Geologic Time
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Origins: V 11 November 2015 Page 1 Table of Contents
Origins: V 11 November 2015 Page 1 Table of Contents Just Published: From Big Bang to Galactic Discovering Big History: Civilizations .............................................................................. 19 An Unorthodox Journey Robert H. Moore New and Returning IBHA Members ...................................... 20 PMR Communications .......... 3 Anthropocene Conference ....................................................... 21 Big History and the Stovepipe Call for Papers for the 2016 IBHA Conference Implosion at the University of Amsterdam ......................................... 22 Ken Baskin ......... 10 Mogli e Buoi ............................................................................... 28 New Coursera Big History Board Nominations ................................................................. 31 Course Available ................................................... 16 Post-Conference Tour .............................................................. 32 Origins Editor: Lowell Gustafson, Villanova University, Pennsylvania (USA) Origins. ISSN 2377-7729 Thank you for your Associate Cynthia Brown, Dominican University of California (USA) membership in Editor: Esther Quaedackers, University of Amsterdam (Netherlands) Please submit articles and other material to Origins, Editor, [email protected] the IBHA. Your Assistant membership dues Editor: Mojgan Behmand, Dominican University of California, San Rafael (USA) The views and opinions expressed in Origins are not necessarily those of the IBHA Board. all go towards the -
WALTER ALVAREZ Es Profesor De Geología En La
SELLO CRITICA COLECCIÓN FORMATO 15,5x23 TD SERVICIO Director: «Un relato maravilloso de la Gran Historia de la mano del geólogo que CORRECCIÓN: PRIMERAS JOSÉ MANUEL SÁNCHEZ RON demostró que los dinosaurios se extinguieron por el impacto de un asteroide. 29/3 ARNAU Últimos títulos publicados: DISEÑO Alvarez lo explica con precisión y gran encanto, recordando lo absurdamente El VIAJE MÁS REALIZACIