<<

Precambrian Research 271 (2015) 118–137

Contents lists available at ScienceDirect

Precambrian Research

jo urnal homepage: www.elsevier.com/locate/precamres

Discovery of Hadean– crustal materials in the northern

Sibumasu block and its significance for Gondwana reconstruction

Gongjian Li, Qingfei Wang , Yuhan Huang, Fuchuan Chen, Peng Dong

State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China

a r t i c l e i n f o a b s t r a c t

Article history: The micro-continental blocks in SE Asia are thought to be derived from the East Gondwana which has a

Received 28 June 2015

basement as old as Hadean–Mesoarchean. However, such old crustal materials have not been found any-

Received in revised form

where in SE Asia. In this paper, we report the occurrence of the Hadean–Mesoarchean crustal materials

25 September 2015

in the northern Sibumasu block, SW China. Our finding is based on inherited U–Pb ages and Hf

Accepted 7 October 2015

isotope model ages of co-magmatic zircon crystals from early- S-type granitoids in the north-

Available online 17 October 2015

ernmost Sibumasu. LA-ICP-MS zircon U–Pb isotopic analysis reveals that some S-type granitoids in this

region formed between 468 Ma and 447 Ma. These rocks are strongly peraluminous, with high A/CNK

Keywords:

ratios > 1.2 and normative corundum content >2 wt%, and have low CaO/Na2O ratios <0.3, which indi-

Hadean crust

cates that they formed by anatexis of metapelitic crustal rocks. The ca. 470–450 Ma S-type granitoids

Zircon age

∼ ε

Zircon Hf isotopes contain inherited zircon crystals as old as Mesoarchean ( 3.1 Ga). The Hf(t) values of zircon crystallized

− − −

Palinspastic reconstruction from the magmas of these rocks vary from 49 to +16, with major peaks approximately at 46, 35

Sibumasu and −27. The corresponding model ages for the formation of the source crust are ∼4.39 Ga, ∼3.62 Ga and

Gondwana ∼

3.12 Ga. This, together with the discovery of ∼3.1 Ga inherited zircon in the granitoids, indicates that

the northern Sibumasu block has Hadean–Mesoarchean crustal materials. A Gondwana-wide comparison

of crustal formation time data reveals that these Hadean–Mesoarchean crustal materials show similar

age distribution with the crusts of the Pilbara and Yilgarn Cratons, . Their derivation

analysis provides a new line of evidence for the majority view that the Sibumasu block was attached to

NW Australia before its breakup from Gondwana.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and Torsvik, 2013) and many other researchers (e.g., Ueno, 2003;

Metcalfe, 2006, 2013; Ferrari et al., 2008) proposed that the Sibu-

The mainland SE Asia is a collage of micro-continental blocks, masu block was an integral constituent of East Gondwana until

volcanic arcs, and suture zones that contain the remnants of the the opening of the Meotethys in the Early Permian. Despite

Tethyan . These continental blocks rifted from East Gond- decades of deliberation based on results from multi-disciplinary

wana and subsequently accreted to the Eurasia in the Paleozoic studies such as paleomagnetics (Ali et al., 2013; Xu et al., 2015),

and (e.g., Metcalfe, 2006, 2011; Cocks and Torsvik, 2013). faunal/floral distribution (Burrett et al., 1990; X.D. Wang et al.,

Tracing the origin of individual micro-continental block in SE Asia is 2013; Metcalfe and Aung, 2014), tectonostratigraphy (Stauffer and

important in Gondwana reconstruction (e.g., Cawood and Buchan, Lee, 1989; Ampaiwan et al., 2009), zircon age-dating of crustal

2007; Metcalfe, 2013). basement (Guynn et al., 2012), paleoenvironmental reconstruction

The Sibumasu block is one of the largest continental blocks in (Waterhouse, 1982; Dopieralska et al., 2012) and detrital zircon

SE Asia (Fig. 1a). Cocks and Torsvik (2002) suggested that this block provenance (Burrett et al., 2014; Cai et al., 2015), the exact location

was separated from the rest of East Gondwana in the early Paleo- of the Sibumasu block in the East Gondwana before its breakup in

zoic. More recently, these authors (Torsvik and Cocks, 2009; Cocks early Paleozoic remains controversial (see summary in Ali et al.,

2013).

Crustal studies have witnessed increased interest

∗ in the recent on the vestiges of extremely old crustal

Corresponding author at: State Key Laboratory of Geological Processes and

components preserved in the Gondwana-derived continents (e.g.,

Mineral Resources, China University of Geosciences, No. 29, Xueyuan Road, Beijing

Harrison et al., 2005, 2008; Nelson, 2008; Jayananda et al., 2013;

100083, China. Tel.: +86 10 82322301; fax: +86 10 82322301.

E-mail address: [email protected] (Q. Wang). Van Kranendonk et al., 2013). A number of recent reports on Hadean

http://dx.doi.org/10.1016/j.precamres.2015.10.003

0301-9268/© 2015 Elsevier B.V. All rights reserved.

G. Li et al. / Precambrian Research 271 (2015) 118–137 119

Fig. 1. (a) Distribution of the principal continental blocks and suture zones of mainland SE Asia emphasizing the lineament of Sibumasu in which the Baoshan block is located

(modified after Sone and Metcalfe, 2008). (b) Simplified geological map showing the regional tectonic relationships of the Baoshan, Tengchong and Simao blocks, and the

distribution of the major strata, igneous rocks and faults in the Baoshan block (modified after Burchfiel and Chen, 2012; Deng et al., 2014a,b; Li et al., 2015a).

materials from mircoblocks in the western Australia and southern the middle, to Sumatra in the south (Fig. 1a) (e.g., Ueno, 2003;

India, which are important constituents of the Gondwana, have pre- Metcalfe, 2011). It is widely accepted that the Sibumasu block is

sented in the literature (e.g., Wilde et al., 2001; Harrison et al., 2005, a Gondwana-derived continental fragment (e.g., Metcalfe, 2006,

2008; Tessalina et al., 2010; Santosh et al., 2014). This arouses our 2013; Ampaiwan et al., 2009; Ridd, 2009; Ali et al., 2013; Burrett

interest to look for ancient crustal material, especially the Hadean et al., 2014). It was separated from Gondwana in Early Permian and

record, which has not been found anywhere in SE Asia (Metcalfe, accreted to Indochina after the Paleotethys Ocean was closed in the

2013; Deng et al., 2014a), in the Sibumasu block. In this study, Middle– (Sone and Metcalfe, 2008).

we use samples from S-type granitoids in northmost Sibumasu The Baoshan block is the northern tip of the Sibumasu block (e.g.,

that formed by crustal anataxis and contain both inherited and co- Metcalfe, 2011; Burchfiel and Chen, 2012). It is separated from the

magmatic zircon crystals. The U–Pb ages and Hf isotopes of these Simao block by the Changning-Menglian Paleotethys suture zone to

two types of zircon together are used to determine the of the the east and from the Tengchong block by the Gaoligongshan shear

source crust (e.g., Horie et al., 2010; Qiao et al., 2015). This approach zone to the west (Fig. 1b; Burchfiel and Chen, 2012; Deng et al.,

has proven to be a powerful tool to study the origin and evolu- 2014a). The Baoshan block consists of an outcropped Late Neo-

tion of the ’s crust (e.g., Harrison et al., 2005; Kemp et al., proterozoic to Cambrian basement which is mainly composed of

2010). The results provided the first evidence for the occurrence of low-grade metamorphosed siliciclastic and carbonate rocks, locally

Hadean–Mesoarchean crust material in Sibumasu, which is further intercalated with volcanic rocks in the upper part (BGMRY, 1990;

utilized to locate the Sibumasu block in the East Gondwana before Yang et al., 2012), and a Paleozoic to Mesozoic sedimentary cover

its breakup in early Permian. which is mainly composed of carbonates and clastic rocks, with

minor Early Permian volcanic rocks (Burchfiel and Chen, 2012). The

meta- from the basement yields zircon U–Pb age of ∼499 Ma

2. Geological background and samples

(Yang et al., 2012). Early Paleozoic and to

granitoids are the main magmatic rocks present in the Baoshan

The Sibumasu continental block is an elongated belt stretch-

block (Fig. 1b; e.g., Dong et al., 2013a,b; Li et al., 2015b). The early

ing from southwestern Yunnan in the north, through Thailand in

120 G. Li et al. / Precambrian Research 271 (2015) 118–137

Table 1

Whole- major and trace element of the early Paleozoic peraluminous granites

in the Shuangmaidi area, northern Baoshan block, SW China.

Samples Drill core ZK7-1

G01 G02 G03 G04

Major element (wt%)

SiO2 75.38 75.29 74.44 73.73

TiO2 0.24 0.22 0.27 0.24

Al2O3 13.24 13.39 13.27 13.71

Fe2O3 0.21 0.42 0.59 0.32

FeOT 1.74 1.58 2.23 2.09

MnO 0.03 0.02 0.03 0.04

MgO 0.62 0.85 0.53 0.72

CaO 1.24 0.55 0.46 0.46

Na2O 4.18 3.45 2.57 2.63

K2O 1.90 2.59 4.62 4.78

P2O5 0.18 0.18 0.18 0.19

LOI 1.05 1.62 1.10 1.19

Total 99.80 99.74 99.70 99.78

CIPW normative mineral (wt%)

Q 39.49 42.71 39.19 37.25

An 5.03 1.66 1.18 1.15

Ab 35.22 29.36 21.64 22.13

Or 11.18 15.39 27.17 28.09

C 2.45 4.33 3.59 3.76

Hy 3.77 4 3.74 4.17

Il 0.45 0.43 0.5 0.45

Mt 2.0 1.7 2.57 2.57

Ap 0.42 0.42 0.42 0.43

DI 85.89 87.46 88.00 87.47

Trace element (ppm)

Sc 4.46 4.67 4.85 4.51

V 15.3 17 17 17.1

Cr 9.84 11.9 11.1 10.9

Fig. 2. (a) Geological map of the Shuangmaidi area in the north of the Baoshan block Co 4.25 1.92 3.57 3.45

showing the position of the drill core ZK7-1. The location of (a) is showed in Fig. 1a. Ni 3.67 4.27 4.18 3.77

(b) Drill core profile showing the sample locations. The materials are from YGMG Ga 19 20.4 20.6 22.2

(2010, 2012). Rb 131 166 285 320

Sr 94 79.9 69.7 63.6

Y 27.1 31.4 40.7 30.9

Zr 95.65 111.24 135.79 129.22

Paleozoic episode is represented by the Pinghe granitic batholith in Nb 11.69 13.02 16.12 13.65

the southwest, which yields U–Pb ages from 502 to 448 Ma Cs 7.31 7.97 15.1 16.1

Ba 282 296 364 348

for its different intrusive phases with lithologies varying from gran-

La 21.4 18.9 27 22.6

ite to granodiorite (Chen et al., 2007; Dong et al., 2012, 2013a; Liu

Ce 43.3 42.6 53.2 46.3

et al., 2009; Y.J. Wang et al., 2013). Late Cretaceous to Paleocene Pr 5.23 4.7 6.45 5.48

Nd 19.8 18.1 24.4 21.1

granitoids are represented by the Bengmiao–Huataolin and the

Sm 4.62 4.32 5.72 4.98

Caojian plutons which yield zircon U–Pb ages of 85–60 Ma (Chen

Eu 0.48 0.45 0.67 0.56

et al., 2007; Dong et al., 2013b) and 73–72 Ma (Liao et al., 2013; Yu

Gd 3.9 3.76 5.03 4.26

et al., 2014), respectively. Tb 0.85 0.85 1.15 0.94

Dy 5.1 5.39 7.28 5.52

The Baoshan block experienced two major episodes of large

Ho 0.89 1.02 1.33 0.97

scale crustal deformation due to its collision with Indochina in Tri-

Er 2.39 2.83 3.65 2.59

assic and the northward drifting and subduction of the India plate Tm 0.38 0.47 0.58 0.41

Yb 2.18 2.73 3.34 2.31

beneath the Tibet plateau in . The later event produced

Lu 0.28 0.36 0.42 0.3

a set of dominantly NE strike-slip faults, some of which moved

Hf 3.16 3.95 4.57 4.26

laterally tens to several hundreds of kilometers counterclockwise

Ta 1.57 1.87 1.84 1.59

(Fig. 1a and b) (Leloup et al., 1995; Socquet and Pubellier, 2005; Pb 15.6 9.81 26.2 52.3

Th 14.5 15.1 17.7 15.9

Deng et al., 2014b).

U 10.1 9.29 11.4 7.53

Drilling by the Yunnan Gold and Mineral Group Co. Ltd. at

K2O/Na2O 0.45 0.75 1.8 1.82

2005 intercepted granitic plutons in the Shuangmaidi area in the A/CNK 1.18 1.41 1.32 1.33

northern Baoshan, approximately 10 km northwest of Baoshan city A/NK 1.48 1.58 1.44 1.44

A/MF 3.28 3.04 2.94 2.86

(YGMG, 2012) (Figs. 1b and 2a). These granitic plutons intruded

C/MF 0.56 0.23 0.19 0.17

the Upper Cambrian siltstone, shale, mudstone and limestone

CaO/Na2O 0.3 0.16 0.18 0.17

(Fig. 2b). Contact metamorphism is present in places (Fig. 2b). Four Al2O3/Ti2O 55.63 59.78 49.89 57.85

(Gd/Yb)N 1.48 1.14 1.25 1.53

granite samples were collected from drill core ZK7-1 (Fig. 2b).

These samples were collected from two intrusive phases which TZr ( C) 769 802 818 812

are identified by their sharp contact. The samples have a por-

A/NK = Al2O3/(Na2O + K2O) (molar ratio); A/CNK = Al2O3/(CaO + Na2O + K2O) (molar

phyritic texture, containing 5–15% rounded, variably resorbed ratio); A/MF = Al2O3/(MgO + FeOT) (molar ratio); C/MF = CaO/(MgO + FeOT) (molar

ratio). N denotes normalized to primitive mantle from Sun and McDonough

quartz phenocrysts of 3–6 mm in diameter, 5–10% subhedral K-

(1989). DI is differentiation index. DI = Quartz (Qtz) + Orthoclase (Or) + Albite

feldspar phenocrysts of 5–15 mm in length, about 5% equant and

(Ab) + Nepheline (Ne) + Leucite (Lc) + K-feldspar (Kfs), from CIPW calculating values.

tabular plagioclase phenocrysts of 3–10 mm in length (Fig. 3a).

Magma temperature is calculated according to zircon saturation thermometer of

Some of the plagioclase phenocrysts have experienced partial seric- Boehnke et al. (2013).

itization. The groundmass is fine- to medium-grained, containing

G. Li et al. / Precambrian Research 271 (2015) 118–137 121

Fig. 3. (a) Photomicrograph characteristics of the granites from the Shuangmaidi area, northern Baoshan block, by orthogonal polarized light. (b) Photomicrograph showing

the metasedimentary texture of the enclave hosted in the granites, by plane polarized light. Q, quartz; Kf, K-feldspar; Bt, biotite; Ms, Muscovite; Pl, plagioclase; Srt, sericite.

quartz (20–30%), K-feldspar (20–30%), plagioclase (5–10%), biotite dating, and quantitative calibration for trace element analyses were

(3–8%), muscovite (2–5%) and minor to trace amounts of zircon, performed by the ICPMSDataCal software from Liu et al. (2008,

apatite, allanite, titanite, monazite and Fe–Ti oxides. Biotite mainly 2010). Common lead was corrected by using the correction method

occurs as the micro-clots with rounded and dissolved edges sur- of Andersen (2002). Zircon U–Pb age concordia and weighted aver-

rounded by quartz crystals (Fig. 3b), which is similar to the texture age diagrams were constructed using Isoplot (version 3.0) (Ludwig,

of a meta-sedimentary rock and indicative of enclave origin rather 2003). Errors for individual U–Pb analyses are given with 1 error

than magmatic segregation (e.g., Clemens, 2003). in data tables and in concordia diagrams and uncertainties in age

206 238

results (including concordia age and Pb/ U weighted mean



3. Analytical methods age results) are quoted at 95% level (2 ). Zircon U–Pb results are

listed in Table 2, and representative zircon CL images of selected

3.1. Whole-rock major and trace elements zircon crystals and U–Pb concordia plots are shown in Figs. 6 and 7,

respectively.

Bulk samples were crushed to 200-mesh using an agate mill.

