<<

Thermal Radiaton: Planck’s Law IT Perfectly Basic Relations , M Reflecting Wall Frequency ν n at T he to Inside the Cavity Angular FrequencyC ω=2πν al EM Wave In Wavelength λg m Equilibrium at Wavevectoran magnitudee k=2r π/λ T k WavevectorG k=(kx,khy,kz) n /T io 2 2 2 ©c =νλ r ωs= ck = c kx + k y + kz ht la er ig So v ω(k): Dispersion relation (linear) yr t on p cHow muchC energy in the cavity? o ire y C g ∞ ∞ ∞ D Ur = 2 ω f (ω ,T ) = λ λ7 λ 7 e ∑∑∑h x x x n x =1 n y =1 nz =1 L x = ,29 ,...,nx 9,... .29 2 .92 En ∞ ∞ ∞ l dk x dk y dk z 2 2π 2 a 2 hω f (ω ,T ) k = n r ∫ (2π / 2L )∫ (2π / 2L )∫ (2π / 2L ) x x 2 Lo ric 0 x 0 y 0 z F x t ∞ ∞ ∞ c dk dk dk e = 2 x y z ω f (ω ,T ) l ∫ (2 / L ) ∫ (2 / L ) ∫ (2 / L )h TwoE polarization −∞ π x −∞ π y −∞ π z –WARREN M. ROHSENOW AND MASS TRANSFER LABORATORY, MIT Thermal Radiaton: Planck’s Law

∞ ∞ ∞ IT 2V • Energy density per interval U = ω f (ω ,T )dk x dk ydkz Mω 8π 3 ∫∫∫ h , − ∞− ∞− ∞ n ∞ u (ω ) = hω f (ω ,e T )D(ω) 2V 2 o = ω f (ω ,T )4 πk dk 3 h t 3 ∫ h hω C 1 l 8π 0 = a Planck’s law π 2 c 3 ⎛ ⎞ ∞ 2 g hω m 2V ω ω n exp⎜ r ⎟ −1 ⎛ ⎞ ⎛ ⎞ a e⎜ k T ⎟ = 3 hω f (ω ,T )4 π ⎜ ⎟ d ⎜ ⎟ ⎝ B ⎠ 8π ∫ ⎝ c ⎠ ⎝ c ⎠ G h n 0 • Intensity:/T energyio flux per unit ∞ 2 © r s U ω t lsolida angler = hω f (ω , T ) 2 3 dω V ∫ c h o e 0 π g v i S 3 ∞ r dAnp cu(ω) ω 1 y t o I ()ω = = h = ωf (ω , T )D(ω)d ω p c 3 2 ∫ h o e C 4π 4π c ⎛ hω ⎞ 0 ir exp⎜ ⎟ −1 C y ⎜ k T ⎟ ∞ D g ⎝ B ⎠ 7 7 er = ∫ u ()ω d9ω 9 Angle Per unit wavelength interval 0 9 9 En . . l dA I(ω)d ω 4π c 1 2 2 a dΩ = p I ()λ = = h r ic R2 d λ λ5 ⎛ 2π c ⎞ D(ω)-densityo of statestr per exp⎜ h ⎟ −1 unit volumeF per cunit whole space ⎜ k Tλ ⎟ e ⎝ B ⎠ angular frequencyEl interval 4π Planck’s law –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT Thermal Radiaton: Planck’s Law IT

Q& Wien’s displacement la,w M en o λ T = 2898 Kμmh t max C al 4 g m 10 an er G h n Emissive Power m) T o μ 3 / i 2 r t10© la rs h/cm o e

g W v Q& ()λ = A πI()λ i S n r 2 y R ( 10t o 5600 K ω 3 1 p E c W C = A h o e 2 2 ir O y 2800 K 4π c ⎛C ω ⎞ P h D 1 g exp⎜ ⎟ −1 E 10r

⎜ ⎟ V 7 ⎝ k B T ⎠ 7 I e 9 9 S S 9 9 EnI 1500 K

. . M l 0 2 2 E Total r a 10 ∞ ic o r4 Q& = ∫F Q&()λ dλ = cAσtT 800 K 0 e 10-1 l 0 2 4 6 8 10 E WAVELENGTH (μm) –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

