Thermodynamics of Thermoelectric Phenomena and Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Avionics Thermal Management of Airborne Electronic Equipment, 50 Years Later
FALL 2017 electronics-cooling.com THERMAL LIVE 2017 TECHNICAL PROGRAM Avionics Thermal Management of Advances in Vapor Compression Airborne Electronic Electronics Cooling Equipment, 50 Years Later Thermal Management Considerations in High Power Coaxial Attenuators and Terminations Thermal Management of Onboard Charger in E-Vehicles Reliability of Nano-sintered Silver Die Attach Materials ESTIMATING INTERNAL AIR ThermalRESEARCH Energy Harvesting ROUNDUP: with COOLING TEMPERATURE OCTOBERNext Generation 2017 CoolingEDITION for REDUCTION IN A CLOSED BOX Automotive Electronics UTILIZING THERMOELECTRICALLY ENHANCED HEAT REJECTION Application of Metallic TIMs for Harsh Environments and Non-flat Surfaces ONLINE EVENT October 24 - 25, 2017 The Largest Single Thermal Management Event of The Year - Anywhere. Thermal Live™ is a new concept in education and networking in thermal management - a FREE 2-day online event for electronics and mechanical engineers to learn the latest in thermal management techniques and topics. Produced by Electronics Cooling® magazine, and launched in October 2015 for the first time, Thermal Live™ features webinars, roundtables, whitepapers, and videos... and there is no cost to attend. For more information about Technical Programs, Thermal Management Resources, Sponsors & Presenters please visit: thermal.live Presented by CONTENTS www.electronics-cooling.com 2 EDITORIAL PUBLISHED BY In the End, Entropy Always Wins… But Not Yet! ITEM Media 1000 Germantown Pike, F-2 Jean-Jacques (JJ) DeLisle Plymouth Meeting, PA 19462 USA -
Design and Construction of a Nernst Effect Measuring System
University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Summer 8-6-2013 Design and Construction of a Nernst Effect Measuring System Warner E. Sevin University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Condensed Matter Physics Commons Recommended Citation Sevin, Warner E., "Design and Construction of a Nernst Effect Measuring System" (2013). University of New Orleans Theses and Dissertations. 1684. https://scholarworks.uno.edu/td/1684 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Design and Construction of a Nernst Effect Measuring System A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science In Applied Physics By Warner Earl Sevin B.S. Loyola University New Orleans, 2011 August 2013 Table of Contents List of Figures iv List of Tables v Abstract vi Chapter 1. -
Thermoelectric Cooling Devices: Thermodynamic
THERMOELECTRIC COOLING DEVICES: THERMODYNAMIC MODELLING AND THEIR APPLICATION IN ADSORPTION COOLING CYCLES ANUTOSH CHAKRABORTY (B.Sc Eng. (BUET), M.Eng. (NUS)) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2005 Acknowledgements I am deeply grateful to my supervisor, Professor Ng Kim Choon, for giving me the guidance, insight, encouragement, and independence to pursue a challenging project. His contributions to this work were so integral that they cannot be described in words here. I would like to thank Associate Professor Bidyut Baran Saha of Kyushu University, Japan, for the encouragement and helpful technical advice. I am deeply grateful to Mr. Sai Maung Aye for his assistance in the electro-adsorption chiller experimentation program and Mr. R Sacadeven for kindly assisting in the procurement of equipment, and construction of the constant-volume-variable-pressure (CVVP) experimental test facility. I would like to extend my deepest gratitude to my parents for their complete moral support. Finally, I wish to thank my wife, Dr. Antara Chakraborty and my son Amitosh Chakraborty, for being a constant source of mental support. Last but not least, I wish to express my gratitude for the honor to be co-author with my supervisor in six international peer-reviewed journal papers, three international peer- reviewed conference papers and one patent (US Patent no 6434955). I also thank A* STAR for providing financial assistance to a patent application on the electro- adsorption chiller: a miniaturized cooling cycle design, fabrication and testing results. I extend my appreciation to the National University of Singapore for the research scholarship during the course of candidature, to the Micro-system technology initiative (MSTI) laboratory for giving me full support in the setting up of the test facility. -
Seebeck and Peltier Effects V
