicon thermopiles 35 3.3.1 Thermopile performance 35 3.3.2 Use of thermopiles in thermal sensors 38 3.4 The silicon thermopile infrared detector 39 3.4.1 The working principle 39 3.4.2 Design criteria 40 vn 4.
    [Show full text]
  • Transport Phenomena in Spin Caloritronics
    No. 2] Proc. Jpn. Acad., Ser. B 97 (2021) 69 Review Transport phenomena in spin caloritronics † By Ken-ichi UCHIDA*1,*2,*3, (Edited by Hiroyuki SAKAKI, M.J.A.) Abstract: The interconversion between spin, charge, and heat currents is being actively studied from the viewpoints of both fundamental physics and thermoelectric applications in the field of spin caloritronics. This field is a branch of spintronics, which has developed rapidly since the discovery of the thermo-spin conversion phenomenon called the spin Seebeck effect. In spin caloritronics, various thermo-spin conversion phenomena and principles have subsequently been discovered and magneto-thermoelectric effects, thermoelectric effects unique to magnetic materials, have received renewed attention with the advances in physical understanding and thermal/ thermoelectric measurement techniques. However, the existence of various thermo-spin and magneto-thermoelectric conversion phenomena with similar names may confuse non-specialists. Thus, in this Review, the basic behaviors, spin-charge-heat current conversion symmetries, and functionalities of spin-caloritronic phenomena are summarized, which will help new entrants to learn fundamental physics, materials science, and application studies in spin caloritronics. Keywords: spin caloritronics, spin current, spin Seebeck effect, spin Peltier effect, magneto- thermoelectric effect, magnetic material mainly focused on thermoelectric power generation 1. Introduction based on the Seebeck effect and electronic cooling Thermoelectric effects enable direct interconver- based on the Peltier effect. sion between heat and electricity.1) One of the In addition to the Seebeck and Peltier effects, representative thermoelectric effects is the Seebeck various thermoelectric transport phenomena appear effect, discovered by T. J. Seebeck in 1821. This effect in a conductor in the presence of a magnetic field H converts a heat current into a charge current in metals or in a magnetic material with spontaneous magnet- and semiconductors.
    [Show full text]
  • Radioisotope Power Systems Reference Book for Mission Designers and Planners
    https://ntrs.nasa.gov/search.jsp?R=20160001769 2019-08-31T04:26:04+00:00Z JPL Publication 15-6 Radioisotope Power Systems Reference Book for Mission Designers and Planners Radioisotope Power System Program Office Young Lee Brian Bairstow Jet Propulsion Laboratory National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California September 2015 JPL Publication 15-6 Radioisotope Power Systems Reference Book for Mission Designers and Planners Radioisotope Power System Program Office Young Lee Brian Bairstow Jet Propulsion Laboratory National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California September 2015 This document was generated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. It summarizes research carried out at Jet propulsion Laboratory and by Glenn Research Center. For both facilities, funding was provided by the NASA Radioisotope Power Systems (RPS) Program Office at Glenn Research Center. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. © 2015 California Institute of Technology. Government sponsorship acknowledged. Abstract The RPS Program’s Program Planning and Assessment (PPA) Office commissioned the Mission Analysis team to develop the Radioisotope Power Systems (RPS) Reference Book for Mission Planners and Designers to define a baseline of RPS technology capabilities with specific emphasis on performance parameters and technology readiness. The main objective of this book is to provide RPS technology information that could be utilized by future mission concept studies and concurrent engineering practices.
    [Show full text]
  • Large Magnetothermopower and Anomalous Nernst Effect in Hfte5
    PHYSICAL REVIEW B 100, 115201 (2019) Large magnetothermopower and anomalous Nernst effect in HfTe5 Junfeng Hu ,1,2 Marco Caputo,3 Eduardo Bonini Guedes,2,3 Sa Tu,1 Edoardo Martino,2 Arnaud Magrez,2 Helmuth Berger,2 J. Hugo Dil,2,3 Haiming Yu,1,* and Jean-Philippe Ansermet2,† 1Fert Beijing Institute, BDBC, School of Microelectronics, Beihang University, Xueyuan Road 37, Beijing 100191, China 2Institute of Physics, station 3, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne-EPFL, Switzerland 3Photon Science Department, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland (Received 20 June 2019; published 12 September 2019) Topological quantum materials have stimulated growing attention because they reveal novel aspects of condensed matter physics and point to new opportunities in materials science, in particular for thermoelectrics. Here, we experimentally study thermoelectric effects in HfTe5, which was predicted to be at the boundary between strong and weak topological insulators. The magnetic field dependence of HfTe5 thermoelectric properties attests to the anomalous character of this material, supported by our angle-resolved photoemission spectroscopy (ARPES) measurements. At 36 K, the thermopower of −277 μV/K is reached when a field of 0.4 Tesla is applied, while it is −157 μV/K at zero field and a large Nernst coefficient up to 600 μV/Kis observed at 100 K with magnetic field of 4 T. A possible topologically nontrivial band structure is proposed to account for our observations. Our results constitute a highly constraining set of data for any model of transport based on HfTe5 band structure. Furthermore, the extraordinary thermoelectric properties suggest a new paradigm for the development of thermoelectric applications based on layered transition-metal chalcogenides.
    [Show full text]