MIT MIT , ,

T T

I R LABORATORY o o R LABORATORY

E E t

l l M

n n

, , a

o n

i

m

e s r

r MASS TRANSF MASS TRANSF

h e

e

h

C v

T AT AND AT AND

n /

g g

r

o n

a

l a

C ENOW HE ENOW HE o

G y y

S

g

r t t

© ©

Gang Chen c e

t t

e

h

ical Engineering Department r

i

g

n En

WARREN M. ROHS WARREN M. ROHS

i –

– l l r D

y a

7 7

p

Mecha ic

Massachusetts Institute of Technology

9

r o

URL: http://web.mit.edu/nanoengineering t 9

. C c

2

e

l

r r Introduction to Thermoelectricity 7

E o 9

9 F

. 2 MIT MIT , , tor 2 tm

.h

re

T T u

t I R LABORATORY o o R LABORATORY

ec E E

t l

-

t

Conduc

l l M

n n

, , a ies/tex

r

e

o v n

i o

m sc e i s

r d Hot Cold -

r MASS TRANSF MASS TRANSF

c i h

e f

i

t

e n

h

C v

T AT AND AT AND

n /

g g res/scie

u

r t

ffect tor 1 o

n ec l - a

l

E a

C rary

ENOW HE ENOW HE

o lib - G

y y r e

S n Conduc

g ib

r /d t t

© © Seebeck effect: Discovered in 1821 Temperature difference generates voltage

ns

c e io

t t

e

h licat

r b

i

g

En WARREN M. ROHS WARREN M. ROHS

i k

silpu – – / l l Seebeck r

D u

d

.e y a i

7 il.s

p s

. ic

9 w

r o w

t w

9 /

/

: .

C

c p t

t

h 2 2 e

Johann Seebec l r r 7

E o 9

9 9 F

.

Thomas 1770-1831 2 MIT MIT , ,

tor 2

T T

I R LABORATORY o o R LABORATORY

E E

t Conduc

l l M

n n

, , a

o n

i

m

e s

r A

r MASS TRANSF MASS TRANSF

h e

e

h

C v

T AT AND

AT AND

n

/

Heating or Cooling g

r

o

n tor 1

ffect

a ffect: Discovered in 1834

l a

C E

E

ENOW HE ENOW HE

o

G

y y

Conduc S g

r t t

© © Peltier An electrical current creates a cooling or heating effect at the junction depending on the direction of current flow.

c e

t t

e

h

r

i

g

En WARREN M. ROHS WARREN M. ROHS Peltier ier

i –

– l l r D

y Pelt a

7 7

p

ic

9

r o

t

9

. C c

2

e

l

r r 7 7

E o 9

9 F

. 2 Jean Charles Athanase 1785-1845 MIT MIT , , m .ht hot

e r

T

tu

T T c

e I R LABORATORY o o R LABORATORY

E E t xt-l

e

t /

l l M s

e

n n , ,

a eri

ov

current

o c n

i s

m

e s r c-di

r MASS TRANSF

MASS TRANSF h

e entifi

e i

c

h s

C /

v s

e

T AT AND AT AND

n

/ tur

g g c r

o -le

n y

r

a a

ld l a

C ENOW HE ENOW HE co r-libr o

G T y

heat release/absorption q(x)

ibne

S d

g /

Thomson effect predicted, 1855 s

r t t

© © ion

t

c e a t t

e

h ublic

r ilp i g

En s

WARREN M. ROHS WARREN M. ROHS

i – – du/ l l

r D e

Thomson Effect

si.

y

a il.

s

7 7 .