Major element concentrations were analyzed at the Research Cen- 3.3. Zircon Hf isotopes

ter of Analyses, Beijing Research Institute of Uranium , by

X-ray fluorescence spectrometry (XRF). The analytical uncertain- In situ Hf isotope analyses were conducted using a Neptune Plus

ties of XRF are generally better than 5%. The loss-on-ignition (LOI) MC-ICP-MS from Thermo Fisher Company equipped with a Geo-

was determined by the gravimetric method. Trace element con- las 2005 excimer ArF laser ablation system from Lambda Physik

centrations were determined using a Finnigan MAT Element mass Company at the state Key Laboratory of Geological Processes and

spectrometer at the Key Laboratory of Mineral Resources, Institute Mineral Resources, China University of Geosciences in Wuhan. Only

of Geology and Geophysics of the Chinese Academy of Sciences, Bei- the zircon crystals with concordia ages were selected for Hf iso-

jing, China. The detailed analytical protocol was described by Zhang topic analysis. All analyses were done using a beam with diameter

−2

et al. (2008). Indium was used as an internal standard for correction of 44 ␮m and the energy density of 5.3 J cm . Helium was used as

of matrix effects and instrument drift. Measurement error and drift the carrier gas within the ablation cell and was merged with argon

were controlled by regular analyses of standards with a periodicity (makeup gas) after the ablation cell. Each measurement consisted

±

of 10%. Analyzed uncertainties at the ppm level are better than 3% of 20 s of acquisition of the background signal followed by 50 s of

± ± ±

to 10% for trace elements and 5% to 10% for rare earth elements ablation signal acquisition. Detailed operating conditions for the

(REE). The analytical results for whole rocks are listed in Table 1. laser ablation system, the MC-ICP-MS instrument, and analytical

ˇ procedures are given in Hu et al. (2012). The directly obtained Yb

179 177

3.2. Zircon U–Pb age determination value from the zircon sample in real-time was used. The Hf/ Hf

173 171

and Yb/ Yb ratios were used to calculate the mass bias of Hf

ˇ 179 177

ˇ

Two granite samples of the first phase (S02 and S03) and one ( Hf) and Yb ( Yb), which were normalized to Hf/ Hf = 0.7325

173 171

sample of the second phase (S04) are used for zircon U–Pb dat- and Yb/ Yb = 1.13017 (Segal et al., 2003) using an exponential

176 176

ing (Fig. 2b). Zircon grains were separated from whole rocks using correction for mass bias. Interference of Yb on Hf was cor-

173

routine density and magnetic separation techniques, followed by rected by measuring the interference-free Yb isotope and using

176 173 176 177

careful handpicking under a binocular microscope. The selected zir- Yb/ Yb = 0.79381 (Segal et al., 2003) to calculate Yb/ Hf.

176 176

con crystals were mounted in epoxy, and then polished and gold The relatively minor interference of Lu on Hf was corrected by

175

coated. The zoning patterns of the zircon grains were examined measuring the intensity of the interference-free Lu isotope and

176 175

using cathodoluminescent (CL) images. using the recommended Lu/ Lu = 0.02656 (Blichert-Toft et al.,

176 177

Zircon U–Pb isotopes were determined using LA–ICP–MS at 1997) to calculate Lu/ Hf. The zircon standard 91500 with a

176 177

±

the State Key Laboratory of Geological Processes and Mineral recommended Hf/ Hf ratio of 0.282306 10 (Woodhead et al.,

Resources, China University of Geosciences, Wuhan, China, follow- 2004) was analyzed to maintain the accuracy of the laser-ablation

ing the analytical procedures given in Liu et al. (2008, 2010). The results. Off-line selection and integration of analyte signals, and

laser beam used had a repetition rate of 10 Hz and a spot size of mass bias calibrations were performed using the ICPMSDataCal

32 ␮m in diameter. The zircon standard GJ-1 and 91500 were used software of Liu et al. (2010).

ε to determine the isotopic and elemental fractionation that occurred In the calculation of Hf(0) values, present-day chondrite values:

176 177 176 177

during sputter ionization. Off-line selection and the integration of Hf/ Hf = 0.282772 and Lu/ Hf = 0.0332 (Blichert-Toft and

background and analyses of signals, time-drift correction, U–Pb Albarède, 1997) was used. The observed zircon U–Pb ages and the

122 G. Li et al. / Precambrian Research 271 (2015) 118–137 C) ◦ (

804.36 701.73 808.77 704.66 804.11 704.23 720.80 701.93 780.54 770.57 705.64 840.77 747.25 817.86 711.99 696.99 719.66 781.99 756.24 734.37 792.81 767.82 755.06 796.88 788.49 722.95 766.52 834.94 876.29 871.87 698.09 723.94 643.46 698.70 771.80 761.67 885.22 851.12 757.40 731.41 756.73 776.96 759.20 741.39 722.38 692.77 675.97 674.75 694.97 721.35 779.45 Ti-in-zircon

5 6 9 5 6 6 5 7 6 6 6 8 7 6 6 7 6 5 6 7 7 7 5 8 7 8 7 6 6 5 6 5 6 5 5 7 8 8 9 7 10 30  12 11 16 11 12 38 22 14 25

U 238

Pb/ 500 500 703 490 506 460 540 450 465 468 571 464 978 462 471 457 675 495 477 475 955 466 493 473 861 538 485 468 478 469 469 466 444 465 481 559 479 462 462 474 445 494 471 453 485 574 987 2190 206 1494 1769 2319

8 10 20  14 19 17 27 19 13 15 13 17 15 14 13 19 17 22 15 17 21 17 21 15 11 11 22 19 19 12 23 19 15 17 16 13 17 36 23 16 16 16 13 14 11 12 14 11 16 15 14

U 235

Pb/ 500 604 450 504 505 530 480 430 460 509 495 496 473 764 982 444 467 443 656 475 485 476 477 487 891 563 461 467 468 479 454 457 585 497 451 457 473 495 473 476 475 461 537 626 992 628 1011 2042 207 1757 2285 2425

80  78 74 63 94 55 88 91 55 66 96 72 91 69 86 89 55 91 94 67 69 85 78 57 42 88 96 91 76 83 75 82 84 82 63 54 51 75 100 107 106 102 102 108 118 121 113 124 128 139 128 China.

Pb SW

206

(Ma)

Pb/ 702 450 506 509 480 670 620 509 406 502 606 613 617 498 922 972 343 367 543 383 295 524 524 952 332 439 398 517 394 332 398 354 657 461 272 587 576 539 472 499 524 571 822 block,

1004 1120 2047 2330 Age 207 2354 2515 1336

Baoshan

0.0009 0.0011 0.0015 0.0008 0.0022 0.0020 0.0010 0.0009 0.0028 0.0012 0.0011 0.0010 0.0010 0.0014 0.0011 0.0019 0.0009 0.0011 0.0011 0.0019 0.0020 0.0009 0.0009 0.0009 0.0012 0.0012 0.0011 0.0008 0.0013 0.0012 0.0013 0.0012 0.0010 0.0010 0.0009 0.0074 0.0049 0.0009 0.0008 0.0011 0.0009 0.0008 0.0011 0.0014 0.0013 0.0016 0.0026 0.0050 0.0066 0.0012 

U northern

238 Pb/ areas,

0.0748 0.0753 0.0926 0.0746 0.1152 0.0743 0.0735 0.1103 0.0799 0.0768 0.0790 0.0807 0.0765 0.0816 0.0750 0.0796 0.0761 0.1430 0.0871 0.0781 0.0753 0.0769 0.0754 0.0755 0.0750 0.0713 0.0747 0.0775 0.0906 0.0806 0.0772 0.0743 0.0742 0.2608 0.4045 0.0762 0.0715 0.0796 0.0740 0.0759 0.0728 0.0873 0.0781 0.0931 0.1654 0.3158 0.4330 0.0723 206

Mengmao

0.0223 0.0311 0.0300 0.0554 0.0201 0.0205 0.0377 0.0263 0.0228 0.0224 0.0205 0.0272 0.0230 0.0286 0.0329 0.0413 0.0366 0.0234 0.0171 0.0177 0.0343 0.0296 0.0295 0.0185 0.0356 0.0297 0.0271 0.0277 0.0253 0.0203 0.0272 0.2012 0.2153 0.0257 0.0255 0.0257 0.0204 0.0217 0.0125 0.0189 0.0187 0.0253 0.0294 0.1174 0.1570 0.0251  and

U

235 Pb/ 0.6277 0.6304 0.8126 0.5486 0.5465 0.9078 0.5965 0.5571 0.6125 0.6424 0.6436 0.5996 0.6848 0.6154 0.7410 0.5741 0.5837 0.5856 0.6025 0.6049 0.5635 0.5270 0.5680 0.5724 0.7786 0.6314 0.5597 0.5689 0.5941 0.6276 0.5929 0.6503 0.5977 0.5960 0.5740 0.6966 0.6366 0.8532 0.8562 1.1223 1.4058 4.6453 8.4879 1.6565 6.4698 9.8915 207 Shuangmaidi

the

from

0.0022 0.0030 0.0022 0.0032 0.0020 0.0021 0.0019 0.0026 0.0022 0.0022 0.0018 0.0023 0.0023 0.0026 0.0030 0.0020 0.0025 0.0022 0.0017 0.0017 0.0032 0.0026 0.0031 0.0020 0.0034 0.0030 0.0022 0.0025 0.0023 0.0020 0.0027 0.0041 0.0037 0.0025 0.0025 0.0020 0.0021 0.0020 0.0022 0.0024 0.0027 0.0023 0.0048 0.0051 0.0034 

granites Pb

ratios

206 Pb/ 0.0602 0.0603 0.0629 0.0695 0.0534 0.0537 0.0583 0.0543 0.0522 0.0560 0.0573 0.0567 0.0578 0.0619 0.0579 0.0708 0.0605 0.0530 0.0557 0.0547 0.0576 0.0575 0.0546 0.0547 0.0536 0.0615 0.0562 0.0517 0.0548 0.0573 0.1263 0.1506 0.0595 0.0593 0.0582 0.0565 0.0572 0.0579 0.0591 0.0665 0.0726 0.1486 0.1657 0.0859 Isotopic 207

peraluminous

0.24 0.75 0.39 0.46 0.58 0.17 0.09 0.72 0.84 0.10 0.11 0.22 0.40 0.21 0.70 0.13 0.84 0.48 0.11 0.46 0.03 0.53 0.24 0.42 0.36 0.33 0.39 0.15 0.12 0.20 0.10 0.77 0.10 0.07 0.37 0.32 0.37 0.32 0.54 0.17 Th/U 1.40 1.27

Paleozoic

7.52 4.99 4.15 0.115.474.40 0.0572 0.138.31 0.07156.50 0.00169.43 0.0021 0.59338.21 1.6307 0.51 0.0161 5.69 0.04809.30 0.1638 4.21 5.75 4.57 2.05 4.24 9.85 8.82 0.694.54 0.0530 5.54 8.42 6.28 8.36 4.41 8.597.04 0.139.72 5.65 0.06014.62 3.94 3.18 0.0027 3.134.05 0.10 5.58 10.4 10.8 10.7 15.8 13.8 11.0 0.4312.3 0.055512.8 0.002311.714.4 0.5842 0.23 0.057518.6 0.24 0.024027.2 0.077026.2 0.0758 0.0031 0.0010 0.0027 0.5987 435 13.8 1.7064 0.0299 0.058629.5 0.1596 21.7 19.7 Ti early

the

of

20 50 70 74 45 48 39 96 64 75 72 71 25 45 87 35 93 46 53 94 59 47 93 75 45 38 49 58 100 101 150 107 102 704 Pb 135 124 116 177 975 136 188 155 322 222 342 191 138 337 975 135 1795 data

age

Th 339 287 245 190 100 73 515 148 80 93 233 411 385 98 49 67 211 165 195 57 1857 69 506 615 134 117 54 153 581 218 273 178 175 134 264 236 51 78 97 66 64 849 81 73 173 120 77 462 137 427 65 (ppm)

U–Pb

380 490 603 740 790 606 608 627 219 562 893 346 463 323 761 965 215 641 865 759 484 273 516 254 287 841 156 215 421 375 338 674 493 523 786 462 377 783 433 786 384 zircon 1680 1023 1720 1099 1036 Contents U 1388 2644 1269 1172 1238

2

Spot G02 01 02 03 04 05-1 06 08 09 10 11 12 13 14-1 14-2 15 17 18 19 20 21 22 24 25-2 26 27 28 29 32 33 34-1 34-2 37 38 40 41-2 43-1 43-2 44-1 44-2 05-2 07 16 23 25-1 30 31 35 36 39 41-1 45 Table LA-ICP-MS

G. Li et al. / Precambrian Research 271 (2015) 118–137 123 700.91 760.16 760.58 710.82 750.85 660.23 650.23 750.72 770.35 770.20 812.57 587.08 681.61 698.85 764.90 847.29 724.04 724.33 829.70 888.83 676.21 754.33 722.70 685.35 787.56 764.26 682.88 782.97 717.19 725.51 862.98 674.13 688.15 756.96 787.75 745.78 767.10 758.84 722.86 612.10 748.39 755.31 656.70 826.40 749.84 732.62 762.76 738.69 781.37 742.52 677.76 813.92 727.73

8 8 8 8 9 8 8 8 7 6 8 5 6 6 6 6 6 8 8 6 8 5 6 6 6 7 5 7 5 9 7 6 7 6 7 7 7 6 8 6 10 14 15 12 43 13 12 22 33 11 12 11 11

505 503 501 480 470 807 470 480 460 925 958 526 613 522 877 789 523 462 682 571 725 488 456 465 455 475 471 787 476 473 463 567 451 458 486 461 449 463 464 484 457 444 463 483 489 637 469 946 478 466 1330 2430 2264

10 30 10 10 20 14 15 22 11 14 15 22 13 16 11 12 12 13 18 13 16 15 12 15 15 12 17 17 13 18 19 13 16 14 16 16 12 15 13 17 11 24 21 16 16 19 18 15 19 21 12 19 15

470 470 805 808 460 460 630 480 450 922 978 547 619 542 878 836 525 482 882 571 728 499 514 466 469 457 476 476 484 458 468 461 467 596 476 476 487 467 463 439 435 465 472 454 453 483 468 937 466 458 2357 1366 2452

60 80 71 71 73 68 77 71 75 74 78 89 52 79 73 93 75 75 98 95 74 79 83 77 55 71 76 75 84 83 78 99 98 72 87 86 69 74 81 94 107 101 102 105 113 114 112 147 126 111 113 125 112

600 880 509 509 680 502 302 450 350 409 915 634 642 626 963 532 575 573 739 475 563 283 394 433 389 428 567 772 376 428 831 361 391 461 565 532 472 428 372 257 376 487 383 572 483 877 372 413 1023 2439 1422 2471 1424

0.0025 0.0026 0.0014 0.0020 0.0094 0.0014 0.0024 0.0022 0.0042 0.0014 0.0013 0.0074 0.0018 0.0015 0.0019 0.0014 0.0013 0.0013 0.0011 0.0010 0.0013 0.0008 0.0010 0.0010 0.0009 0.0021 0.0010 0.0011 0.0019 0.0013 0.0013 0.0009 0.0013 0.0009 0.0010 0.0010 0.0009 0.0011 0.0009 0.0011 0.0009 0.0015 0.0012 0.0011 0.0012 0.0010 0.0013 0.0013 0.0012 0.0019 0.0010 0.0013 0.0011

0.1544 0.1603 0.0851 0.0998 0.4207 0.0843 0.1458 0.1303 0.2291 0.0845 0.0744 0.4579 0.1117 0.0926 0.1190 0.0814 0.0811 0.0808 0.0772 0.0757 0.0787 0.0733 0.0747 0.0732 0.0764 0.1334 0.0757 0.0756 0.1299 0.0766 0.0761 0.0745 0.0920 0.0724 0.0736 0.0783 0.0742 0.0773 0.0721 0.0744 0.0747 0.0780 0.0734 0.0713 0.0745 0.0779 0.0787 0.1039 0.0755 0.1580 0.0739 0.0769 0.0750

0.0348 0.0388 0.0161 0.0396 0.2994 0.0177 0.0322 0.0345 0.0841 0.0169 0.0198 0.1795 0.0260 0.0199 0.0249 0.0216 0.0159 0.0283 0.0209 0.0247 0.0230 0.0192 0.0229 0.0230 0.0197 0.0368 0.0262 0.0205 0.0446 0.0271 0.0292 0.0208 0.0286 0.0213 0.0255 0.0256 0.0179 0.0231 0.0210 0.0260 0.0164 0.0370 0.0329 0.0244 0.0241 0.0294 0.0281 0.0282 0.0307 0.0532 0.0184 0.0288 0.0231

0.7138 0.8405 0.7047 0.6769 0.6071 0.7552 0.6352 0.6586 0.5891 0.5892 0.5830 0.5877 0.5677 0.5985 0.5988 0.6111 0.5699 0.5860 0.5728 0.5743 0.5835 0.7991 0.5975 0.5980 0.6156 0.5733 0.5841 0.5782 0.5405 0.5347 0.5805 0.5921 0.5644 0.5620 0.6083 0.5848 0.8592 0.6047 0.5575 0.5817 0.5703 1.4804 1.6205 9.1895 1.3745 1.2785 2.8378 1.3847 1.0486 1.2093 1.2152 1.5163 10.1923

0.0025 0.0026 0.0021 0.0033 0.0065 0.0022 0.0024 0.0027 0.0036 0.0021 0.0025 0.0050 0.0029 0.0022 0.0023 0.0024 0.0021 0.0024 0.0020 0.0024 0.0022 0.0018 0.0022 0.0023 0.0019 0.0018 0.0025 0.0019 0.0024 0.0026 0.0028 0.0021 0.0023 0.0021 0.0025 0.0025 0.0018 0.0021 0.0021 0.0027 0.0016 0.0034 0.0033 0.0025 0.0025 0.0027 0.0026 0.0020 0.0029 0.0025 0.0018 0.0028 0.0023

0.0696 0.0733 0.0609 0.0611 0.1584 0.0606 0.0684 0.0712 0.0899 0.0581 0.0592 0.1614 0.0899 0.0592 0.0639 0.0566 0.0589 0.0520 0.0546 0.0553 0.0542 0.0554 0.0575 0.0588 0.0574 0.0650 0.0541 0.0554 0.0668 0.0538 0.0544 0.0562 0.0622 0.0589 0.0581 0.0565 0.0554 0.0540 0.0572 0.0524 0.0513 0.0541 0.0581 0.0569 0.0543 0.0559 0.0535 0.0591 0.0568 0.0683 0.0540 0.0550 0.0549