Seebeck and Peltier Effects Introduction Thermal energy is usually a byproduct of other forms of energy such as chemical energy, mechanical energy, and electrical energy. The process in which electrical energy is transformed into thermal energy is called Joule heating. This is what causes wires to heat up when current runs through them, and is the basis for electric stoves, toasters, etc. Electron diffusion e e T2 e e e e e e T2<T1 e e e e e e e e cold hot I - + V Figure 1: Electrons diffuse from the hot to cold side of the metal (Thompson EMF) or semiconductor leaving holes on the cold side. I. Seebeck Effect (1821) When two ends of a conductor are held at different temperatures electrons at the hot junction at higher thermal velocities diffuse to the cold junction. Seebeck discovered that making one end of a metal bar hotter or colder than the other produced an EMF between the two ends. He experimented with junctions (simple mechanical connections) made between different conducting materials. He found that if he created a temperature difference between two electrically connected junctions (e.g., heating one of the junctions and cooling the other) the wire connecting the two junctions would cause a compass needle to deflect. He thought that he had discovered a way to transform thermal energy into a magnetic field. Later it was shown that a the electron diffusion current produced the magnetic field in the circuit a changing emf V ( Lenz’s Law). The magnitude of the emf V produced between the two junctions depends on the material and on the temperature ΔT12 through the linear relationship defining the Seebeck coefficient S for the material. -
HEAT TRANSFER and the SECOND LAW Thus Far We’Ve Used the First Law of Thermodynamics: Energy Is Conserved
HEAT TRANSFER AND THE SECOND LAW Thus far we’ve used the first law of thermodynamics: Energy is conserved. Where does the second law come in? One way is when heat flows. Heat flows in response to a temperature gradient. If two points are in thermal contact and at different temperatures, T1 and T2 then energy is transferred between the two in the form of heat, Q. Heat Transfer and The Second Law page 1 © Neville Hogan The rate of heat flow from point 1 to point 2 depends on the two temperatures. Q˙ = f(T1,T2) If heat flows from hot to cold, (the standard convention) this function must be such that Q˙ > 0 iff T1 > T2 Q˙ < 0 iff T1 < T2 Q˙ = 0 iff T1 = T2 Heat Transfer and The Second Law page 2 © Neville Hogan In other words, the relation must be restricted to 1st and 3rd quadrants of the Q˙ vs. T1 – T2 plane. Q T1-T2 NOTE IN PASSING: It is not necessary for heat flow to be a function of temperature difference alone. —see example later. Heat Transfer and The Second Law page 3 © Neville Hogan HEAT FLOW GENERATES ENTROPY. FROM THE DEFINITION OF ENTROPY: dQ = TdS Therefore Q˙ = TS˙ IDEALIZE THE HEAT TRANSFER PROCESS: Assume no heat energy is stored between points 1 and 2. Therefore Q˙ = T1S˙ 1 = T2S˙ 2 Heat Transfer and The Second Law page 4 © Neville Hogan NET RATE OF ENTROPY PRODUCTION: entropy flow rate out minus entropy flow rate in. S˙ 2 - S˙ 1 = Q˙ /T2 - Q˙ /T1 = Q(T˙ 1 - T2) /T1T2 Absolute temperatures are never negative (by definition). -
A Study & Analysis of Thermoelectric Refrigeration System With
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072 A STUDY & ANALYSIS OF THERMOELECTRIC REFRIGERATION SYSTEM WITH ENVIRONMENT Ankit Dubey1, Umanand Kumar Singh2, Manish Rathore3 123Dr. APJ Abdul Kalam UIT, Jhabua ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - There are various sources which cause ozone layer if released into the atmosphere. Thus, the mechanism depletion out which conventional R&AC systems has a major of ozone layer depletion by the CFC’s and HCFC’s was role. R&AC contributes for about 29.6% of the total ozone identified. In 1985, an ozone hole was observed and this depletion[1]. Ozone in the stratosphere has a beneficial role as provided the proof that ozone layer was depleting. it blocks UV radiation from the sun. Highly energetic UV radiation called UV-C (wavelength 280 nm) is absorbed by the Contribution of conventional r&ac in ozone depletion ozone molecules. UV-B radiation (wavelength 280 – 325 nm) is There are various sources which causes ozone depletion also absorbed. The ozone layer acts as a shield for us from very out which conventional R&AC systems has a major role. harmful UV rays. Exposure to UV rays causes skin cancer, R&AC contributes for about 29.6% of the total ozone damages crops, affects cellular DNA, impairs photosynthesis depletion. This is a considerably large amount which must be and harms ocean life. Observed and projected decreases in reduced in order to protect the ozone layer CFCs and HCFCs ozone have generated worldwide concern leading to adoption used as heat carrier fluids in conventional system deplete of the Montreal Protocol that bans the production of CFCs, ozone layer and increases global warming. -
Thermoelectric Cooler Optimization for Deployment in Electronics Thermal Management