p p

ic ww

9

r w o

t

9

. C

c http://

2

e l

r r

7 7 1907

E o 9

9 F

. 2 William Thomson (Lord Kelvin) 1824 – m] MIT MIT , , m] Ω Ω cal i cal i

tivity [1/

T T ical Electr Resistivity [ I R LABORATORY o o R LABORATORY

E E t Electr Field [V/m]

l l M

Electr Conduc

n n ρ

, ,

a /

o

n i

m ε

oefficient [J/A]

e • s

• r C • •

r MASS TRANSF MASS TRANSF •

= h /s.V] e e

2

• e

J

h • ε • •

C Mobility [m

• v •• •

Peltier T T σ Π

• AT AND AT AND

n

/

g • • •

=

• • r =

• o

• n e

a ε

• l • •• •

a • C

μ J ENOW HE

ENOW HE

• o

G • G e • y q

en • •

• S

• •

g =

= Drift Velocity [m/s] r • t

• ©

• v • c v e

• t •

] • e

h 3 • qn • en

• r

• i

g

En WARREN M. ROHS WARREN M. ROHS • ••

i = • =

– – • l l r

• D

• q • e

• • y

• a J J

• 7

• p

•• • • ic

9

r

o Electron Density [1/m

t

9

. C

c Heat Per Charge [J]

2

e

l

r r 7 7

E o 9

9 Current Flow in an Isothermal Conductor F .

Electron Charge [C] • 2 Heat Flux An Intuitive Picture of Thermoelectric Effects Peltier Effect IT M J , J , e q1 n 1 he to C al Q ng rm Q a he G2 /T on © r J , J si ht la eerq2 ig So v yr t on p ec C o Qir (Peltier)y = (Π 1−Π2)J C D rg 97 97 e .9 • Heating.9 En and cooling at junctions 2 2 al r • Reversibleic with current direction Fo tr ec El –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

MIT MIT , ,

T T

I R LABORATORY o o R LABORATORY

E

E hot t hot

V T l M

n n ) , a

o

n

• i

cold

m • e s r

r -T MASS TRANSF

MASS TRANSF

h

e • • e

hot

h C

• v

T AT AND AT AND

n

/

g )/(T ffect

• r

o • n

E

a cold

l a •

• C

ENOW HE ENOW HE

-V

• o G G

• y

hot

• S

g

r

t oefficient

• ©

•• c

e C •

• t

• Temp. Gradient e

Built-In Potential

• h

• r T = -(V i

g

• En

• WARREN M. ROHS

WARREN M. ROHS

Seebeck i Δ

– – • • l r

• D

eebeck

V/ y • a

• • •

S 7 Δ

• p

• • ••• ic

•• • 9

r o

t

9

. S = - S --- C c

cold 2 cold harge diffusion under a temperature gradient e uilt-in potential resisting diffusion

V l T

r C 7 B

E

o • • 9

9 F

. 2 MIT MIT , , T

d

/

T T

I R LABORATORY o o R LABORATORY

S E E t

l l

M hot

n n

, , a T

Td

o x

T n

• i

m d d

e s

r •

r MASS TRANSF τ= MASS TRANSF h e

• e

h q x C

v ;

• T AT AND AT AND

n

/

g g Id

T 1d

r

• o

n •

a

l a

• C

τ= = S ENOW HE ENOW HE

current o

G

• y

• S

Π • g

r t t

© • ©

c e •• t

• s:

• e h

• r n

• i

g

En WARREN M. ROHS o WARREN M. ROHS

• i

i l l • r

• D t •

y

Thomson Effect a

• • • 7 la

• p

ic e heat release/absorption q(x)

• • •••

•• • 9 r

o

t

9 R .

C c

ld

2

in e

co l

r r

T 7

lv E

o

Thomson Coefficient 9

9 F

. Ke 2 •

MIT MIT , ,

T T

I o o R LABORATORY R LABORATORY

E E t

l l M

n n

, , a

o n

i

m

e s r

r MASS TRANSF MASS TRANSF

h e

e

h

C v

T AT AND AT AND

n /

g g

r

o n

a

l a C

ENOW HE ENOW HE o

G y y

S

g

r t t

© ©

c e

t t

e

h

r

i

g

En WARREN M. ROHS WARREN M. ROHS

i – –

l l r

Science 320 (May 2, 2008): 634-638. D Performance of Nanostructured Antimony Telluride Bulk Alloys." Please see Fig. 2a,b in Poudel, Bed, et al. "High-Thermoelectric

Images removed due to copyright restrictions.