0.43 0.65 0.07 0.51 0.06 0.17 0.71 0.70 0.95 0.13 0.11 0.98 0.20 0.23 0.25 0.32 0.08 0.60 0.29 0.20 0.33 0.36 0.16 0.42 0.16 0.27 0.85 0.08 0.24 0.28 0.18 0.11 0.11 0.35 0.12 0.52 0.17 0.41 0.10 0.49 0.12 0.41 0.50 0.13 0.14 0.82 0.15 0.36 0.19 0.11 0.13 0.37 0.11

0.89 8.68 8.72 4.36 3.42 4.25 9.14 5.76 5.78 4.92 3.19 8.14 5.67 7.83 3.59 9.08 3.48 5.31 2.58 5.86 3.10 3.72 8.38 7.40 9.36 2.26 8.55 5.68 1.31 7.62 8.23 7.82 2.46 9.69 7.74 6.37 8.93 6.83 9.68 7.13 3.25 6.01 20.9 30.4 10.9 15.0 17.7 11.6 11.1 24.2 11.7 17.2 15.2

71 66 94 54 97 39 57 39 69 66 99 36 24 55 48 47 81 81 76 56 54 93 27 33 35 36 88 25 32 29 36 100 208 201 289 575 248 164 147 258 116 545 165 274 233 111 127 161 188 125 139 111 1063

168 171 106 75 2 89 246 176 117 86 37 415 198 89 124 79 49 159 219 71 138 283 63 330 118 225 250 117 130 91 49 81 55 531 75 249 161 222 78 162 147 69 102 58 62 303 42 249 66 93 185 85 54

32 360 504 480 206 450 430 340 850 230 392 264 148 519 344 253 123 669 343 423 388 496 249 639 265 762 418 791 387 785 754 834 293 542 326 268 739 612 927 543 749 334 169 368 291 691 493 1009 1400 1486 1399 1518 1212

46-1 48-1 48-2 49 50 51-1 51-2 52 53-1 53-2 54-1 55-1 56 G03 01 03 04 05 06 07 08 10 11-1 11-2 12 13 14-1 14-2 15 17 18 19 20 21 23 25 26 27 28 29 30-1 31 32 33 46-2 47-1 54-2 02 09 16 22 24 30-2 47-2

124 G. Li et al. / Precambrian Research 271 (2015) 118–137 C) ◦ (

750.07 806.08 680.86 710.64 740.93 904.67 751.97 935.05 789.62 786.72 728.36 717.64 743.25 858.59 736.80 717.64 691.75 723.30 745.92 674.26 714.94 744.84 754.66 744.91 729.13 729.87 767.55 776.73 785.86 794.62 794.05 766.37 764.78 678.28 765.37 752.46 739.00 736.31 748.77 711.80 661.41 735.45 793.08 775.83 817.08 737.05 685.41 726.62 919.86 841.62 843.17 844.49

6 7 8 6 6 6 9 8 8 7 8 8 8 6 6 5 5 5 7 7 7 7 6 6 6 6 6 8 6 7 4 5 5 6 5 6 6 5 5 5 7 3 5 10 10  13 13 13 36 29 11 73

U 238

Pb/ 460 470 430 458 469 569 449 447 468 556 869 798 853 512 485 447 498 536 485 577 442 443 434 432 422 426 451 484 438 466 454 457 755 445 454 435 432 582 462 432 441 851 444 445 443 458 525 444 497 3047 1605 206 2872

7 8 20 10 10 10 10 10 20 10  16 18 17 13 14 14 14 12 12 11 15 16 23 14 12 12 13 16 16 17 18 16 18 13 15 15 15 14 16 13 12 26 16 13 17 11 65 12 15 11 13 11

U 235

Pb/ 490 509 407 447 451 593 442 439 449 537 869 786 844 526 477 449 467 542 453 446 429 431 416 459 449 468 473 439 466 444 456 762 436 449 441 449 443 623 471 457 452 876 439 439 465 466 548 456 496 3070 3018 207 1786

90 70 80 70 90  91 81 95 62 76 68 81 82 79 47 71 99 37 83 78 69 76 94 94 69 88 62 89 69 81 44 81 72 88 76 69 68 61 63 100 109 109 104 106 101 103 102 101 106 112 115 113

Pb 206

(Ma) Ti-in-zircon

Pb/ 350 680 409 460 450 350 450 480 750 480 506 383 389 345 455 871 754 822 588 437 455 382 398 483 376 387 295 456 417 367 478 439 439 394 432 765 389 433 517 487 554 922 376 383 587 494 628 483 3076 207 3117 1794

0.0010 0.0012 0.0014 0.0009 0.0010 0.0010 0.0016 0.0022 0.0022 0.0023 0.0014 0.0013 0.0011 0.0013 0.0086 0.0013 0.0017 0.0072 0.0010 0.0010 0.0009 0.0009 0.0009 0.0011 0.0011 0.0011 0.0011 0.0011 0.0010 0.0010 0.0010 0.0010 0.0013 0.0010 0.0011 0.0007 0.0008 0.0008 0.0017 0.0009 0.0008 0.0010 0.0019 0.0010 0.0145 0.0009 0.0009 0.0008 0.0011 0.0006 0.0009 

U

238 Pb/ 0.0736 0.0754 0.0923 0.0722 0.0718 0.0753 0.0900 0.1443 0.1318 0.1414 0.0826 0.0782 0.0718 0.0803 0.5613 0.0781 0.0936 0.6042 0.0710 0.0711 0.0697 0.0694 0.0677 0.0684 0.0739 0.0725 0.0779 0.0756 0.0702 0.0750 0.0729 0.0734 0.1242 0.0715 0.0729 0.0698 0.0694 0.0690 0.0945 0.0744 0.0693 0.0708 0.1411 0.0714 0.2826 0.0714 0.0711 0.0737 0.0849 0.0713 0.0802 206

0.0250 0.0272 0.0346 0.0252 0.0199 0.0218 0.0227 0.0223 0.0306 0.0275 0.0192 0.0166 0.0108 0.2888 0.0155 0.0264 0.4723 0.0209 0.0183 0.0157 0.0185 0.0196 0.0237 0.0254 0.0262 0.0284 0.0253 0.0269 0.0196 0.0230 0.0226 0.0311 0.0208 0.0245 0.0158 0.0199 0.0183 0.0464 0.0249 0.0206 0.0255 0.0463 0.0166 0.3732 0.0187 0.0228 0.0169 0.0224 0.0153 0.0183 

U

235 Pb/ 0.5538 0.5585 0.7939 0.5459 0.5405 0.5554 0.6961 0.6784 0.5566 0.5844 0.7052 0.5618 0.5514 0.5253 0.5295 0.4932 0.5063 0.5713 0.5560 0.5854 0.5940 0.5404 0.5823 0.5487 0.5675 0.5367 0.5558 0.5439 0.5557 0.5466 0.8470 0.5909 0.5677 0.5603 0.5401 0.5409 0.5809 0.5816 0.7152 0.5662 0.6300 1.3543 1.1691 1.2965 1.1177 1.3689 4.8063 207 18.5303 19.5728

0.0024 0.0026 0.0027 0.0026 0.0022 0.0023 0.0021 0.0024 0.0022 0.0023 0.0018 0.0072 0.0020 0.0025 0.0054 0.0022 0.0020 0.0016 0.0018 0.0021 0.0026 0.0026 0.0026 0.0025 0.0024 0.0029 0.0017 0.0024 0.0021 0.0018 0.0021 0.0025 0.0016 0.0022 0.0020 0.0035 0.0025 0.0022 0.0026 0.0025 0.0017 0.0053 0.0019 0.0024 0.0017 0.0017 0.0016 0.0016 

Pb ratios Age

206 Pb/ 0.0543 0.0535 0.0622 0.0550 0.0532 0.0561 0.0681 0.0644 0.0665 0.0596 0.0562 0.2395 0.0543 0.0547 0.2335 0.0568 0.0559 0.0541 0.0544 0.0522 0.0535 0.0558 0.0551 0.0537 0.0565 0.0557 0.0556 0.0546 0.0555 0.0647 0.0553 0.0559 0.0576 0.0567 0.0642 0.0568 0.0587 0.0567 0.0695 0.0541 0.1097 0.0543 0.0595 0.0571 0.0607 0.0574 0.0568 Isotopic 207

0.13 0.16 0.15 0.33 0.18 0.01 0.51 0.24 0.05 0.08 0.10 0.16 0.41 0.11 0.09 0.19 0.12 0.18 0.50 0.16 0.15 0.28 0.64 0.16 0.15 0.26 0.02 0.23 0.09 0.24 0.08 0.43 0.19 0.13 0.19 0.11 0.05 0.12 0.32 0.19 0.11 0.18 0.20 0.20

7.93 7.766.06 0.145.34 7.19 0.05426.68 0.0020 5.343.89 0.605.717.41 0.0556 0.093.115.17 0.0561 0.077.32 0.00218.17 0.0545 0.0021 0.5996 7.33 6.11 0.0018 0.62096.17 9.41 0.6510 0.0163 0.0135 0.08679.29 3.39 9.13 0.00143.28 9.19 392 7.97 6.85 6.647.65 0.104.98 4.91 0.0543 2.62 6.58 6.70 3.59 5.94 7.00 10.4 0.16 10.3 20.1 20.4 44.7 11.911.5 0.29 14.1 23.2 0.52 11.4 12.5 12.4 12.3 15.7 39.5 19.8 34.8 Ti

40 90 60 31 27 49 32 99 92 42 64 55 46 28 72 35 29 71 78 39 51 43 41 83 48 36 49 32 76 89 300 106 106 Pb 181 279 137 162 613 176 597 173 125 519 125 112 187 141 118 154 125 2036 2243

Th 52 51 85 57 73 271 48 36 146 213 88 258 97 46 61 112 48 35 89 64 85 265 93 93 60 236 68 52 176 278 202 75 130 139 62 101 164 207 141 95 71 82 69 65 149 43 251 113 181 171 310 228 (ppm) Th/U

)

260 360 730 507 608 387 314 295 391 536 828 289 412 433 489 495 218 216 568 912 772 577 327 471 415 342 636 434 499 612 436 858 223 382 614 367 616 355 788 949 3140 1906 Contents U 1915 1547 1427 1291 5585 1716 3198 1697 1511 1137 Continued (

2

Spot 34 35-1 35-2 36 37 39-1 39-2 40-1 41-1 41-2 42-1 42-2 43 44 45-1 45-2 46 G04 01 02 03 04 05 06 07 08 09 10 12 13 14 15 16 17 18 19 21 22 23 24 25 26-1 26-2 27 29 30 31 38 40-2 11 20 28 32 Table

G. Li et al. / Precambrian Research 271 (2015) 118–137 125

(a) Q 866.01 872.03 875.70 849.28 874.31 978.83 717.23 636.60 832.93

1088.2 Granites AG=Alkali-feldspar granite Early phase AS=Alkali-feldspar syenite

4 4 4 3 5 5 5 6 Late phase 40 22 AF=Alkali-feldspar

Quartz-rich granite M/D/G=Monzogabbro /diorite/gabbro

450 460 470 464 445 491 474 469 2198 2828

G01 Plagiogr

9 9 10 13 17 13 17 18 12 25

a ni t e

Syeno- Monzogranite Granodiorite AG Granite 506 505 478 455 445 454 537 478 3018 2714

Di

ori Quartz syenite Quartz mon-

Quartz monzonite AS zonite diorite te 70 30 30 59 59 49 78 72 94 55 AF Syenite Monzodiorite Monzogabbro M/D/G A P

420 502

528 498 413 798 569 643 (b) 2.5 3122 3129

I-type granite S-type granite

2.0

0.0007 0.0006 0.0006 0.0006 0.0008 0.0008 0.0009 0.0049 0.0010 0.0095 Metaluminous Peraluminous

1.5 A/NK 0.0747 0.0715 0.0723 0.0739 0.0756 0.0792 0.0762 0.4063 0.0755 0.5506

1.0

ralkaline 0.0200 0.0155 0.0142 0.0137 0.0277 0.0209 0.0261 0.2597 0.0193 0.4781 Pe 0.5 0.5 1.0 1.1 1.5 2.0

A/CNK . 0.6007 0.5656 0.5505 0.5634 0.6967 0.6457 0.6017 0.6443

13.4797 18.5376

Fig. 4. (a) Q–A–P modal classification (after Streckeisen, 1967) and (b) Molar

Al/(K + Na) versus Al/(Ca + Na + K) diagram (after Maniar and Piccoli, 1989) of the (2007)

granites from the Shuangmaidi area, northern Baoshan block. Q, normative quartz;

P, normative albite + anorthite; A, normative orthoclase. The ‘I–S’ divided line is from

White and Chappell (1977). Watson 0.0018 0.0015 0.0015 0.0013 0.0023 0.0019 0.0024 0.0045 0.0014 0.0046

and

176 −11 −1

decay constant for Lu (1.865 × 10 ; Scherer et al., 2001) Ferry

ε

of were used to calculate (t) for the zircon. Single-stage Hf model 0.0580 0.0571 0.0552 0.0550 0.0657 0.0591 0.0573 0.2402 0.0611 0.2413

Hf

ages (TDM1) were calculated relative to the present-day depleted

176 177 176 177

mantle values of Hf/ Hf = 0.28325 and Lu/ Hf = 0.0384

(Griffin et al., 2000). We also calculated a crustal model age (T ; 0.68 0.12 0.64 0.15 0.39 0.51 0.26 0.22

1.20 1.28 DM2

two-stage model age) for the zircon, based on the assumption thermometer

that the parental magma was derived from a continental crust

176 177

( Lu/ Hf = 0.015; Griffin et al., 2002) that was originally derived 7.6 2.7 24.8 26.2 27.1 21.3 26.8 62.7 26.1

132.7

from depleted mantle. The zircon Lu–Hf isotopic data are listed in saturation

Table 3.

150 103 315 378 158 432 124 154 539 313

4. Result Ti-in-zircon

to

4.1. Whole-rock elements

The granite samples from the Shuangmaidi area contain according

862 225 1111 261 1336 279 397 154 189.8043 117.6947353 73.7–75.4 wt% SiO2, 13.2–13.7 wt% Al2O3, 6.1–7.4 wt% total alka-

lis (K2O + Na2O) with K2O/Na2O ratios varying from 0.45 to Total

1.82, 0.5–1.2 wt% CaO, 1.2–1.8 wt% FeO , 0.5–0.9 wt% MgO, calculated

92

∼ 780 715 589 876 is 0.2–0.3 wt% TiO and 0.2 wt% P O (Table 1). They are strongly

2 2 5 1109

1261 1843 1728 1752

peraluminous with A/NK (Al2O3/(Na2O + K2O), molar) ranging from

1.4 to 1.6 and A/CNK (Al2O3/(CaO + Na2O + K2O), molar) from 1.2

to 1.4, which are within the ranges of S-type granites accord- 33 34 35 36 37 39 Mengmao 01 02-1 02-2 38

Temperature

ing the classification of White and Chappell (1977) (Fig. 4b).

126 G. Li et al. / Precambrian Research 271 (2015) 118–137

Table 3

Zircon Hf isotope data for the early Paleozoic peraluminous granites from the Shuangmaidi area, northern Baoshan block, SW China.