Thermoelectric Cooler Optimization for Deployment in Electronics Thermal Management Thermoelectric coolers (TEC) are solid state When a DC current is applied to a TEC, the TEC refrigeration devices which use DC current to can work as a cooler or heater depending on the generate cooling or heating. Unlike traditional direction of current. When working as a cooler, the vapor-compression refrigeration system, TEC maintains a low temperature at the cold side by thermoelectric cooling has no moving parts and transferring heat from the cold side to the hot side circulating fluid. Its simple structure and small size against the temperature gradient. When working as makes it a good choice for a thermal management a heater, the TEC transfers heat from the hot side device in electronics. However, the low coefficient of the device to the cold side. of performance (COP) of a TEC hampers its wide deployment. For electronics thermal management, a TEC is generally used as cooler to maintain or lower the As illustrated in Figure 1, a typical thermoelectric chip’s junction temperature. Despite poor thermal module is manufactured using two thin ceramic performance, TEC modules can be a good and wafers with a series of P and N doped bismuth- reliable solution for the applications that require telluride semiconductor material sandwiched temperature stability, sub-ambient operating between them. The ceramic wafer on both sides conditions, or devices with a special design to of the module adds rigidity and the necessary accommodate TECs. electrical insulation. This paper discusses an optimization process for using a TEC model to maintain a high-power electronic component’s junction temperature inside an air-cooled chassis at certain level. -
Design and Optimization of a Self-Powered Thermoelectric Car Seat Cooler
Design and Optimization of a Self-powered Thermoelectric Car Seat Cooler Daniel Benjamin Cooke Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Mechanical Engineering Zhiting Tian, Chair Scott T. Huxtable, Co-Chair Lei Zuo, Co-Chair May 8, 2018 Blacksburg, Virginia Keywords: Non-dimensional Equations, Solar Thermoelectric Generator, Thermoelectric Cooler Design and Optimization of a Self-powered Thermoelectric Car Seat Cooler Daniel Benjamin Cooke Abstract It is well known that the seats in a parked vehicle become very hot and uncomfortable on warm days. A new self-powered thermoelectric car seat cooler is presented to solve this problem. This study details the design and optimization of such a device. The design relates to the high level layout of the major components and their relation to each other in typical operation. Optimization is achieved through the use of the ideal thermoelectric equations to determine the best compromise between power generation and cooling performance. This design is novel in that the same thermoelectric device is utilized for both power generation and for cooling. The first step is to construct a conceptual layout of the self-powered seat cooler. Using the ideal thermoelectric equations, an analytical model of the system is developed. The model is validated against experimental data and shows good correlation. Through a non-dimensional approach, the geometric sizing of the various components is optimized. With the optimal design found, the performance is evaluated using both the ideal equations and though use of the simulation software ANSYS. -
Intrinsic Anomalous Nernst Effect Amplified by Disorder in a Half
Intrinsic Anomalous Nernst Effect Amplified by Disorder in a Half-Metallic Semimetal Linchao Ding, Jahyun Koo, Liangcai Xu, Xiaokang Li, Xiufang Lu, Lingxiao Zhao, Qi Wang, Qiangwei Yin, Hechang Lei, Binghai Yan, et al. To cite this version: Linchao Ding, Jahyun Koo, Liangcai Xu, Xiaokang Li, Xiufang Lu, et al.. Intrinsic Anomalous Nernst Effect Amplified by Disorder in a Half-Metallic Semimetal. Physical Review X, American Physical Society, 2019, 9 (4), pp.041061. 10.1103/PhysRevX.9.041061. hal-02434941 HAL Id: hal-02434941 https://hal.sorbonne-universite.fr/hal-02434941 Submitted on 10 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW X 9, 041061 (2019) Intrinsic Anomalous Nernst Effect Amplified by Disorder in a Half-Metallic Semimetal Linchao Ding ,1 Jahyun Koo,2 Liangcai Xu,1 Xiaokang Li ,1 Xiufang Lu,1 Lingxiao Zhao,1 Qi Wang,3 † ‡ Qiangwei Yin,3 Hechang Lei,3 Binghai Yan ,2,* Zengwei Zhu ,1, andKamranBehnia 4,5, 1Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China 2Department of Condensed Matter Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel 3Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China 4Laboratoire de Physique et Etude des Mat´eriaux (CNRS/Sorbonne Universit´e), Ecole Sup´erieure de Physique et de Chimie Industrielles, 10 Rue Vauquelin, 75005 Paris, France 5II. -
Potential of Thermoelectric Power Generation Using Anomalous Nernst Effect in Magnetic Materials