y a

7 7

p

ic

9

r o

t

9

. C c

2

e

l

r r 7 7

E o 9

9 F

. 2 Properties are Temperature Dependent

MIT MIT , ,

T T

I R LABORATORY o o R LABORATORY

E E t

l l M

+ n n

, ,

a P

o n

i

m

e s r

r MASS TRANSF MASS TRANSF HOT SIDE

h

COLD SIDE e

-

N e

h

C v

T AT AND AT AND

I n /

g g

r

o n

a

l a

C ENOW HE ENOW HE o

G y y

S

g

r t t

© ©

c e

t t

e

h

r

i

g

En WARREN M. ROHS WARREN M. ROHS

i –

– l l r D

y

Thermoelectric Devices a

7

p

ic

9

r o

t

9

. C c c

2 e

COLD SIDE l

HOT SIDE r 7

E o 9

9 F

. . 2 IT M n, he to C al ng rm a he n Performance of ThermoelectricG /T io Devices © ar rs ht ol e rig S nv y ct o op re C C Di gy 7 7 er 99 99 En 2. 2. l r ica Fo tr ec El –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT MIT MIT , , L kA

=

T T

I R LABORATORY o o R LABORATORY

K E E t

: l

M T

n n e

, a Δ

o

n

i K

T m e

s r

r MASS TRANSF MASS TRANSF

= h

∇ e

e c k h

C

v T

T AT AND

AT AND Heat Conduction −

n /

g [W/m.K] − L

r

o

= n

h

a

l a

] C T

Conductanc 2

ENOW HE ENOW HE q o

G y

S

g Ak

r t ©

c = e

t

e

h

r Q

ne-dimensional heat conduction i

g

ourier Law for heat conduction En

WARREN M. ROHS

WARREN M. ROHS i Thermal

– –

O l r F D

Heat Flux [W/m

y

• a

• 7

p

ic

9

r o

t

9

. C c

2

e

l

r 7

h E

o 9 c

T 9 9

F T

Area A . Other Basic Relations: 2 L MIT MIT , , n ) n A c L n k -T h +

p

T T (T

p I A R LABORATORY o o R LABORATORY

E K E

t p L

k l l M

n n =

, , a

o

n K R/2 -

i 2 m

e I s

r Thermal Conductance

r MASS TRANSF

MASS TRANSF

h e

e Ι−

h C n

)• Ι

v )•

n

n

n

T ρ AT AND

AT AND

n

/ n

A g g Π

Π

- r L

o -

p

n p

a +

Π l a

C Π

ENOW HE ENOW HE p

o

G p

= ( y ρ = (

c

S c p

A

No , No Heat Conduction g Joule Heating & Heat Conduction L

Q r t t Q Real Devices:

Ideal Devices ©

c

e =

• t •

e

h R

r

i

g

En WARREN M. ROHS WARREN M. ROHS Electrical Resistance

i –

– l l r D

y a

7 7

p

n ic 9

r o

t

c 9 Device Analysis: Cooling

. C

h c

Q

Q 2 e

c l

r r T 7

E

o

h 9

T 9 F .

p 2 MIT MIT ) , , c T + R ⎟ ⎟ ⎠ ⎞ 2 h I n T (

n 2 1 A R

5

)

L . n T T 2

− c

I I 0 k R LABORATORY o o R LABORATORY )

T E

E

t +

= C + −

)

l l M T

h

p

M

C T n −

, , a p 2

T T A

)

)( C H

o L p 1 H n n

i T n

T k m T +

S

S ( e s r H

⎜ ⎜ ⎛ ⎝ −

− r ⎟ ⎟ ⎠ ⎞ T MASS TRANSF MASS TRANSF M

K h e (

p T M p

I

− e

T S n S

h ) ρ

C ( (

v nn C

n

A +

T T + AT AND AT AND

L S

+ n 1Z

I /

g g ) 1Z −

r + IR o

n n

p

S a ) = S l p a C ρ

( − C

pp ENOW HE ENOW HE

A

V o T

p L

G C y

− S ⎛ ⎜ ⎝ ⎜

S T

(

H g = r t t

= ©

T

( 2 c e

t t ) C

=

W e n

Q h

r S x

i

g En −

WARREN M. ROHS WARREN M. ROHS KR

i ma

– – φ=

l l p r φ D

S

y ( a

Refrigerator Performance

7 7

p =

Coefficient of Performance: ic Voltage Drop: 9

Z r o

t

9

. C c

2

e l

r r

c 7

h E

o

Q 9

Q

9 c F

h .