176 177 176 177 176 177 176 177

Spot Age (Ma) Yb/ Hf Lu/ Hf Hf/ Hf 1 ( Hf/ Hf)i εHf(0) εHf(t) 1 TDM1 (Ma) TDM2 (Ma) fLu/Hf

G02

G02-01 465 0.028837 0.001086 0.281979 0.000010 0.281969 −28.0 −18.2 0.62 1794 2585 −0.97

G02-02 571 0.037272 0.001328 0.281822 0.000012 0.281807 −33.6 −21.6 0.66 2025 2875 −0.96

G02-03 471 0.027447 0.000943 0.281800 0.000010 0.281792 −34.4 −24.3 0.61 2034 2973 −0.97

G02-04 494 0.029705 0.000999 0.281774 0.000010 0.281764 −35.3 −24.8 0.62 2074 3019 −0.97

G02-05 445 0.073162 0.002562 0.281746 0.000010 0.281725 −36.3 −27.3 0.61 2202 3136 −0.92

G02-06 474 0.070653 0.002830 0.282446 0.000021 0.282421 −11.5 −2.0 0.89 1197 1573 −0.91

G02-07 462 0.046329 0.001828 0.281637 0.000009 0.281621 −40.1 −30.6 0.60 2312 3353 −0.94

G02-08 479 0.044166 0.001800 0.282152 0.000064 0.282136 −21.9 −12.0 2.32 1583 2206 −0.95

G02-09 559 0.071531 0.002750 0.281651 0.000008 0.281623 −39.6 −28.4 0.58 2350 3287 −0.92

G02-10 481 0.009946 0.000355 0.281187 0.000010 0.281184 −56.1 −45.6 0.62 2828 4298 −0.99

G02-11 444 0.079552 0.003026 0.281610 0.000011 0.281584 −41.1 −32.3 0.64 2428 3443 −0.91

G02-12 469 0.034421 0.001448 0.282061 0.000028 0.282048 −25.2 −15.3 1.11 1697 2408 −0.96

− −

G02-13 468 0.036582 0.001465 0.281538 0.000008 0.281525 43.6 33.8 0.59 2427 3560 −0.96

G02-14 485 0.053665 0.002158 0.282603 0.000039 0.282583 −6.0 4.0 1.46 948 1203 −0.93

G02-15 473 0.008489 0.000607 0.281473 0.000030 0.281468 −45.9 −35.7 1.17 2460 3683 −0.98

G02-16 493 0.065651 0.002426 0.281694 0.000009 0.281671 −38.1 −28.1 0.60 2269 3223 −0.93

G02-17 466 0.058767 0.002173 0.281897 0.000019 0.281879 −30.9 −21.4 0.85 1963 2784 −0.93

G02-18 500 0.011217 0.000394 0.281162 0.000010 0.281158 −56.9 −46.1 0.62 2864 4340 −0.99

G02-19 490 0.078557 0.002773 0.281812 0.000012 0.281787 −33.9 −24.1 0.67 2119 2971 −0.92

G02-20 495 0.040999 0.001675 0.281554 0.000008 0.281539 −43.1 −32.7 0.58 2417 3512 −0.95

G02-21 675 0.047269 0.001739 0.281558 0.000011 0.281536 −42.9 −28.9 0.65 2417 3404 −0.95

G02-22 471 0.049977 0.001856 0.281779 0.000010 0.281763 −35.1 −25.3 0.63 2113 3036 −0.94

G02-23 462 0.020873 0.000727 0.281166 0.000008 0.281159 −56.8 −46.9 0.59 2884 4362 −0.98

G02-24 978 0.040493 0.001492 0.281535 0.000007 0.281507 −43.8 −23.1 0.57 2433 3273 −0.96

G02-25 464 0.027596 0.001161 0.281585 0.000018 0.281575 −42.0 −32.1 0.82 2342 3453 −0.97

G03

G03-01 468 0.010665 0.000380 0.281180 0.000011 0.281177 −56.3 −46.2 0.64 2839 4321 −0.99

G03-02 447 0.037073 0.001499 0.281169 0.000014 0.281156 −56.7 −47.4 0.72 2939 4377 −0.95

G03-03 569 0.021725 0.000751 0.281489 0.000009 0.281481 −45.4 −33.2 0.59 2449 3593 −0.98

G03-04 458 0.012483 0.000422 0.281479 0.000009 0.281475 −45.7 −35.8 0.59 2442 3678 −0.99

G03-05 466 0.049459 0.002139 0.282261 0.000045 0.282243 −18.1 −8.5 1.68 1441 1976 −0.94

G03-06 462 0.098961 0.005072 0.282206 0.000057 0.282162 −20.0 −11.4 2.09 1652 2157 −0.85

G03-07 489 0.010677 0.000383 0.281157 0.000010 0.281153 −57.1 −46.5 0.63 2871 4360 −0.99

G03-08 463 0.042334 0.001490 0.282162 0.000022 0.282149 −21.6 −11.8 0.93 1556 2187 −0.96

G03-09 444 0.069749 0.002733 0.281899 0.000026 0.281876 −30.9 −21.9 1.06 1992 2803 −0.92

G03-10 484 0.062100 0.002434 0.281506 0.000008 0.281484 −44.8 −34.9 0.58 2536 3638 −0.93

G03-11 464 0.041348 0.001636 0.281497 0.000009 0.281483 −45.1 −35.4 0.60 2495 3655 −0.95

G03-12 463 0.029689 0.001315 0.281708 0.000016 0.281719 −37.6 −27.1 0.77 2040 3140 −1.04

G03-13 449 0.056035 0.002221 0.281568 0.000012 0.281549 −42.6 −33.4 0.66 2434 3518 −0.93

G03-14 480 0.050795 0.001996 0.281730 0.000011 0.281712 −36.9 −27.0 0.65 2192 3143 −0.94

G03-15 461 0.010691 0.000386 0.281147 0.000010 0.281144 −57.5 −47.5 0.62 2883 4396 −0.99

G03-16 486 0.035710 0.001308 0.282298 0.000019 0.282286 −16.8 −6.5 0.84 1358 1868 −0.96

G03-17 458 0.055326 0.002073 0.281524 0.000008 0.281506 −44.1 −34.7 0.58 2487 3608 −0.94

G03-18 451 0.079280 0.002824 0.281512 0.000009 0.281488 −44.6 −35.5 0.61 2555 3651 −0.91

G03-19 807 0.087991 0.003073 0.281559 0.000010 0.281512 −42.9 −26.8 0.62 2505 3370 −0.91

G03-20 475 0.043317 0.001556 0.281469 0.000011 0.281455 −46.1 −36.1 0.64 2528 3708 −0.95

G03-21 465 0.047818 0.001705 0.281360 0.000010 0.281345 −49.9 −40.3 0.63 2690 3955 −0.95

G03-22 488 0.083374 0.003121 0.282939 0.000065 0.282911 5.9 15.7 2.34 470 460 −0.91

G03-23 470 0.072759 0.002543 0.281479 0.000009 0.281456 −45.7 −36.2 0.60 2582 3707 −0.92

G03-24 480 0.100551 0.003817 0.281408 0.000010 0.281374 −48.2 −38.9 0.63 2780 3879 −0.89

G04

G04-01 851 0.031742 0.001107 0.281451 0.000008 0.281434 −46.7 −28.6 0.58 2523 3516 −0.97

G04-02 432 0.012184 0.000438 0.281114 0.000011 0.281110 −85.8 −49.3 0.63 2932 4488 −0.99

G04-03 454 0.076079 0.002807 0.281538 0.000009 0.281514 −43.7 −34.5 0.61 2517 3592 −0.92

G04-04 445 0.023186 0.000910 0.281568 0.000052 0.281560 −42.6 −33.1 1.91 2351 3499 −0.97

G04-05 755 0.115614 0.004310 0.281616 0.000009 0.281555 −40.9 −26.4 0.60 2507 3308 −0.87

G04-06 454 0.065153 0.002565 0.282457 0.000023 0.282435 −11.1 −1.9 0.96 1172 1554 −0.92

G04-07 451 0.039399 0.001406 0.281557 0.000008 0.281545 −43.0 −33.5 0.59 2397 3527 −0.96

G04-08 426 0.112541 0.004099 0.282330 0.000044 0.282297 −15.6 −7.4 1.64 1418 1880 −0.88

G04-09 422 0.009659 0.000231 0.281707 0.000007 0.281706 −37.7 −28.4 0.56 2122 3195 −0.99

G04-10 434 0.039767 0.001164 0.282314 0.000007 0.282305 −16.2 −7.0 0.57 1330 1859 −0.96

G04-11 432 0.013220 0.000352 0.282356 0.000009 0.282353 −14.7 −5.3 0.60 1244 1752 −0.99

G04-12 443 0.089592 0.002435 0.282434 0.000011 0.282414 −12.0 −2.9 0.65 1202 1609 −0.93

G04-13 442 0.032714 0.000915 0.282319 0.000009 0.282312 −16.0 −6.6 0.61 1314 1838 −0.97

ε 176 177 176 177 176 177 176 177 t 176 177 176 177 t

Hf(0) = 10,000 × [( Hf/ Hf)S/( Lu/ Hf)CHUR(0) − 1)]; εHf(t) = 10,000 × {[( Hf/ Hf)S − ( Lu/ Hf)S × (e − 1)]/[( Hf/ Hf)CHUR(0) − ( Lu/ Hf)CHUR × (e − 1)] − 1]};

176 177 176 177 176 177 176 177

TDM1 = (1/) × ln{1 + [( Hf/ Hf)S − ( Hf/ Hf)DM]/[( Lu/ Hf)S − ( Lu/ Hf)DM]}; TDM2 = TDM1 − (TDM1 − t) × [(f cc − f S)/(f cc − f DM)].

176 177 176 177 −11 −1 176 177 176 177

f Lu/Hf = ( Hf/ Hf)S/( Lu/ Hf)CHUR − 1, where  = 1.865 × 10 year (Scherer et al., 2001); ( Lu/ Hf)S and ( Hf/ Hf)S are the measured values of the samples;

176 177 176 177 176 177 176 177

( Lu/ Hf)CHUR(0) = 0.0332 and ( Hf/ Hf)CHUR(0) = 0.282772 (Blichert-Toft and Albarède, 1997), and ( Lu/ Hf)DM = 0.0384 and ( Hf/ Hf)DM = 0.28325 (Griffin

176 177 176 177 176 177 176 177 176 177

f − f f f −

et al., 2000); cc = [( Lu/ Hf)mean crust/( Lu/ Hf)CHUR] 1; ( Lu/ Hf)mean crust = 0.015 (Griffin et al., 2002); S = ( Lu/Hf)S; DM = [( Lu/ Hf)DM/( Lu/ Hf)CHUR] 1.

t = crystallization time of zircon.

G. Li et al. / Precambrian Research 271 (2015) 118–137 127

Fig. 5. (a) 10,000/Ga*Al vs. Zr + Nb + Ce + Y (ppm) and (b) (Na2O + K2O)/CaO vs. Zr + Nb + Ce + Y (ppm) classification diagrams (Whalen et al., 1987) showing that the early

Paleozoic peraluminous granites from the Shuangmaidi area in the northern block are basically fractionated granites.

The calculated CIPW-normative compositions include 37.3–42.7% Two inherited zircon crystals from the early Paleozoic Mengmao

quartz, 11.2–28.1% orthoclase, 21.6–35.2% albite, 1.2–5.0% anor- granite pluton (Fig. 1) in the southwestern Baoshan block, which

206 207

thite, 2.4–4.3 wt% corundum, etc. (Table 1). The presence of yield concordant Pb/ Pb ages of ∼3122 Ma and ∼3129 Ma, are

normative corundum and lack of normative diopside indicate that discovered in our study and taken into the discussion later (Table 2;

these samples are aluminum oversaturated. In the QAP diagram Fig. 7).

(Fig. 4a), three samples plot in the alkali-feldspar granite field

and one plot in the adjacent syenogranite field. The differenti-

4.3. Zircon Lu–Hf isotopes

ation indexes (DI) of these samples are 86–88 (Table 1). In the

10,000*Ga/Al and (Na O + K O)/CaO vs. Zr + Nb + Ce + Y (ppm) dia-

2 2 The Hf isotopic compositions of zircon crystals from the three

grams, they plot within or close to the fractionated granite field

granite samples from the Shuangmaidi area in northern Baoshan

(Fig. 5a and b). 206 238

ε

are listed in Table 3. The plots of Hf(t) vs. Pb/ U ages is

ε illustrated in Fig. 8. The histograms of Hf(t) and TDM2(Hf) for

206 238

co-magmatic zircons with Pb/ U ages of ca. 500–420 Ma are

4.2. Zircon U–Pb ages

shown in Fig. 9.

176 177

The co-magmatic zircons have Lu/ Hf ratios from 0.000231

Zircon crystals from the Shuangmaidi granites are mostly euhe-

176 177

to 0.00507 and Hf/ Hf ratios from 0.281114 to 0.282939

dral and prismatic, with lengths varying from 100 to 350 ␮m and

176

(Table 3), indicating minor radiogenic production of Hf. The

length/width ratios of 2:1 to 4:1. Most of them are transparent,

ε

(t) values for the 21 and 22 spot analyses of co-magmatic zir-

colorless to light brown, and exhibit clear oscillatory zoning in CL Hf

con from the samples G02 and G03 vary from −46.9 to +4.0 and

images, typical of an igneous origin (Fig. 6). A few zircon crys-

47.5 to +15.7, respectively (Figs. 8 and 9a). The crustal model

tals have complex secular zoning. Inherited cores are present in

ages (T ) for the zircon crystals from samples G02 and G03

some zircon crystals (Fig. 6). The zircon crystals with oscillatory- DM2

in the early intrusive phase vary from 4362 Ma to 1203 Ma and

zoning patterns have varied uranium (156–3198 ppm) and thorium

from 4396 Ma to 460 Ma, respectively (Table 3; Fig. 9b). The ε (t)

(37–1336 ppm) contents, with Th/U ratios ranging mostly from Hf

and T for the 11 co-magmatic zircon crystals from sample G04

0.1 to 0.9 (Table 2), which are consistent with the composi- DM2

from the second intrusive phase vary from −49.3 to −1.9 and from

tions of magmatic zircon crystals (Hoskin and Schaltegger, 2003).

4488 Ma to 1554 Ma, respectively (Figs. 8 and 9). The ε (t) values

The three different granite samples all have concordant zircon Hf

206 238 207 235 for the co-magmatic zircon crystals from these three samples are

Pb/ U and Pb/ U ages (Fig. 7). The 34 and 38 spot anal-

predominately negative and concentrated at −46.3, −35.2, −27.2,

yses for the co-magmatic zircon crystals from samples G02 and

206 238 6.6, and −2.6, with a few exceptions of positive values around

G03 of the early intrusive phase give weighted mean Pb/ U

+4.0 and +15.5 (Fig. 9a). Their T ages collectively show several

ages of 468.7 ± 4.6 Ma (MSWD = 1.2) (Fig. 7a) and 465.2 ± 4.0 Ma DM2

Hadean–Mesoarchean peaks at 4391 Ma, 3616 Ma, and 3115 Ma,

(MSWD = 0.97) (Fig. 7b), respectively. More selected analyses (23

plus a few younger peaks at ∼1859 Ma, 1603 Ma, and 470 Ma

from 34 analyses for G03, 21 from 38 for G03) yield more accu-

206 238

(Fig. 9b). The 8 inherited zircons with Pb/ U ages between

rate concordia ages for the samples: 468.6 ± 3.2 Ma (MSWD = 0.89;

1000 Ma and ∼550 Ma have ε (t) values from −33.2 to −21.6 and

Fig. 7a) for the former and 463.6 ± 1.4 Ma (MSWD = 0.58; Fig. 7b) Hf

T ages from 3593 Ma to 2875 Ma (Table 3; Fig. 8).

for the latter. These concordia ages are similar to their weighted DM2

206 238 The extremely negative ε (t) values lower than −30 of the co-

mean Pb/ U ages and are thus interpreted as the best estimate Hf

magmatic zircons from the early Paleozoic granites at Shuangmaidi

of crystallization ages for the granites. Inherited or xenocrystic zir-

were first revealed in this study, and they are obviously lower than

con crystals give older, and mostly concordant ages concentrated

those of the coeval peraluminous granites in the Baoshan block

at 3117–3076 Ma, 2515–2330 Ma, 1120–925 Ma, 877–787 Ma,

(Table S1; Fig. 8) (Chen et al., 2007; Liu et al., 2009; Dong et al.,

725–675 Ma, and 582–536 Ma (Table 2; Fig. 7a and b). The G04 gran-

2012, 2013a; Y.J. Wang et al., 2013).

ite sample from the second intrusive phase has a weighted mean

206 238

Pb/ U age of 445.6 ± 4.5 Ma (n = 29, MSWD = 0.57, Fig. 7c) and

a similar concordant age of 447.3 ± 2.9 Ma (n = 22, MSWD = 0.19, 4.4. Magma temperature estimates

Fig. 7c). The inherited zircon crystals from this sample give

older ages, including ∼1794 Ma, ∼851 Ma, ∼755 Ma, and ∼582 Ma We have used the Ti-in-zircon thermometer of Ferry and

(Table 2; Fig. 7c). Watson (2007) and the whole-rock zircon saturation thermometer

128 G. Li et al. / Precambrian Research 271 (2015) 118–137

Fig. 6. Cathode luminescence (CL) electron micrographs of representative zircons separated from the early Paleozoic peraluminous granites in the Shuangmaidi area in the

Baoshan block, SW China.

(TZr) of Boehnke et al. (2013) to estimate the crystallization parental magma for this type of rock (e.g., Miller, 1985; Sylvester,

temperatures and melting temperatures of the granite samples, 1998; Clemens, 2003). Alternatively, low degree partial melting of

respectively. The presence of sphene and ilmenite and absence of metaluminous meta-igneous protoliths such as meta-basic (amphi-

˛

rutile in our samples indicate that the TiO2 is between 0.6 and 0.9, bolite) and meta-quartzo–feldspathic rocks (orthogneisses) rocks

with a recommended value of ∼0.7 (Watson et al., 2006; Ferry and under deficient conditions can also produce this type of

Watson, 2007; Hayden and Watson, 2007; Fu et al., 2008). The pres- magma (Beard et al., 1993; Patinoˇ Douce and Beard, 1995; Springer

˛

ence of abundant quartz in the samples indicates that the SiO2 in and Seck, 1997). These two possibilities may be evaluated using

the magma is close to unity (Watson et al., 2006; Ferry and Watson, the plot of Al2O3/(MgO + FeOT) vs. CaO/(MgO + FeOT) of Altherr

2007). Based on these constraints, the crystallization temperatures et al. (2000). As shown in Fig. 11a, three of the four Shuang-

◦ ◦

of zircon are estimated to be 612–935 C, with an average of 754 C maidi granite samples analyzed plot in the meta-pelitic field, one

(n, 72) and a main peak of 759 C for samples G02 and G03 from the of these samples plots in the meta-greywacke field, and none plots

◦ ◦

first intrusive phase; and from 661 C to 919 C, with an average of in the metabasaltic-metatonalitic field. The Shuangmaidi peralu-

◦ ◦

751 C (n, 29) and a main peak of 738 C for sample G04 from the minous granites have CaO/Na2O ratios <0.3 (Fig. 11b), indicating

second intrusive phase (Fig. 10). a plagioclase-poor, clay-rich pelitic source according to Sylvester

The presence of inherited zircons in the samples indicates a (1998). Zircon grains crystallized from the magmas of the Shuang-

ε

saturation of zirconium in the magma source, leading to the over- maidi granites have highly varied but predominantly negative Hf(t)

estimate of Zr concentration (Miller et al., 2003). On the contrary, values (Table 3; Fig. 8), consistent with an ancient meta-pelitic

ε

the fractionated feature (DI = 86–88) suggests effective melt segre- source. The presence of a few grains with positive Hf(t) values

gation has occurred, which may have removed part of the inherited might indicate a minor involvement of melts derived from juvenile

and early-crystallized zircons. This process partly counteracted the crust or mantle.

overestimate of Zr concentration, leading to approximation of the All granite samples have high HREE (Yb = 2.18–3.34 ppm,

calculated TZr to the temperature of melt generation (Miller et al., >1.9 ppm) and Y (27.1–40.7 ppm, >18 ppm) contents and possess

2003). Using whole-rock compositions, the calculated TZr are from (Gd/Yb)N values of 1.14–1.53. The feature diminishes the likelihood

◦ ◦ ◦

769 C to 818 C, with an average of 796 C for samples G01, G02 of residual garnet, which survives at pressures ≥0.5 GPa (respond-

and G03, and a value of 812 C for G04 sample (Table 1), which are ing to 16.5 km), in the metasedimentary rock source (e.g., Wang

generally higher than the results from the Ti-in-zircon method. et al., 2012). Thus the source of the Shuangmaidi granites is con-

sidered in the middle/upper crustal level (e.g., Rossi et al., 2002).

The inferred melting temperatures largely overlap the estimated

5. Discussion

crystallization temperatures but tend to be higher overall (Table 1;

Fig. 10). This makes sense because partial melting took place at

5.1. Nature of source rocks

greater depth than crystallization.

Biotite-quartz enclaves in the Shuangmaidi granites are likely

The high A/CNK values (1.2–1.4; Table 1) and the presence of

the restites of the source rocks or xenoliths captured during magma

normative corundum indicate that the Shuangmaidi granites are

ascent (Clemens, 2003). Since biotite is unstable during partial

peraluminous S-type granitoids (Chappell and White, 1974, 2001;

melting of meta-pelites (e.g., Clemens and Wall, 1981; Clemens and

Sylvester, 1998). Partial melting of metasedimentary rocks such

Watkins, 2001), such enclaves are more likely mid-crustal xenoliths

as clay-poor meta-greywackes (i.e. psammites, including labile

rather than restites (Clemens, 2003).

volcaniclastic types) and clay-rich meta-pelites can generate the

G. Li et al. / Precambrian Research 271 (2015) 118–137 129

206 238

Fig. 8. Plots of εHf(t) values with error bar versus Pb/ U age of zircons from the

early Paleozoic granites in the Shuangmaidi area, northern Baoshan block. Data of

the magmatic zircons from Pinghe granitic batholith in the southwestern Baoshan

are from Chen et al. (2007), Liu et al. (2009), Dong et al. (2012) and Y.J. Wang

et al. (2013), the Pinghe leucogranite are from Dong et al. (2013a), and the Khao

Tao orthogneiss in the southern Sibumasu block are from Lin et al. (2013). Data of

the detrital, magmatic and inherited zircons in Australian Pilbara craton are from

Kemp et al. (2015), and in Narryer terrane of the Yilgarn craton are from Amelin

et al. (1999), Harrison et al. (2005, 2008), Blichert-Toft and Albarède (2008), Nebel-

Jacobsen et al. (2010) and Kemp et al. (2010); those in the Indian Aravalli craton are

from Kaur et al. (2011), Dharwar craton are from Lancaster et al. (2014), and Coorg

block are from Santosh et al. (2014).

Detailed data for the Sibumasu are presented in Supplementary Table S1, those for

mircoblocks from Australia and India are presented in Tables S2–S6.

Fig. 7. LA-ICP-MS zircon U–Pb concordia diagrams for the early Paleozoic granites

from the Shuangmaidi area, northern Baoshan block. All ages give 2 error ellipses.

The pink dashed ellipses in the zoom-out view represent the data used for weighted

206 238

mean Pb/ U age, and the blue solid ellipses are for concordia ages. Fig. 9. Histograms of initial Hf isotope ratios (a) and corresponding Hf crustal model

ages (b) for the co-magmatic zircons from the early Paleozoic granites in the Shuang-

maidi area, northern Baoshan block.

5.2. Ages of the source crust

Kemp et al., 2006). Thus, our results clearly indicate the existence of

The crustal model ages for the source rocks of the Shuang- Hadean–Mesoarchean crustal components in the northern Baoshan

maidi granites, estimated from the co-magmatic zircon crystals block, the northernmost of the Gondwana-derived Sibumasu block.

show three old age peaks at ∼4390 Ma, ∼3620 Ma, and ∼3120 Ma. It is significant that the crustal model ages estimated for these

This, together with the TDM2(Hf) ages of 3593–2875 Ma for the extremely ancient components of the northernmost Sibumasu

inherited zircon crystals in the samples, indicates the presence of block are much older than that estimated for the crustal basement

Hadean–Mesoarchean crustal materials in the source region. The of the Sibumasu block at other locations by other researchers pre-

crustal model ages of Hf isotopes calculated from magmatic zircon viously. The early Paleozoic peraluminous granites in the Baoshan

formed from multi-source derived magma represent only the min- block yield zircon Hf crustal model ages from 3.8 Ga to 1.4 Ga, clus-

imum ages of the oldest source crust (Arndt and Goldstein, 1987; tering at 2.1–1.4 Ga, plus inherited zircon as old as 2.95 Ga (Table S1;

130 G. Li et al. / Precambrian Research 271 (2015) 118–137

Burma, Sibumasu and Indochina are concentrated at 2.5 Ga, 2.3 Ga,

1.9 Ga, 1.1 Ga and 0.8 Ga (Bodet and Schärer, 2000).

5.3. Hadean– crust in Gondwana

Exposed Hadean–Archean crust has not been found anywhere

in SE Asia. In the Baoshan block, the oldest exposed basement is

the –Cambrian Gongyanghe Group. Magmatic zir-

cons from the interlayered basaltic rocks in the upper part of this

group yield a concordant U–Pb age of ∼499 Ma (Yang et al., 2012).

In the nearby Tengchong block, the oldest exposed crustal mate-

Fig. 10. Histograms of the Ti-in-zircon temperatures ( C) for the co-magmatic zir- rial is the Precambrian Gaoligongshan Group (e.g., BGMRY, 1990;

cons from the early Paleozoic peraluminous granites in the Shuangmaidi area,

Zhong, 1998). Zircon crystals from the gneissic rocks of this group

northern Baoshan block.

give U–Pb ages <1053 Ma (Song et al., 2010). Farther to the south,

zircon crystals from the Cambrian orthogneisses in the Khao Tao

district, the Upper Peninsula of Thailand yield a concordant U–Pb

Chen et al., 2007; Liu et al., 2009; Dong et al., 2012, 2013a; Y.J.

age of 502 Ma (Lin et al., 2013). The oldest sedimentary strata

Wang et al., 2013). The late Cretaceous to Paleocene peraluminous

in Malaysia are the middle Cambrian to Early Ordovician clastic

granites have TDM2(Hf) ages concentrated from 2.0 Ga to 1.2 Ga

sedimentary rocks of the Machinchang and Jerai formations (Lee,

(Dong et al., 2013b; Yu et al., 2014). Whole-rock Sm–Nd, Rb–Sr

2009).

and zircon U–Pb isotopic data for the Permian–Triassic granitoids

Hadean–Archean crustal rocks are common in the Yilgarn and

in the Malay Peninsula indicate a 1.7–1.5 Ga basement in this area

Pilbara cratons, Western Australia (e.g., Myers et al., 1996; Cawood

(Liew and McCulloch, 1985). These ages are slightly younger than

and Korsch, 2008), and in Gawler craton, southern Australia (e.g.,

the U–Pb ages of detrital zircon crystals from the Malay Peninsula

Daly and Fanning, 1990; Reid et al., 2014) (Figs. 12 and 14). The

(1.9–2.0 Ga, Sevastjanova et al., 2011; Hall and Sevastjanova, 2012).

Yilgarn Craton consisting of metavolcanic and metasedimentary

The U–Pb ages of detrital zircon crystals from large rivers in West

rocks, granites and granitic gneisses formed between 3.05 Ga and

2.62 Ga, with minor components >3.7 Ga (Fig. 12) (e.g., Cassidy et al.,

2006; Kositcin et al., 2008; Pawley et al., 2009; Mole et al., 2012;

de Joux et al., 2013; Van Kranendonk et al., 2013). The detrital zir-

cons from Jack Hill in the Narryer terrane of the Yilgarn Craton

(Fig. 13) show two prominent age peaks, one at 3.6–3.3 Ga and the

other at 4.2–3.8 Ga (Fig. 12) (e.g., Maas et al., 1992; Compston and

Pidgeon, 1986; Mojzsis et al., 2001; Wilde et al., 2001; Cavosie

et al., 2004, 2007; Trail et al., 2007; Holden et al., 2009; Bell

and Harrison, 2013). Similar detrital zircon age distribution (ca.

4.4–3.2 Ga) has also been reported for the Narryer Gneiss Com-

plex in the Mt. Narryer of the Yilgarn Craton (Fig. 13) (e.g., Maas

et al., 1992; Wilde et al., 2001; Nelson, 2008; Holden et al., 2009;

Nebel-Jacobsen et al., 2010). Lu–Hf isotopic systematics on the

detrital zircon grains from Narryer terrane showed that the rocks

from which the zircon grains formed represent either juvenile or

reworked terrestrial crust that may has been extracted from pri-

mordial mantle as early as ∼4.4 Ga ago (Fig. 12) (Amelin et al.,

1999; Harrison et al., 2005, 2008; Blichert-Toft and Albarède, 2008;

Kemp et al., 2010). The Pilbara Craton is composed of variably

deformed and metamorphosed granitic complexes and individ-

ual granitic plutons with intervening belts of supracrustal rocks

with ages from ∼3.53 Ga to ∼2.76 Ga (e.g., Buick et al., 1995; Van

Kranendonk et al., 2002; Van Kranendonk, 2006; Hickman, 2004).

Recent Hf isotopes of the detrital zircon grains and inherited zir-

con crystals analyzed by Kemp et al. (2015) yields crustal model

ages between ∼4.0 Ga and ∼3.8 Ga via our calculation (Fig. 12). The

weakly metamorphosed basalt and layered chert–barite succes-

sions from the Dresser Formation (∼3.5 Ga) in the Pilbara Craton

show a Sm–Nd isotopic signature that links their formation with a

suspect older than 4.3 Ga crust (Fig. 12) (Tessalina et al., 2010). The

Archean continental nucleus of Gawler Craton consists dominantly

of volcano-sedimentary sequences of the Mulgathing and Sleaford

complexes formed during the interval of ca. 2.56–2.51 Ga and asso-

ciated magmatic rocks (Fig. 12) (Daly and Fanning, 1993; Fanning

et al., 2007; Reid et al., 2014). The oldest rocks of the Gawler Craton

Fig. 11. Discrimination diagrams for the potential magma source of the early Pale-

are Mesoarchean (3.25–3.15 Ga) gneisses located in the southeast-

ozoic peraluminous granites in the Shuangmaidi area, northern Baoshan block. (a)

ern Gawler Craton (Fraser et al., 2010a; Jagodzinski et al., 2011). The

Molar K2O/Na2O vs. CaO/(MgO + FeOT) (after Altherr et al., 2000). (b) CaO/Na2O vs.

inherited zircons, Hf and Nd isotopes, and deep crustal seismic data

Al2O3/TiO2 (after Sylvester, 1998). The basalt endmember is from Condie (1993),

and the pelite-derived melt endmember is from Patinoˇ Douce and Johnston (1991). suggest some form of ca. 3.5–2.8 Ga crust may underlie the craton

G. Li et al. / Precambrian Research 271 (2015) 118–137 131

Fig. 12. Schematic summary of geochronological data showing the timing of crustal rock crystallization and crustal extraction for the Archean cratonic blocks in the India

(including Coorg block) and Australia, with reference to those of the Baoshan block constrained by the Ordovician Shuangmaidi and Mengmao granites in this study. Data

sources for different blocks of India: Aravalli (Gopalan et al., 1990; Dharma Rao et al., 2011; Kaur et al., 2011; Roy et al., 2012), Bundelkhand (Mondal et al., 1998, 2002; Saha

et al., 2010; Kumar et al., 2011; Kaur et al., 2014), Dharwar (Peucat et al., 1995, 2013; Jayananda et al., 2000, 2006, 2013; Chardon et al., 2011; Dey, 2013; Dey et al., 2014;

Manikyamba et al., 2014; Lancaster et al., 2014), Bastar (Sarkar et al., 1993; Ghosh, 2004; Rajesh et al., 2009), Singhbhum (Misra et al., 1999; Mukhopadhyay, 2001; Basu

et al., 2008; Mukhopadhyay et al., 2008; Acharyya et al., 2010; Nelson et al., 2014; Upadhyay et al., 2014), and Coorg (Santosh et al., 2014). Those of Australia: Gawler (Daly

and Fanning, 1990, 1993; Fanning et al., 2007; Nebel et al., 2007; Fraser et al., 2010a,b; Fraser and Neumann, 2010; Jagodzinski et al., 2011; Reid et al., 2014) and Pilbara

(Buick et al., 1995; Van Kranendonk et al., 2002; Van Kranendonk, 2006; Hickman, 2004; Tessalina et al., 2010; Kemp et al., 2015); and those of Eastern Yilgarn (Champion

and Cassidy, 2007; Kositcin et al., 2008; de Joux et al., 2013), Youanmi (Wang et al., 1996; Mueller and McNaughton, 2000; Joly et al., 2010; Ivanic et al., 2012; Mole et al.,

2012; Van Kranendonk et al., 2013), Southwest (summarized by Mole et al., 2012) and Narryer (Wilde et al., 2001; Nebel-Jacobsen et al., 2010; Amelin et al., 1999; Harrison

et al., 2005, 2008; Kemp et al., 2010; Blichert-Toft and Albarède, 2008; Bell and Harrison, 2013; Holden et al., 2009) terranes of Yilgarn Craton.

Detailed geochronological informations for the Aravalli, Dharwar, Coorg, Pilbara and Yilgarn blocks are listed in Supplementary Tables S2–S6.

(Fig. 12) (Daly and Fanning, 1990, 1993; Fanning et al., 2007; Nebel et al., 1999; Mazumder et al., 2000; Zhao et al., 2003; French

et al., 2007; Fraser et al., 2010b; Fraser and Neumann, 2010). and Heaman, 2010). The Dharwar, Bastar and Singhbhum cra-

In comparison, Hadean crustal materials have scarcely been tons of the South block is predominantly composed of early to

reported for the Indian Gondwana (Fig. 12). The Indian shield late Archean tonalite–trondhjemite–granodiorite (TTG) gneisses

consists of the South and North Indian cratonic blocks, separated and greenstone sequences with ages varying from 3.60 to 2.52 Ga

by the Central Indian Tectonic Zone (CITZ) (Fig. 14) (Eriksson (Fig. 12) (e.g., Sarkar et al., 1993; Peucat et al., 1995, 2013; Misra

132 G. Li et al. / Precambrian Research 271 (2015) 118–137

et al., 1999; Jayananda et al., 2000, 2006, 2013; Mukhopadhyay,

2001; Ghosh, 2004; Basu et al., 2008; Mukhopadhyay et al., 2008;

Rajesh et al., 2009; Acharyya et al., 2010; Chardon et al., 2011;

Dey et al., 2014; Manikyamba et al., 2014; Nelson et al., 2014;

Upadhyay et al., 2014). U–Pb-Hf analyze of detrital zircons across

the Dharwar craton suggests two major crustal model age intervals

at 3.0–2.7 Ma and 3.8–3.3 Ga, with a few oldest ages of ∼4.2–4.0 Ga

(Lancaster et al., 2014). The detrital zircons from metasedimentary

rocks in the Coorg area in the southern margin of the Dharwar cra-

ton yield the Hf crustal model ages mainly from 3.1 to 3.8 Ga, with

the oldest at ∼4.0 Ga (Fig. 12) (Santosh et al., 2014). The Aravalli and

Bundelkhand cratons constitute the Archean nuclei in the North

Indian block (Sharma, 1998; Mazumder et al., 2000). They comprise

predominantly of 3.55–2.56 Ga gneiss-greenstone complexes and

2.90–2.49 Ga granite plutons (Mondal et al., 1998, 2002; Gopalan

et al., 1990; Dharma Rao et al., 2011; Saha et al., 2010; Kaur et al.,

2014; Kumar et al., 2011; Roy et al., 2012). The Hf isotopes of detri-

tal zircons from the Alwar quartzites reveal that the oldest crust

in Aravalli craton was produced at ∼3.7 Ga (Kaur et al., 2011). The

trondhjemite of the Bundelkhand craton yields zircon Hf model

ages of 3.95–3.80 Ga (Kaur et al., 2014).

The above comparison reveals that the ages of the newfound

Hadean–Mesoarchean crustal materials in the northernmost Sibu-

masu block is older than the cratons of India and the Gawler craton

of Australia but similar to that of the Yilgarn and Pilbara cratons in

Western Australia (Fig. 12).

Fig. 13. Simplified geological map of the Narryer terrane (after Myers, 1988). The

inset shows the terrane constitutions of the Yilgarn Craton of southwestern Australia

(after Cassidy et al., 2006).

5.4. Implications for locating Sibumasu in Gondwana

The location of the Sibumasu block in the Gondwana before

its breakup is still debated. Based on the occurrence of Lower

Fig. 14. Locating the Baoshan block (northern Sibumasu block) alongside East Gondwana at the mid–late Ordovician (470–450 Ma). CITZ, Central Indian Tectonic Zone; SMD,

Shuangmaidi granite.

Note that the Baoshan block was fitted against NW Australia margin. Schematic map showing the spatial distribution of the Archean cratonic blocks in the India (including

Coorg block) is after Eriksson et al. (1999), Mazumder et al. (2000) and Santosh et al. (2014), and this for Australia is after Myers et al. (1996), Cawood and Korsch (2008) and

Reid et al. (2014). The configuration of mainland East Gondwana is after Torsvik et al. (2008), Metcalfe (2013), Cocks and Torsvik (2013) and Wang et al. (2014). Position of

South Qiangtang and Lhasa blocks within East Gondwana is based on Ali et al. (2013) and Burrett et al. (2014). Position of South China block outboard of Lhasa block is based

on Cawood et al. (2013) and Xu et al. (2014). Position of Tarim block outboard of Sibumasu block is from Metcalfe (2011, 2013).

G. Li et al. / Precambrian Research 271 (2015) 118–137 133

Permian glaciomarine deposits in Peninsular Thailand of Sibumasu Acknowledgements

(Ampaiwan et al., 2009) or the U–Pb ages and Hf isotopes of

detrital zircon crystals from the Lhasa block (Zhu et al., 2011), The constructive suggestions and careful revisions from Dr.

these authors proposed that Lhasa block instead of Sibumasu Chusi Li and Prof. Jun Deng are deeply appreciated. We thank Prof.

block were attached to NW Australia before Gondwana breakup. M. Santosh and Prof. Jason Ali for constructive comments that

However, many other researchers believed that Sibumasu was have greatly improved this paper, we appreciate Editor Yusheng

part of NW Australia before Gondwana breakup. Evidence for Wan for his useful comments and editorial handling. We thank

this majority view include paleomagnetic data from Early Per- the Yunnan Gold and Mineral Group Co. Ltd. for logistic support

mian continental flood (Ali et al., 2013; Xu et al., 2015), in field work and sampling. This research was jointly supported

similar Cambrian–Permian faunas in NW Australia and Sibumasu by the National Key Basic Research Development Program (973

(Burrett et al., 1990; Shi and Waterhouse, 1991; Metcalfe, 1991, Program; 2015CB452606, 2009CB421008), a Supervisor of Bei-

1994, 2002; Agematsu and Sashida, 2009; Wang et al., 2001; X.D. jing Excellent Doctoral Dissertation grant (20111141501), an IGCP

Wang et al., 2013; Metcalfe and Aung, 2014), the presence of project (IGCP/SIDA-600), and a Planning Project of China Geological

Late Carboniferous–Early Permian glacial–marine diamictites in Survey (12120114039701).

Sibumasu and NW Australia (Metcalfe, 1988; Stauffer and Lee,

1989; Ampaiwan et al., 2009; Jin, 2002; Jin et al., 2011), the Lower

18 Appendix A. Supplementary data

Permian cold–water fauna with ı O values indicative of glaciation

in the Sibumasu block (Waterhouse, 1982; Ingavat and Douglass,

Supplementary data associated with this article can be found, in

1981; Rao, 1988; Fang and Yang, 1991), and similar Paleozoic

the online version, at http://dx.doi.org/10.1016/j.precamres.2015.

stratigraphy (Metcalfe, 2005, 2013) and similar detrital zircon age

10.003.

distribution patterns between Sibumasu and Western Australia

(Guynn et al., 2012; Burrett et al., 2014; Cai et al., 2015).

Two hypotheses can be raised for the origin of the discov- References

ered Hadean–Mesoarchean crustal components contained in the

Acharyya, S.K., Gupta, A., Orihashi, Y., 2010. New U–Pb zircon ages from

metapelitic rocks, from which the primary magma of Shuangmaidi

Paleo-Mesoarchean TTG gneisses of the Singhbhum Craton, eastern India.

granite was derived: (1) These Hadean–Mesoarchean crustal com-

Geochem. J. 44, 81–88.

ponents might have been sourced exotically from the cratonic Agematsu, S., Sashida, K., 2009. Ordovician sea-level change and paleogeography of

blocks in Gondwana previously close to Sibumasu. The Gondwana- the Sibumasu terrane based on the conodont biostratigraphy. Paleontol. Res. 13,

327–336.

wide comparison (Fig. 12) indicates that these ancient components

Ali, J.R., Cheung, H.M., Aitchison, J.C., Sun, Y.D., 2013. Palaeomagnetic reinvestigation

were most likely derived from the Yilgarn and Pilbara cratons

of Early Permian rift basalts from the Baoshan Block SW China: constraints on the

with the old crustal basement up to ∼4.3 Ga in western Australia. site-of-origin of the Gondwana-derived eastern Cimmerian terranes. Geophys.

J. Int. 193, 650–663.

Comparatively, the Yilgarn Craton was the dominant provenance,

Altherr, R., Holl, A., Hegner, E., Langer, C., Kreuzer, H., 2000. High-potassium,

considering it exposed the Hadean basements in a much larger

calc-alkaline I-type plutonism in the European Variscides: Northern Vosges

area than the Pilbara Craton (Fig. 12) (e.g., Cassidy et al., 2006; (France) and northern Schwarzwald (Germany). Lithos 50, 51–73.

Amelin, Y., Lee, D.C., Halliday, A.N., Pidgeon, R.T., 1999. Nature of the Earth’s earliest

Harrison et al., 2008; Kemp et al., 2010; Tessalina et al., 2010).

crust from hafnium isotopes in single detrital zircons. Nature 399, 252–255.

Thereby a flow path during Precambrian prior to the Shuangmaidi

Ampaiwan, T., Hisada, K., Charusiri, P., 2009. Lower Permian glacially influenced

granites emplacement was constructed between the northmost deposits in Phuket and adjacent islands, peninsular Thailand. Island Arc 18,

52–68.

Sibumasu block and the Yilgarn Craton. (2) These ancient com-

Andersen, T., 2002. Correction of common lead in U–Pb analyses that do not report

ponents could be sourced directly from the Hadean–Mesoarchean 204

Pb. Chem. Geol. 192, 59–79.

basement possibly existed inside the Sibumasu, which has simi- Arndt, N.T., Goldstein, S.L., 1987. Use and abuse of crust-formation ages. Geology 15,

893–895.

lar ages with that of the Yilgarn and Pilbara cratons in Western

Basu, A.R., Bandyopadhyay, P.K., Chakri, R., Zou, H., 2008. Large 3.4 Ga Algoma type

Australia (Fig. 12).

BIF in the Eastern Indian Craton. Geochim. Cosabortmochim. Acta 72 (12S615

Both of the two different hypotheses consistently support the Goldschmidt 2008 Conference Abstract Volume), A59.

palinspastic reconstructions illustrated in Fig. 14, in which the Beard, J.S., Abirz, R.J., Lofgren, G.E., 1993. Experimental melting of crustal xenoliths

from Kilbourne Hole, New Mexico and implications for the contamination and

northernmost tip of Sibumasu block was placed against the NW

genesis of magmas. Contrib. Mineral. Petrol. 115, 88–102.

Australia with the rest part of the narrow block flanking along

Bell, E.A., Harrison, T.M., 2013. Post-Hadean transitions in zircon prove-

Gondwana Australia margin. The results from this study are consis- nance: a signal of the . Earth Planet. Sci. Lett. 364,

1–39.

tent with the majority view asserting the attachment of Sibumasu

BGMRY (Bureau of Geology and Mineral Resources of Yunnan Province), 1990.

block to the Gondwana (e.g., Metcalfe, 2011, 2013; Ali et al., 2013;

Regional Geology of Yunnan Province. Geological Publishing House, Beijing, pp.

Cocks and Torsvik, 2013; Burrett et al., 2014). 1–728 (in Chinese with English abstract).

Blichert-Toft, J., Albarède, F., 1997. The Lu–Hf geochemistry of chondrites and the

evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148, 243–258.

Blichert-Toft, J., Albarède, F., 2008. Hafnium isotopes in Jack Hills zircons and the

6. Conclusion

formation of the Hadean crust. Earth Planet. Sci. Lett. 265, 686–702.

Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for high-

precision isotope analysis of rock samples by magnetic sector-multiple collector

Strongly peraluminous granites emplaced at ca. 470–450 Ma

ICP-MS. Contrib. Mineral. Petrol. 127, 248–260.

in the northernmost Sibumasu block was generated by partial

Bodet, F., Schärer, U., 2000. Evolution of the SE-Asian continent from U–Pb and Hf

melting of pelitic rocks in the middle parts of the crust. These isotopes in single grains of zircon and baddeleyite from large rivers. Geochim.

Cosmochim. Acta 64, 2067–2091.

granitoids contain inherited zircon with age as old as 3.1 Ga. The

Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M., Schmitt, A.K., 2013. Zircon satu-

Hf crustal model ages of co-magmatic zircon crystals from these

ration re-revisited. Chem. Geol. 351, 324–334.

rocks are as old as 4.39 Ga. The U–Pb ages of inherited zircon Buick, R., Thornett, J.R., McNaughton, N.J., Smith, J.B., Barley, M.E., Savage, M., 1995.

Record of emergent continental crust ∼3.5 billion years ago in the Pilbara Craton

and the Hf crustal model ages together indicate the existence of

of Australia. Nature 375, 574–577.

Hadean–Mesoarchean crustal components in the Sibumasu block.

Burchfiel, B.C., Chen, Z.L., 2012. Tectonics of the southeastern Tibetan Plateau and

Analysis of the origin of these Hadean–Mesoarchean materials in its adjacent foreland. Geological Society of America Memoir 210, 1–164.

the Sibumasu block provides a new line of evidence for the popular Burrett, C., Long, J., Stait, B., 1990. Early-Middle Palaeozoic biogeography of Asian

terranes derived from Gondwana. In: McKerrow, W.S., Scotese, C.R. (Eds.),

view that the Sibumasu block was attached to NW Australia before

Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir 12,

its breakup from Gondwana. pp. 163–174.

134 G. Li et al. / Precambrian Research 271 (2015) 118–137

Burrett, C., Zaw, K., Meffre, S., Lai, C.K., Khositanont, S., Chaodumrong, P., Udchachon, the Baoshan Block, western Yunnan: implications for Early Paleozoic arc mag-

M., Ekins, S., Halpin, J., 2014. The configuration of Greater Gondwana—evidence matism along Gondwana margin. Lithos 179, 36–47.

from LA ICPMS U–Pb geochronology of detrital zircons from the Palaeozoic and Dong, M.L., Dong, G.C., Mo, X.X., Zhu, D.C., Nie, F., Yu, J.C., Wang, P., Luo, W., 2013b.

Mesozoic of Southeast Asia and China. Gondwana Res. 26, 31–51. The Mesozoic–Cenozoic magmatism in Baoshan Block, western Yunnan and its

Cai, F.L., Ding, L., Yao, W., Laskowski, A.K., Xu, Q., Zhang, J.E., Sein, K., 2015. Provenance tectonic significance. Acta Petrol. Sin. 29, 3901–3913 (in Chinese with English

and tectonic evolution of lower paleozoic–upper mesozoic strata from sibumasu abstract).

terrane, myanmar. Gondwana Res., http://dx.doi.org/10.1016/j.gr.2015.03.005. Dopieralska, J., Belka, Z., Königshof, P., Racki, G., Savage, N., Lutat, P., Sardsud, A.,

Cassidy, K.F., Champion, D.C., Krapez,ˇ B., Barley, M.E., Brown, S.J.A., Blewett, R.S., 2012. Nd isotopic composition of Late Devonian seawater in western Thailand:

Groenewald, P.B., Tyler, I.M., 2006. A revised geological framework for the Yil- geotectonic implications for the origin of the Sibumasu terrane. Gondwana Res.

garn Craton, Western Australia. In: Geological Survey of Western Australia, 22, 1102–1109.

2006/8, 8. Eriksson, P.G., Mazumder, R., Sarkar, S., Bose, P.K., Altermann, W., van der Merwe, R.,

Cavosie, A.J., Valley, J.W., Wilde, S.A., 2007. Chapter 2.5 The oldest terrestrial mineral 1999. The 2.7–2.0 Ga volcanosedimentary record of Africa, India and Australia:

record: a review of 4400 to 4000 Ma detrital zircons from Jack Hills, Western evidence for global changes in sea level and continental freeboard. Precambrian

Australia. Developments in Precambrian Geology, vol. 15., pp. 91–111. Res. 97, 269–302.

Cavosie, A.J., Wilde, S.A., Liu, D., Weiblen, P.W., Valley, J.W., 2004. Internal zon- Fang, N., Yang, W., 1991. A study of the oxygen and carbon isotope records from

ing and U–Th–Pb chemistry of Jack Hills detrital zircons: a mineral record of Upper Carboniferous to Lower Permian in Western Yunnan China. In: Ren, J., Xie,

early Archean to (4348–1576 Ma) magmatism. Precambrian G. (Eds.), Proceedings of First International Symposium on Gondwana Dispersion

Res. 135, 251–279. and Asian -Geological Evolution of Eastern Tethys. China University of

Cawood, A.P., Korsch, R.J., 2008. Assembling Australia: proterozoic building of a Geosciences, Beijing, pp. 35–36.

continent. Precambrian Res. 166, 1–35. Fanning, C.M., Reid, A.J., Teale, G., 2007. A geochronological framework for the

Cawood, P.A., Buchan, C., 2007. Linking accretionary orogenesis with supercontinent Gawler Craton, South Australia. In: Geological Survey Bulletin, 55.

assembly. Earth Sci. Rev. 82, 217–256. Ferrari, O.M., Hochard, C., Stampfli, G.M., 2008. An alternative plate tectonic model

Cawood, P.A., Wang, Y.J., Xu, Y.J., Zhao, G.C., 2013. Locating South China in for the Palaeozoic-Early Mesozoic Palaeotethyan evolution of Southeast Asia

Rodinia and Gondwana: a fragment of greater India lithosphere. Geology 41, (Northern Thailand-Burma). Tectonophysics 451, 346–365.

903–906. Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised calibrations

Champion, D.C., Cassidy, K.F., 2007. An overview of the Yilgarn Craton and its crustal for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 154,

evolution. In: Bierlein, F.P., Knox-Robinson, C.M. (Eds.), Proceedings of Geocon- 429–437.

ferences (WA) Inc. Kalgoorlie ’07 Conference. Geoscience Australia Record 14. , Fraser, G., McAvaney, S., Neumann, N., Szpunar, M., Reid, A., 2010a. Discovery of early

pp. 13–35. Mesoarchean crust in the eastern Gawler Craton, South Australia. Precambrian

Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pac. Geol. 8, Res. 179, 1–21.

173–179. Fraser, G.L., Blewett, R.S., Reid, A.J., Korsch, R.J., Dutch, R., Neumann, N.L., Meixner,

Chappell, B.W., White, A.J.R., 2001. Two contrasting granite types: 25 years later. A.J., Skirrow, R.G., Cowley, W.M., Szpunar, M., Preiss, W.V., Fomin, T., Holzschuh,

Aust. J. Earth Sci. 48, 488–489. J., Thiel, S., Milligan, P.R., Bendall, B.R., 2010b. Geological interpretation of deep

Chardon, D., Jayananda, M., Peucat, J.-J., 2011. Lateral constructional flow of hot seismic reflection and magnetotelluric line 08GA-G1: Eyre Peninsula, Gawler

orogenic crust: insights from the of south India, geological and geo- Craton, South Australia. In: Korsch, R.J., Kositcin, N. (Eds.), South Australian Seis-

physical implications for orogenic plateaux. Geochem. Geophys. Geosyst. 12, mic and MT Workshop 2010. Geoscience Australia, pp. 81–95, Record 2010/10.

Q02005, http://dx.doi.org/10.1029/2010GC003398. Fraser, G.L., Neumann, N., 2010. New SHRIMP U–Pb Zircon Ages from the Gawler Cra-

Chen, F.K., Li, X.H., Wang, X.L., Li, Q.L., Siebel, W., 2007. Zircon age and Nd–Hf isotopic ton and Curnamona Province, South Australia, 2008–2010. Geoscience Australia,

composition of the Yunnan Tethyan belt, southwestern China. Int. J. Earth Sci. Record 2010/16.

96, 1179–1194. French, J.E., Heaman, L.M., 2010. Precise U–Pb dating of mafic

Clemens, J.D., 2003. S-type granitic magmas—petrogenetic issues, models and evi- dyke swarms of the Dharwar craton, India: implications for the existence of

dence. Earth Sci. Rev. 61, 1–18. the Neoarchean supercraton Sclavia. Precambrian Res. 183, 416–441.

Clemens, J.D., Wall, V.J., 1981. Crystallization and origin of some peraluminous (S- Fu, B., Page, F.Z., Cavosie, A., Fournelle, J., Kita, N., Lackey, J., Wilde, S., Valley, J., 2008.

type) granitic magmas. Can. Mineral. 19, 111–131. Ti-in-zircon thermometry: applications and limitations. Contrib. Mineral. Petrol.