Scripta Materialia 111 (2016) 29–32 Contents lists available at ScienceDirect Scripta Materialia journal homepage: www.elsevier.com/locate/scriptamat Viewpoint Paper Potential of thermoelectric power generation using anomalous Nernst effect in magnetic materials Yuya Sakuraba National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Japan article info abstract Article history: This article introduces the concept and advantage of thermoelectric power generation (TEG) using Received 27 March 2015 anomalous Nernst effect (ANE). The three-dimensionality of ANE can largely simplify a thermopile struc- Revised 27 April 2015 ture and realize TEG systems using heat sources with a non-flat surface. The improvement of ZT can be Accepted 29 April 2015 expected because of the orthogonal relationship between thermal and electric conductivities. The calcu- Available online 3 June 2015 lations of an achievable electric power predicted that an improvement of thermopower by one order of magnitude would open up a usage of practical applications. Keywords: Ó 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Thermoelectric power generation Anomalous Nernst effect Spincaloritornics 1. Introduction Nernst effect is a three-dimensional effect where the electric field ~ occurs to the perpendicular direction to both Bex and rT. Since the Seebeck effect (SE), which originates from a diffusion of charged magnitude of Nernst effect can be enlarged by increasing magnetic carrier excited by applying a temperature gradient to conductive field Bex, Nernst effect has been studied to enhance thermoelectric materials, is a representative thermoelectric phenomenon. power generation and cooling effects by applying strong mag- Thermoelectric power generation (TEG) using SE has been netic field [1–5]. -
A Homemade 2 Dimensional Thermal Conduction Apparatus Designed As
AC 2008-292: A HOMEMADE 2-DIMENSIONAL THERMAL CONDUCTION APPARATUS DESIGNED AS A STUDENT PROJECT Robert Edwards, Pennsylvania State University-Erie Robert Edwards is currently a Lecturer in Engineering at The Penn State Erie, The Behrend College where he teaches Statics, Dynamics, and Fluid and Thermal Science courses. He earned a BS degree in Mechanical Engineering from Rochester Institute of Technology and an MS degree in Mechanical Engineering from Gannon University. Page 13.49.1 Page © American Society for Engineering Education, 2008 A Homemade 2-Dimensional Thermal Conduction Apparatus Designed as a Student Project Abstract: It can be fairly expensive to equip a heat transfer lab with commercially available devices. It is always nice to be able to make a device that provides an effective lab experience for the students. It is an extra bonus if the device can be designed as a student project, giving the students working on the device both a real design experience and a better understanding of the principles involved with the device and the associated lab exercise. One example of such a device is a 2-dimensional heat conduction device which was designed and built as a student senior design project by mechanical engineering technology students at Penn State Erie, The Behrend College. The device described in this paper allows the students to determine the thermal conductivity of several different materials, and to graphically see the effect of contact resistance in the heat conduction path. The students use the conductivity information to try to determine what material the test samples are made of. This paper describes the design of the device and the basic theory including a description of how it applies to this particular device. -
Thermal Energy Conversion Utilizing Magnetization Dynamics and Two-Carrier Effects Dissertation Presented in Partial Fulfillment
Thermal Energy Conversion Utilizing Magnetization Dynamics and Two-Carrier Effects Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sarah June Watzman Graduate Program in Mechanical Engineering The Ohio State University 2018 Dissertation Committee Joseph P. Heremans, Advisor Nandini Trivedi Fengyuan Yang Igor Adamovich Copyrighted by Sarah June Watzman 2018 Abstract This dissertation seeks to contribute to the field of thermoelectrics, here utilizing magnetization dynamics in two-carrier systems, employing unconventional thermoelectric materials. Thermoelectric devices offer fully solid-state conversion of waste heat into usable electric energy or fully solid-state cooling. The goal of this dissertation is to elucidate key transport phenomena in ferromagnetic transition metals and Weyl semimetals in order to positively contribute to the overarching effort of using thermoelectric materials as a clean energy source. The first subject of this dissertation is magnon drag in Fe, Co, and Ni. Magnon drag is shown to dominate the thermopower of elemental Fe from 2 to 80 K and of elemental Co from 150 to 600 K; it is also shown to contribute to the thermopower of elemental Ni from 50 to 500 K. Two theoretical models are presented for magnon-drag thermopower. One is a hydrodynamic theory based purely on non-relativistic electron-magnon scattering, and the other is based on microscopic spin-motive forces. In spite of their very different origins, the two give similar predictions for pure metals at low temperature, providing a semi-quantitative explanation for the observed thermopower of elemental Fe and Co without adjustable parameters.