T T 2 Optimize Current: 2 S k MIT MIT , , σ = 2 2 k 1/ ⎞ ⎟ ⎟ ⎠ S ρ

p n =

k k

T T Z p n

I R LABORATORY o o R LABORATORY ρ ρ

E E

t ⎝ ⎜ ⎜ ⎛

l l

M =

n n

, , a

⎞ ⎟ ⎟ o ⎠

n i

m np pn

n

e s

n r LA LA

A material:

r MASS TRANSF MASS TRANSF

h L n e

k e

h C

+ v

T AT AND AT AND

p n

/

p g A r o

L n p

a r a single

k l a

C o

when ⎛ ⎜ ⎜ ⎝

ENOW HE ENOW HE

F

⎞ ⎟ ⎟ ⎠ o

G y y

n S 2 g ρ

)

nn r t t A ©

n L 2

c

) e ρ t

+ n e n

k h

r ρ

2 p i n

g ρ En

)

WARREN M. ROHS WARREN M. ROHS

pp i k –

– A n + l l

r

L D

S

p y ⎜ ⎝ a ⎜ ⎛ Figure of Merit Z pairs are used:

− ρ

= 7 p

p p

k ic

S 9 ρ+ r

( o

pp t

KR 9 (

k

. C

= c

( 2

n e

= l r r

7 7 urrent input to the device needs be optimized reas of each type legs need to be optimized wo types of legs should have comparable properties

mi

) E x T A C o 9

ma

9 KR F

Z . In a device, pn (1) (2) (3) ( 2 Typical Number IT M n, •BiTe -based materials ~300 Kh e to 2 3 C al g m S=220 μV/K Poweran Factor:e rS2σ=48 μW/cm-K 5 -1 Figure of Merit:h Z=3.2x10n -3 1/K σ=10 Sm G /T io k=1.5 W/mK © ar rsZT=1 ht ol e rig S nv • Device Leg: 1 ymm x 1c tmm x 2o mm op re C C Di gy 7 L 72 × 10− 3 er R9 1 = =9 = 0.02 Ω .9 σA .9 105 × 10En − 6 2 2 al or ric F Legs caret electrically in series butle thermally in parallel E Image by michbich at Wikipedia. –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT Two Tc soldered into drilled holes

T One T An Example I h M , soldered into n drilled holes he to C al g m Ceramics 120 n Copperr blocks (Th ) plate for a e electrical Experimental data G h n insulation Theoretical prediction /T o C) 100 © r i o t la rs gh o ve 80 i S n ence ( yr t o er c f p f C i o re 60 C i y e D D rg • Match two leg size ur 7 7 e at 40 99 99 En • Minimize contact 2. 2. l resistance mper a e 20 r T o ic • Optimize current tr T = 100 °C F c h 0 le 0 E 2 4 6 8 10 Curre–WARRENnt (A) M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT Temperature Dependence of Properties IT M n, he to C al ng rm Images removed due to copyright restrictions.a he Please see Fig. 2a,b,d,e in Poudel,G Bed, et al.T n "High-Thermoelectric Performance of Nanostructuredr/ io Bismuth Antimony Telluride© Bulk Alloys."a Science 320r (Mays 2, 2008): 634-638. ht ol e rig S nv y ct o op re C C Di gy 7 7 er 99 99 En 2. 2. l r ica Fo tr ec El –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT Differential Analysis IT M n, he to O C al d ⎛ dT ⎞ g dS dmT 2 ⎜ k ⎟ −a nJT er +ρJ =0 dx 2 ⎝ dx G⎠ dTh dxn r/T io t © la rs gh o ve ri t S n pThomsony cEffect, UsuallyCo Neglected Joule Heating o ire y C D rg 97 9Boundary7 e Conditions (Cooling): .9 .9 l En dT dT 2L 2 x=0:a T given or q =−k +ΠJ =−k +ST J r ic c c dx dx c Fo tr ec x El –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT MIT MIT , , 0 1 1 1 E 9 V I NT 8 A S OT L E P P L IN OM 7 E G S IE AUT EN