Clemens, J.D., Watkins, J.M., 2001. The fluid regime of high-temperature metamor- 156, 197–215.

phism during granitoid magma genesis. Contrib. Mineral. Petrol. 140, 600–606. Ghosh, J.G., 2004. 3.56 Ga tonalite in the central part of the Bastar Craton, India:

Cocks, L.R.M., Torsvik, T.H., 2002. Earth geography from 500 to 400 million years oldest Indian date. J. Asian Earth Sci. 23, 359–364.

ago: a faunal and palaeomagnetic review. J. Geol. Soc. Lond. 159, 631–644. Gopalan, K., Macdougall, J.D., Roy, A.B., Murali, A.V., 1990. Sm–Nd evidence for 3.3

Cocks, L.R.M., Torsvik, T.H., 2013. The dynamic evolution of the Palaeozoic geography Ga old rock in Rajasthan, north-western India. Precambrian Res. 48, 287–297.

of eastern Asia. Earth Sci. Rev. 117, 40–79. Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., Achterbergh, E., O’Reilly, S.Y.,

Compston, W., Pidgeon, R.T., 1986. Jack Hills, evidence of more very old detrital Shee, S.R., 2000. The Hf isotope composition of carbonic mantle: LAM-MC-ICPMS

zircons in Western Australia. Nature 321, 766–769. analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 64,

Condie, K.C., 1993. Chemical composition and evolution of the upper continental 133–147.

crust: contrasting results from surface samples and shales. Chem. Geol. 104, Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O’Reilly, S.Y., Xu, X.S., Zhou, X.M.,

1–37. 2002. Zircon chemistry and magma mixing, SE China: in situ analysis of Hf

Daly, S., Fanning, C.M., 1990. Archaean geology of the Gawler Craton, South Australia. isotopes Tonglu and Pingtan igneous complexes. Lithos 61, 237–269.

In: Glover, J.E., Ho, S.E. (Eds.), 3rd International Archaean Symposium. Geocon- Guynn, J., Kapp, P., Gehrels, G.E., Ding, L., 2012. U–Pb geochronology of basement

ferences (WA) Inc., Perth, pp. 91–92. rocks in central Tibet and paleogeographic implications. J. Asian Earth Sci. 43,

Daly, S.J., Fanning, C.M., 1993. Archaean. In: Drexel, J.F., Preiss, W.V., Parker, A.J. (Eds.), 23–50.

The Geology of South Australia, The Precambrian, vol. 1, Geological Survey of Hall, R., Sevastjanova, I., 2012. Australian crust in Indonesia. Aust. J. Earth Sci. 59,

South Australia, Bulletin 54. Adelaide, South Australia, Australia, pp. 32–49. 827–844.

de Joux, A., Thordarson, T., Denny, M., Hinton, R.W., de Joux, A.J., 2013. U–Pb dating Harrison, T.M., Blichert-Toft, J., Müller, W., Albarède, F., Holden, P., Mojzsis, S.J., 2005.

constraints on the felsic and intermediate volcanic sequence of the nickel- Heterogeneous Hadean Hafnium: evidence of continental crust at 4.4 to 4.5 Ga.

sulphide bearing Cosmos succession, Agnew-Wiluna greenstone belt, Yilgarn Science 310, 1947–1950.

Craton, Western Australia. Precambrian Res. 236, 85–105. Harrison, T.M., Schmitt, A.K., McCulloch, M.T., Lovera, O.M., 2008. Early (≥4.5 Ga) for-

Deng, J., Wang, Q.F., Li, G.J., Li, C.S., Wang, C.M., 2014a. Tethys tectonic evolution and mation of terrestrial crust: Lu–Hf, ␦18O, and Ti thermometry results for Hadean

its bearing on the distribution of important mineral deposits in the Sanjiang zircons. Earth Planet. Sci. Lett. 268, 476–486.

region, SW China. Gondwana Res. 26, 419–437. Hayden, L.A., Watson, E.B., 2007. Rutile saturation in hydrous siliceous melts and

Deng, J., Wang, Q.F., Li, G.J., Santosh, M., 2014b. Cenozoic tectono-magmatic and its bearing on Ti-thermometry of quartz and zircon. Earth Planet. Sci. Lett. 258,

metallogenic processes in the Sanjiang region, southwestern China. Earth Sci. 561–568.

Rev. 138, 268–299. Hickman, A.H., 2004. Two contrasting granite–greenstone terranes in the Pilbara

Dey, S., 2013. Evolution of Archaean crust in the Dharwar craton: the Nd isotope Craton Australia: evidence for verticaland horizontal tectonic regimes prior to

record. Precambrian Res. 227, 227–246. 2900 Ma. Precambrian Res. 131, 153–172.

Dey, S., Nandy, J., Choudhary, A.K., Liu, Y.S., Zong, K.Q., 2014. Origin and evolution of Holden, P., Lanc, P., Ireland, T.R., Harrison, T.M., Forster, J.J., Bruce, Z., 2009. Mass-

granitoids associated with the Kadiri greenstone belt, eastern Dharwar craton: spectrometric mining of Hadean zircons by automated SHRIMP multi-collector

a history of orogenic to anorogenic magmatism. Precambrian Res. 246, 64–90. and single-collector U/Pb zircon age dating: the first 100,000 grains. Int. J. Mass

Dharma Rao, C.V., Santosh, M., Purohit, R., Wang, J., Jiang, X., Kusky, T., 2011. LA- spectrom. 286, 53–63.

ICP-MS U–Pb zircon age constraints on the Paleoproterozoic and Neoarchean Horie, K., Yamashita, M., Hayasaka, Y., Katoh, Y., Tsutsumi, Y., Katsube, A., Hidaka,

history of the Sandmata Complex in Rajasthan within the NW Indian Plate. J. H., Kim, H., Cho, M., 2010. -Paleoproterozoic zircon inheritance in

Asian Earth Sci. 42, 286–305. Japanese Permo-Triassic granites (Unazuki area Hida Metamorphic Complex):

Dong, M.L., Dong, G.C., Mo, X.X., Zhu, D.C., Nie, F., Xie, X.F., Wang, X., Hu, Z.C., 2012. unearthing more old crust and identifying source terranes. Precambrian Res.

Geochronology and geochemistry of the Early Palaeozoic granitoids in Baoshan 183, 145–157.

block, western Yunnan and their implications. Acta Petrol. Sin. 28, 1453–1464 Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and

(in Chinese with English abstract). metamorphic petrogenesis. Rev. Mineral. Geochem. 53, 27–55.

Dong, M.L., Dong, G.C., Mo, X.X., Santosh, M., Zhu, D.C., Yu, J.C., Nie, F., Hu, Z.C., 2013a. Hu, Z.C., Liu, Y.C., Gao, S., Liu, W.G., Yang, L., Zhang, W., Tong, X.R., Lin, L., Zong, K.Q., Li,

Zircon U–Pb geochronology Hf isotopes, and geochemistry of leucogranites in M., Chen, H.H., Zhou, L., 2012. Improved in situ Hf isotope ratio analysis of zircon

G. Li et al. / Precambrian Research 271 (2015) 118–137 135

using newly designed X skimmer cone and Jet sample cone in combination with Liu, S., Hu, R.Z., Gao, S., Feng, C.X., Huang, Z., Lai, S., Yuan, H., Liu, X., Coulson, I.M., Feng,

the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. At. G., 2009. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on the age

Spectrom. 27, 1391–1399. and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block,

Ingavat, R., Douglass, R., 1981. Fusuline fossils from Thailand Part XIV: the fusulinid Western Yunnan Province, SW China. J. Asian Earth Sci. 36, 168–182.

genus Monodiexodina from Northwest Thailand. Geol. Palaeontol. Southeast Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q., Wang, D.B., 2010. Continental and

Asia 22, 23–34. oceanic crust recycling-induced melt-peridotite interactions in the Trans-North

Ivanic, T.J., Kranendonk, M.J.V., Kirkland, C.L., Wyche, S., Wingate, M.T.D., Belousova, China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle

E.A., 2012. Zircon Lu–Hf isotopes and granite geochemistry of the Murchison xenoliths. J. Petrol. 51, 537–571.

Domain of the Yilgarn Craton: evidence for reworking of Eoarchean crust during Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., Chen, H.H., 2008. In situ anal-

Meso-Neoarchean plume-driven magmatism. Lithos 148, 112–127. ysis of major and trace elements of anhydrous minerals by LA-ICP-MS without

Jagodzinski, E., Reid, A.J., Farrell, F., 2011. Project PGC01-05: geochronology of applying an internal standard. Chem. Geol. 257, 34–43.

gneissic granitic and gabbroic rocks from west of the Middleback Range. In: Ludwig, K.R., 2003. Isoplot v. 3.0: a geochronological toolkit for Microsoft Excel.

Reid, A.J., Jagodzinski, E.A. (Eds.), PACE Geochronology: Results of Collabora- Berkeley Geochronology Center, Special Publication No. 4, pp. 1–70.

tive Geochronology Projects 2009–10. Department of Primary Industries and Maas, R., Kinny, P.D., Williams, I.S., Froude, D.O., Compston, W., 1992. The old-

Resources, South Australia, pp. 63–94, Report Book 2011/03. est known crust—a geochronological and geochemical study of 3900–4200 Ma

Jayananda, M., Chardon, D., Peucat, J.-J., Capdevila, R., 2006. 2.61 Ga potassic granites old detrital Zircons from Mt. Narryer and Jack Hills, Western-Australia. Geochim.

and crustal reworking in the western Dharwar craton, southern India: tectonic, Cosmochim. Acta 56, 1281–1300.

geochronologic and geochemical constraints. Precambrian Res. 150, 1–26. Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Am.

Jayananda, M., Moyen, J.-F., Martin, H., Peucat, J.-J., Auvray, B., Mahabaleswar, B., Bull. 101, 635–643.

2000. Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dhar- Manikyamba, C., Ganguly, S., Saha, A., Santosh, M., Singh, M.R., Subba Rao, D.V., 2014.

war craton, southern India: constraints from geochronology, Nd–Sr isotopes and Continental lithospheric evolution: constraints from the geochemistry of felsic

whole rock geochemistry. Precambrian Res. 99, 225–254. volcanic rocks in the Dharwar Craton, India. J. Asian Earth Sci. 95, 65–80.

Jayananda, M., Peucat, J.-J., Chardon, D., Rao, B.K., Fanning, C.M., Corfu, F., 2013. Mazumder, R., Bose, P.K., Sarkar, S., 2000. A commentary on the tectono-sedimentary

Neoarchean greenstone volcanism and continental growth Dharwar craton, record of the pre-2.0 Ga continental growth of India vis-à-vis a possible pre-

southern India: constraints from SIMS U–Pb zircon geochronology and Nd iso- Gondwana Afro-Indian supercontinent. J. Asian Earth Sci. 30, 201–217.

topes. Precambrian Res. 227, 55–76. Metcalfe, I., 1988. Origin and assembly of Southeast Asian continental terranes.

Jin, X.C., 2002. Permo-Carboniferous sequences of Gondwana affinity in southwest In: Audley-Charles, M.G., Hallam, A. (Eds.), Gondwana and Tethys. Geological

China and their paleogeographic implications. J. Asian Earth Sci. 20, 633–646. Society of London Special Publication No. 37, pp. 101–118.

Jin, X.C., Huang, H., Shen, Y.K., Zhan, L.P., 2011. Lithologic boundaries in Permian post- Metcalfe, I., 1991. Late Palaeozoic and Mesozoic palaeogeography of Southeast Asia.

glacial sediments of the Gondwana-affinity regions of China: typical sections, Palaeogeogr. Palaeoclimatol. Palaeoecol. 87, 211–221.

age range and correlation. Acta Geol. Sin. 85, 373–386. Metcalfe, I., 1994. Gondwanaland origin, dispersion, and accretion of East and South-

Joly, A., Miller, J., Campbell, McCuaig, T., 2010. Archean polyphase deformation in east Asian continental terranes. J. South Am. Earth Sci. 7, 333–347.

the Lake Johnston Greenstone Belt area: implications for the understanding of Metcalfe, I., 2002. Devonian and Carboniferous conodonts from the Kanthan Lime-

ore systems of the Yilgarn Craton. Precambrian Res. 177, 181–198. stone, Peninsular Malaysia and their stratigraphic and tectonic implications.

Kaur, P., Zeh, A., Chaudhri, N., 2014. Characterisation and U–Pb-Hf isotope record of In: Hills, L.V., Henderson, C.M., Bamber, E.W. (Eds.), The Carboniferous and

the 3.55 Ga felsic crust from the Bundelkhand Craton, northern India. Precam- Permian of the World. Canadian Society of Petroleum Geologists Memoir 19,

brian Res. 255, 236–244. pp. 552–579.

Kaur, P., Zeh, A., Chaudhri, N., Gerdes, A., Okrusch, M., 2011. Archaean to Palaeo- Metcalfe, I., 2005. Asia: South-east. In: Selley, R.C., Cocks, L.R.M., Plimer, I.R. (Eds.),

proterozoic crustal evolution of the Aravalli Mountain range NW India, and its Encyclopedia of Geology, vol. 1. Elsevier, Oxford, pp. 169–198.

hinterland: the U–Pb and Hf isotope record of detrital zircon. Precambrian Res. Metcalfe, I., 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography

187, 155–164. of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Res.

Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., Kinny, P.D., 2006. Episodic growth 9, 24–46.

of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Metcalfe, I., 2011. Tectonic framework and evolution of Sundaland.

Nature 439, 580–583. Gondwana Res. 19, 3–21.

Kemp, A.I.S., Wilde, S.A., Hawkesworth, C.J., Coath, C.D., Nemchin, A., Pidgeon, R.T., Metcalfe, I., 2013. Gondwana dispersion and Asian accretion: tectonic and palaeo-

Vervoort, J.D., DuFrane, S.A., 2010. Hadean crustal evolution revisited: new con- geographic evolution of eastern Tethys. J. Asian Earth Sci. 66, 1–33.

straints from Pb–Hf isotope systematic of the Jack Hills zircons. Earth Planet. Sci. Metcalfe, I., Aung, K.P., 2014. Late Tournaisian conodonts from the Taungnyo group

Lett. 296, 45–56. near Loi Kaw, Myanmar (Burma): implications for Shan Plateau stratigraphy

Kemp, A.I.S., Hickman, A.H., Kirkland, C.L., Vervoort, J.D., 2015. Hf isotopes in detri- and evolution of the Gondwana-derived Sibumasu terrane. Gondwana Res. 26,

tal and inherited zircons of the Pilbara Craton provide no evidence for Hadean 1159–1172.

continents. Precambrian Res. 261, 112–126. Miller, C.F., 1985. Are strongly peraluminous magmas derived from pelitic sedimen-

Kositcin, N., Brown, S.J.A., Barley, M.E., Krapez,ˇ B., Cassidy, K.F., Champion, D.C., 2008. tary sources? J. Geol. 93, 673–689.

SHRIMP U–Pb zircon age constraints on the late Archaean tectonostratigraphic Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and cold granites? Implications

architecture of the Eastern Goldfields Superterrane, Yilgarn Craton, Western of zircon saturation temperatures and preservation of inheritance. Geology 31,

Australia. Precambrian Res. 161, 5–33. 529–532.

Kumar, S., Yi, K., Raju, K., Pathak, M., Kim, N., Lee, T.H., 2011. SHRIMP U–Pb Misra, S., Deomurari, M.P., Wiedenbeck, M., Goswami, J.N., Ray, S., Saha, A.K., 1999.

207 206

geochronology of felsic magmatic lithounits in the central part of Bundelkhand Pb/ Pb zircon ages and the evolution of the Singhbhum Craton, eastern

Craton, Central India. In: Molina, J.F.S., Bea, J.H., Montero, F.P. (Eds.), 7th Hutton India: an ion microprobe study. Precambrian Res. 93, 139–151.

Symposium on Granites and Related Rocks. Avila, Spain, p. 83. Mojzsis, S.J., Harrison, T.M., Pidgeon, R.T., 2001. Oxygen-isotope evidence from

Lancaster, P.J., Dey, S., Storey, C., Mitra, A., Bhunia, R.K., 2014. Contrasting crustal ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature

evolution processes in the Dharwar craton: insights from detrital zircon U–Pb 409, 178–181.

and Hf isotopes. Gondwana Res., http://dx.doi.org/10.1016/j.gr.2014.10.010. Mole, D.R., Fiorentini, M., Thébaud, N., McCuaig, T.C., Cassidy, K.F., Kirkland, C.L.,

Lee, C.P., 2009. Palaeozoic stratigraphy. In: Hutchison, C.S., Tan, D.N.K. (Eds.), Geology Wingate, M.T.D., Romano, S.S., Doublier, M.P., Belousova, E.A., 2012. Spatio-

of Peninsular Malaysia. University of Malaya and Geological Society of Malaysia, temporal constraints on lithospheric development in the southwest-central

pp. 55–86. Yilgarn Craton, Western Australia. Aust. J. Earth Sci. 59, 625–656.

Leloup, P.H., Lacassin, R., Tapponnier, P., Schärer, U., Zhong, D.L., Liu, X.H., Zhang, L.S., Mondal, M.E.A., Goswami, J.N., Deomurari, M.P., Sharma, K.K., 2002. Ion micro-

207 206

Ji, S.C., Trinh, P.T., 1995. The Ailao Shan-Red River shear zone (Yunnan, China), probe Pb/ Pb ages of zircons from the Bundelkhand massif, northern India:

Tertiary transform boundary of Indochina. Tectonophysics 251, 3–84. implications for crustal evolution of the Bundelkhand-Aravalli protocontinent.

Li, G.J., Deng, J., Wang, Q.F., Liang, K., 2015a. Metallogenic model for the Laochang Precambrian Res. 117, 85–100.