D ) AL 6

d l T M

ER ER T T co N

ER W A I R LABORATORY o o R LABORATORY

5 /T S E E PO PL TH

t R t

R m 5 1 2 O 7 4 ho

0. C T 10 ZT G G I

l M TO

A

N T 4

I A

( TR L n n ER R

,

a R O E I

EN

N TI o ST G

n E

i ELEC

S m 3

G G O C

RA R

e s E r O

M

ER T R ONI

r MASS TRANSF MASS TRANSF I A

ER h W

e M

TU ER

E e A

TH PO S ER

L h R L EN

TPV C C LL

G TH A v 2

E

PE

TO

CY ET

T C C AT AND AT AND

T

n C O /

g I M AL I

TEM

R

r M T RN

AL o

n K ER EC CA a

l AL EL TH a

C ENOW HE

ENOW HE o

G y

S 1 1 1

g 0 0 6 5 6 6 5 5 4 4 3 3 2 2 1 1

Y Y C C EN EN I I C C I I F F EF EF ON ON I I T T A A R R NE NE GE GE R R E E POW 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. POW r t

©

c e

t

e

h

r

i g

En WARREN M. ROHS WARREN M. ROHS

i – – c h l r

1 D

T T

y

+ a

7

ave p

ave ic

9

r

ZT o

t

ZT 9

+ . C

h c + 1

1 T 2 e

2 l +

r

⎟ ⎟ ⎠ 7 ⎞

Thermoelectric Power Generation

c E c h o

T 9

T T

9 − F = .

1

⎛ ⎜ ⎜ ⎝ = 2 ave Constant Properties Efficiency

η T Thermoelectric IT 6 M Coefficient of Performance n, eCARNOT oCYCLE 5 h STIRLINGl t T 1 + ZT −T /T C REFRIGERATORSa COP = c ave h c g n rmHOUSEHOLD Th − Tc 1 + ZTave +1 a e 4 h REFRIGERATORSn & G T AIR-CONDITIONERS © r/ sio t la r THERMOELECTRIC h o3 e rig S nv REFRIGERATORS y t o STIRLING p c ZT o e C2 m CRYOCOOLERS ir y 710 C g 2 4 D r 1 97 97 e 0.5 9 9 1 . . En COEFFICIENT OF PERFORMANCE 2 2 al or ric F t 0 ec 1 1.2 1.4 1.6 1.8 2.0 l TEMPERATURE RATIO (T /T ) E hot cold –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT IT M n, he to C al ng rm a he n G /T io Current and Potential© ar Applicationsrs ht ol e rig S nv y ct o op re C C Di gy 7 7 er 99 99 En 2. 2. l r ica Fo tr ec El –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

MIT MIT , ,

T T

I o o R LABORATORY R LABORATORY

Industries E E t

l l M

n n

, , a

o n

i

m

e s r

r MASS TRANSF MASS TRANSF

h e

e

h

C v

T AT AND AT AND

n /

g g

r Coolers from Marlow

o n

a

l a C

ENOW HE ENOW HE o

G y y

S

g

r http://www.hi-z.com/index.php t

© ©

c e

t t

e

h

r

i

g

Images removed due to copyright restrictions. En

Please see http://www.marlow.com/thermoelectric-modules/

WARREN M. ROHS WARREN M. ROHS

i –

– l l r D

y a

7 7

p

ic

9

r o

t

9

. C c

2

e

l

r r 7 7

E

o Commercial Thermoelectric Devices 9

9 F

.

Power Generators from Hi-Z 2

MIT MIT , ,

T T

I o o R LABORATORY R LABORATORY

E E t

l l M

n n

, , a

o n

i

m

e s r

r MASS TRANSF MASS TRANSF

h e

e

h

C v

T AT AND AT AND

n . /

g g

r

o n

a

l a C

ENOW HE ENOW HE o

G y y

S

g

r t t

© ©

c e

t t

e

h

r

i

g

En WARREN M. ROHS WARREN M. ROHS

i –

– l l r D

y a

7 7

p

ic

9

http://www.roadtrucker.com/12-volt-coolers-accessories/ r o

t

9

. C c

2 e

Current Applications in Refrigeration l r r http://amerigon.com/ccs_works.php 7 http://www.medsystechnology.com/images/gem4000_w32a.jpg

Images removed due to copyright restrictions. http://www.rmtltd.ru/datasheets/TO812.4MD04116xx.pdf Please see: http://www.newdavincis.com/images/wc-1682%2016%20bottles.jpg http://image.made-in-china.com/2f0j00kvZEKWVPgtlu/Refrigerator-BC-65A-.jpg

12-volt-coolers-products/igloo-40-quart-kool-mate-40-12-volt-thermo-electric-cooler-6402.jpg

E o 9

9 F

. 2

MIT MIT , ,

T T

I o o R LABORATORY R LABORATORY

E E t

l l M

n n

, , a

o n

i

m

e s r

r MASS TRANSF MASS TRANSF

h e

e

h

C v

T AT AND AT AND

n /

g g

r

o n

a

l a C

ENOW HE ENOW HE o

G

S

r t t

© ©

c e

t t

e

h

r

i

g

En WARREN M. ROHS WARREN M. ROHS

i –

– l l r D

y a

7 7

p

ic

9

r o

t 9

.

C

http://globalte.com/pdf/teg_5120_spec.pdf c http://thermoelectrics.caltech.edu/images/mhw-rtg.gif Images removed due to copyright restrictions. Please see: http://www.roachman.com/thermic/thermic1.jpg

http://www.research.philips.com/newscenter/pictures/downloads/misc-sustainability_05-0_h.jpg 2

e

l

r r 7 7

E

o 9

Current Applications in Power Generation

9 F

. 2

MIT MIT , ,

T T

I R LABORATORY R LABORATORY

E E M MASS TRANSF MASS TRANSF Electrical interconnect Carriers moving heat AT AND AT AND hot T Figure by MIT OpenCourseWare. ambient _ ENOW HE ENOW HE T object T T + te Heat sink T DC Power source Object being cooled N NP P cold T WARREN M. ROHS WARREN M. ROHS – –

TE Element

System Consideration Ceramic substrate

. C c

2

le

r 7

E o 9

9 F

. Sometimes, thermal systems more expansive 2 Heat to Electricity Recovery IT from Gas Stream M n, he to SurfacesC al Hot Gas ng rm Hot Gas a he m, Th,i G T n Th,o © r/ sio Hot Sidet TemperatureTla r h o H e Insulation rig S nv y Cold Sidet TemperatureTo p ec C c Co ir y Coolant D rg 97 97 e .9 .9 En 2• For thermoelectric2 al devices, T higher is better or ric H • FHowever,ct maximum heat intercepted from hot gas lstream,e mc (T -T ), decreases with T E p h,i H H –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT Vehicle Systems T Main AC: TE Local cooling of seats: TE I In US,, transportationM uses ~26%en of total energy. Radiator: TE h to C al ng rm a he n G /T io Catalytic converter: TE © r s ht la er ig So v r tMechanical nlosses py c Co o ir9kJe y C D g 10kJ Driving 7 7 er Gasoline9 9 6kJ 100 .kJ9 .9 En Auxiliary 2 2 al r 30kJ 35kJ 10kJo ric F ct le ParasiticE heat losses Coolant –WARREN EM.xhaust ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT Prototypes IT M n, he to C al ng rm Images removed due to copyright arestrictions. Pleasee see http://cdn-www.greencar.com/images/waste-exhaust-heat-generates-electricity-cars-efficient.php/bmw-teg-1.jpgG h n http://cache.gawkerassets.com/assets/images/12/2009/03/BMW_TEG.jpg/T io © ar rs ht ol e rig S nv y ct o op re C C Di gy 7 7 er http://cache.gawker.com/ 99 99 En 2. 2. l r ica Fo tr ec El –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT MIT OpenCourseWare http://ocw.mit.edu

2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.