Pb–Zn–Ag–Cu volcanogenic massive sulfide deposit related to a Paleo-Tethys Mondal, M.E.A., Sharma, K.K., Rahman, A., Goswami, J.N., 1998. Ion microprobe

207 206

OIB-like volcanic center SW China. Ore Geol. Rev. 70, 578–594. Pb/ Pb zircon ages for gneiss-granitoid rocks from Bundelkhand massif:

Li, G.J., Wang, Q.F., Huang, Y.H., Gao, L., Yu, L., 2015b. Petrogenesis of middle Ordovi- evidence for Archaean components. Curr. Sci. 74, 70–75.

cian peraluminous granites in the Baoshan block: implications for the early Mueller, A.G., McNaughton, N.J., 2000. U–Pb ages constraining batholith emplace-

Paleozoic tectonic evolution along East Gondwana. Lithos, http://dx.doi.org/10. ment, contact metamorphism, and the formation of gold and W–Mo skarns

1016/j.lithos.2015.10.012. in the Southern Cross area, Yilgarn Craton, Western Australia. Econ. Geol. 95,

Liao, S.Y., Wang, D.B., Tang, Y., Yin, F.G., Sun, Z.M., Sun, J., 2013. LA-ICP-MS U–Pb 1231–1258.

age of two-mica granite in the Yunlong tin-tungsten metallogenic belt in Three Mukhopadhyay, D., 2001. The Archaean Nucleus of Singhbhum: the present state of

river region and its geological implications. Acta Petrol. Minerl. 32, 450–462 (in knowledge. Gondwana Res. 4, 307–318.

Chinese with English abstract). Mukhopadhyay, J., Beukes, N.J., Armstrong, R.A., Zimmermann, U., Ghosh, G., Medda,

Liew, T.C., McCulloch, M.T., 1985. Genesis of granitoid batholiths of Peninsular R.A., 2008. Dating the oldest Greenstone in India, a 3.51-Ga precise U–Pb SHRIMP

Malaysia and implications for models of crustal evolution: evidence from Nd–Sr zircon age for Dacitic Lava of the Southern Iron Ore Group, Singhbhum Craton.

isotopic and U–Pb zircon study. Geochim. Cosmochim. Acta 49, 587–600. J. Geol. 116, 449–461.

Lin, Y.L., Yeh, M.W., Lee, T.Y., Chung, S.L., Iizuka, Y., Charusiri, P., 2013. First evidence Myers, J.S., 1988. Early Archaean Narryer Gneiss Complex, Yilgarn Craton, Western

of the Cambrian basement in Upper Peninsula of Thailand and its implication Australia. Precambrian Res. 38, 297–307.

for crustal and tectonic evolution of the Sibumasu terrane. Gondwana Res. 24, Myers, J.S., Shaw, R.D., Tyler, I.M., 1996. Tectonic evolution of Proterozoic Australia.

1031–1037. Tectonics 15, 1431–1446.

136 G. Li et al. / Precambrian Research 271 (2015) 118–137

Nebel, O., Nebel-Jacobsen, Y., Mezger, K., Berndt, J., 2007. Initial Hf isotope composi- Streckeisen, A., 1967. Classification and nomenclature of igneous rocks. Final report

tions in magmatic zircon from early Proterozoic rocks from the Gawler Craton, of an inquiry. Neues Jahrb. Mineral. Abh. 107, 144–204.

Australia: a test for zircon model ages. Chem. Geol. 241, 23–37. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematic of ocean basalts:

Nebel-Jacobsen, Y., Münker, C., Nebel, O., Gerdes, A., Mezger, K., Nelson, D.R., 2010. implications for mantle composition and processes. In: Saunders, A.D., Norry,

Reworking of Earth’s first crust: constraints from Hf isotopes in Archean zircons M.J. (Eds.), Magmatism in Ocean Basins. Geological Society, London, Special

from Mt. Narryer, Australia. Precambrian Res. 182, 175–186. Publications 42, pp. 313–345.

Nelson, D.R., 2008. Geochronology of the Archean of Australia. Aust. J. Earth Sci. 55, Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos 45,

779–793. 29–44.

Nelson, D.R., Bhattacharya, H.N., Thern, E.R., Altermann, W., 2014. Geochemical and Tessalina, S.G., Bourdon, B., Van Kranendonk, M., Birck, J.L., Philippot, P., 2010. Influ-

ion-microprobe U–Pb zircon constraints on the Archaean evolution of Singhb- ence of Hadean crust evident in basalts and cherts from the Pilbara Craton. Nat.

hum Craton, eastern India. Precambrian Res. 255, 412–432. Geosci. 3, 214–217.

Patinoˇ Douce, A.E., Beard, J.S., 1995. Dehydration-melting of biotite gneiss and quartz Torsvik, T.H., Cocks, L.R.M., 2009. The Lower Palaeozoic palaeogeographical evolu-

amphibolite from 3 to 15 kbar. J. Petrol. 36, 707–738. tion of the northeastern and eastern peri-Gondwanan margin from Turkey to

Patinoˇ Douce, A.E., Johnston, A.D., 1991. Phase equilibria and melt productivity in New Zealand. Geological Society, London, Special Publications 325, pp. 3–21.

the pelitic system: implications for the origin of peraluminous granitoids and Torsvik, T.H., Steinberger, B., Cocks, L.R.M., Burke, K., 2008. Longitude: linking Earth’s

aluminous granulites. Contrib. Mineral. Petrol. 107, 202–218. ancient surface to its deep interior. Earth Planet. Sci. Lett. 276, 273–282.

Pawley, M.J., Romano, S.S., Hall, C.E., Wyche, S., Wingate, M.T.D., 2009. The Trail, D., Mojzsis, S.J., Harrison, T.M., Schmitt, A.K., Watson, E.B., Young, E.D., 2007.

Yamarna Shear Zone: a new terrane boundary in the northeastern Yilgarn Cra- Constraints on protoliths from oxygen isotopes REEs and Ti-

ton. In: Geological Survey of Western Australia, Annual Review 2007–2008., thermometry. Geochem. Geophys. Geosyst. 8, Q06014, http://dx.doi.org/10.

pp. 26–32. 1029/2006GC001449.

Peucat, J.J., Bouhaller, H., Fanning, C.M., Jayananda, M., 1995. Age of the Hole- Ueno, K., 2003. The Permian fusulinoidean faunas of the Sibumasu and Baoshan

narasipur greenstone belt, relationships with the surrounding gneiss, Karnataka, blocks: their implications for the paleogeographic and paleoclimatologic recon-

south India. J. Geol. 103, 701–710. struction of the Cimmerian Continent. Palaeogeogr. Palaeoclimatol. Palaeoecol.

Peucat, J.J., Jayananda, M., Chardon, D., Capdevila, R., Fanning, C.M., Paquette, J.L., 193, 1–24.

2013. The lower crust of the Dharwar craton, southern India: patchwork of Upadhyay, D., Chattopadhyay, S., Kooijman, E., Mezger, K., Berndt, J., 2014. Magmatic

archean granulitic domains. Precambrian Res. 227, 4–28. and metamorphic history of tonalite-trondhjemite-granodiorite

Qiao, L., Wang, Q.F., Li, C.S., 2015. The western segment of the suture between the (TTG) suite from the Singhbhum craton, eastern India. Precambrian Res. 252,

Yangtze and Cathaysia blocks: constraints from inherited and co-magmatic zir- 180–190.

cons from Permian S-type granitoids in Guangxi, South China. Terra Nova 27, Van Kranendonk, M.J., 2006. Volcanic degassing, hydrothermal circulation and the

392–398. flourishing of early on Earth: a review of the evidence from c 3490–3240

Rajesh, H.M., Mukhopadhyay, J., Beukes, N.J., Gutzmer, J., Belyanin, G.A., Armstrong, Ma rocks of the Pilbara Supergroup Pilbara Craton, Western Australia. Earth Sci.

R.A., 2009. Evidence for an Early Archaean granite from Bastar craton, India. J. Rev. 74, 197–240.

Geol. Soc. 166, 193–196. Van Kranendonk, M.J., Hickman, A.H., Smithies, R.H., Nelson, D.R., 2002. Geology

Rao, C.P., 1988. Paleoclimate of some Permo-Triassic carbonates of Malaysia. Sedi- and tectonic evolution of the Archaean North Pilbara Terrain, Pilbara Craton,

ment. Geol. 60, 163–171. Western Australia. Econ. Geol. 97, 695–732.

Reid, A.J., Jagodzinski, E.A., Fraser, G.L., Pawley, M.J., 2014. SHRIMP U–Pb zircon Van Kranendonk, M.J., Ivanic, T.J., Wingate, M.T.D., Kirkland, C.L., Wyche, S., 2013.

age constraints on the tectonics of the Neoarchean to early Paleoproterozoic Long-lived, autochthonous development of the Archean Murchison Domain, and

transition within the Mulgathing Complex, Gawler Craton, South Australia. Pre- implications for Yilgarn Craton tectonics. Precambrian Res. 229, 49–92.

cambrian Res. 250, 27–49. Wang, Q., Schiotte, L., Campbell, I.H., 1996. Geochronological constraints on the age

Ridd, M.F., 2009. The Phuket Terrane: a Late Palaeozoic rift at the margin of Sibumasu. of komatiites and nickel mineralisation in the Lake Johnston greenstone belt,

J. Asian Earth Sci. 36, 238–251. Yilgarn Craton, Western Australia. Aust. J. Earth Sci. 43, 381–385.

Rossi, J.N., Toselli, A.J., Saavedra, J., Sial, A.N., Pellitero, E., Ferreira, V.P., 2002. Com- Wang, Q., Chung, S.L., Li, X.H., Wyman, D., Li, Z.X., Sun, W.D., Qiu, H.N., Liu, Y.S., Zhu,

mon crustal sources for contrasting peraluminous facies in the early Paleozoic Y.T., 2012. Crustal melting and flow beneath northern Tibet: evidence from Mid-

Capillitas Batholith, NW Argentina. Gondwana Res. 5, 325–337. to Quaternary strongly peraluminous rhyolites in the Southern Kunlun

Roy, A.B., Kröner, A., Rathore, S., Laul, V., Purohit, R., 2012. Tectono-metamorphic Range. J. Petrol. 53, 2523–2566.

and geochronologic studies from Sandmata Complex, northwest Indian Wang, X.D., Lin, W., Shen, S.Z., Chaodumrong, P., Shi, G.R., Wang, X.J., Wang, Q.L.,

Shield: implications on exhumation of late-Palaeoproterozoic granulites in an 2013. Early Permian rugose coral Cyathaxoniafaunas from the Sibumasu Ter-

Archaean-early Palaeoproterozoic granite-gneiss terrane. J. Geol. Soc. India 79, rane (Southeast Asia) and the southern Sydney Basin (Southeast Australia):

323–334. paleontology and paleobiogeography. Gondwana Res. 24, 185–191.

Saha, L., Pant, N.C., Pati, J.K., Upadhyay, D., Berndt, J., Bhattacharya, A., Satynarayanan, Wang, X.D., Ueno, K., Mizuno, Y., Sugiyama, T., 2001. Late Paleozoic faunal, climatic,

M., 2010. Neoarchean high-pressure margarite-phengitic muscovite-chlorite and geographic changes in the Baoshan block as a Gondwana-derived continen-

corona mantled corundum in quartz-free high-Mg, a phlogopite-chlorite schists tal fragment in southwest China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 170,

from the Bundelkhand craton, north central India. Contrib. Mineral. Petrol. 161, 197–218.

511–530. Wang, Y.J., Xing, X.W., Cawood, P.A., Lai, S.C., Xia, X.P., Fan, W.M., Liu, H.C., Zhang,

Santosh, M., Yang, Q.Y., Shaji, E., Mohan, M.R., Tsunogae, T., Satyanarayanan, M., F.F., 2013. Petrogenesis of early Paleozoic peraluminous granite in the Sibu-

2014. Oldest rocks from Peninsular India: evidence for Hadean to Neoarchean masu Block of SW Yunnan and diachronous accretionary orogenesis along the

crustal evolution. Gondwana Res. 65, 357–367. northern margin of Gondwana. Lithos 182-183, 67–85.

Sarkar, G., Corfu, F., Paul, D.K., Mcnaughton, N.J., Gupta, S.N., Bishui, P.K., 1993. Early Wang, Q.F., Deng, J., Li, C.S., Li, G.J., Yu, L., Qiao, L., 2014. The boundary between

Archaean crust in Bastar craton, central India—a geochemical and isotopic study. the Simao and Yangtze blocks and their locations in Gondwana and Rodinia:

Precambrian Res. 62, 127–137. constraints from detrital and inherited zircons. Gondwana Res. 26, 438–448.

Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the lutetiumhafnium clock. Waterhouse, J.B., 1982. An early Permian cool-water fauna from pebbly mudstones

Science 293, 683–687. in South Thailand. Geol. Mag. 119, 337–354.

Segal, I., Halicz, L., Platzner, I.T., 2003. Accurate isotope ratio measurements of ytter- Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization thermometers for zircon

bium by multiple collection inductively coupled plasma mass spectrometry and rutile. Contrib. Mineral. Petrol. 151, 413–433.

applying erbium and hafnium in an improved double external normalization Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical charac-

procedure. J. Anal. At. Spectrom. 18, 1217–1223. teristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 95, 407–419.

Sevastjanova, I., Clements, B., Hall, R., Belousova, E.A., Griffin, W.L., Pearson, N., 2011. White, J.R., Chappell, B.W., 1977. Ultrametamorphism and granitoid genesis.

Granitic magmatism, basement ages, and provenance indicators in the Malay Tectonophysics 43, 7–22.

Peninsula: insights from detrital zircon U–Pb and Hf-isotope data. Gondwana Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001. Evidence from detritical

Res. 19, 1024–1039. zircons or the existence of continental crust and oceans on the Earth 4.4 Gyr

Sharma, K.K., 1998. Geological evolution and crustal growth of the Bundelkhand ago. Nature 409, 75–178.

Craton and its relicts in the surrounding regions, N. Indian Shield. In: Paliwal, B.S. Woodhead, J.D., Hergt, J., Shelley, M., Eggins, S., Kemp, R., 2004. Zircon Hf-isotope

(Ed.), The Indian Precambrian. Scientific Publishers, Jodhpur, India, pp. 33–43. analysis with an excimer laser, depth profiling, ablation of complex geometries,

Shi, G.R., Waterhouse, J.B., 1991. Early Permian brachiopods from Perak, west and concomitant age estimation. Chem. Geol. 209, 121–135.

Malaysia. J. Southeast Asian Earth Sci. 6, 25–39. Xu, Y.C., Yang, Z.Y., Tong, Y.B., Wang, H., Gao, L., An, C.Z., 2015. Further paleomagnetic

Socquet, A., Pubellier, M., 2005. Cenozoic deformation in western Yunnan (China- results for lower Permian basalts of the Baoshan Terrane, southwestern China,

Myanmar border). J. Asian Earth Sci. 24, 495–515. and paleogeographic implications. J. Asian Earth Sci. 104, 99–114.

Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in mainland, SE Asia: new Xu, Y.J., Cawood, P.A., Du, Y.S., Huang, H.W., Wang, X.Y., 2014. Early Paleozoic oroge-

insights for Palaeo-Tethys closure. C.R. Geosci. 340, 166–179. nesis along Gondwana’s northern margin constrained by provenance data from

Song, S.G., Niu, Y.L., Wei, C.J., Ji, J.Q., Su, L., 2010. Metamorphism, anatexis, zircon South China. Tectonophysics 636, 40–51.

ages and tectonic evolution of the Gongshan block in the northern Indochina Yang, X.J., Jia, X.C., Xiong, C.L., Bai, X.Z., Huang, B.X., Luo, G., Yang, C.B., 2012. LA-ICP-

continent—an eastern extension of the Lhasa Block. Lithos 120, 327–346. MS zircon U–Pb age of metamorphic basic volcanic rock in Gongyanghe Group

Springer, W., Seck, H.A., 1997. Partial fusion of basic granulites at 5 to 15 kbar: of southern Gaoligong Mountain, western Yunnan Province, and its geological

implications for the origin of TTG magmas. Contrib. Mineral. Petrol. 127, 30–45. significance. Geol. Bull. China 31, 264–276 (in Chinese with English abstract).

Stauffer, P.H., Lee, C.P., 1989. Late Palaeozoic glacial marine facies in Southeast Asia YGMG (Yunnan Gold and Mineral Group Co. Ltd.), 2010. Column for drill core ZK7-1

and its implications. Geol. Soc. Malaysia Bull. 20, 363–397. from the Shuangmaidi ore domain, Yunnan Province (unpublished, in Chinese).

G. Li et al. / Precambrian Research 271 (2015) 118–137 137

YGMG (Yunnan Gold and Mineral Group Co. Ltd.), 2012. 1: 10, 000 exploration report Xinggan Range NE China: implications for their origin and mantle source char-

of the Shuangmaidi ore domain, Qingshuihe W-polymetallic orefield, Yunnan acteristics. Chem. Geol. 256, 12–23.

Province with geological map (unpublished, in Chinese). Zhao, G.C., Sun, M., Wilde, S.A., 2003. Correlations between the eastern block of the

Yu, L., Li, G.J., Wang, Q.F., Liu, X.F., 2014. Petrogenesis and tectonic significance of North China craton and the South Indian block of the Indian shield: an Archean

the Late Cretaceous magmatism in the northern part of the Baoshan block: con- to Paleoproterozoic link. Precambrian Res. 122, 201–233.

straints from bulk geochemistry, zircon U–Pb geochronology and Hf isotopic Zhong, D.L., 1998. The Paleo-Tethys Orogenic Belt in West of Sichuan and Yunnan.

compositions. Acta Petrol. Sin. 30, 2709–2724 (in Chinese with English abstract). Science Publishing House, Beijing, pp. 1–230 (in Chinese with English abstract).

Zhang, L.C., Zhou, X.H., Ying, J.F., Wang, F., Guo, F., Wan, B., Chen, Z.G., 2008. Geo- Zhu, D.C., Zhao, Z.D., Niu, Y.L., Dilek, Y., Wang, L.Q., Mo, X.X., 2011. Lhasa Terrane in

chemistry and Sr–Nd–Pb–Hf isotopes of basalts from the Great southern Tibet came from Australia. Geology 39, 727–730.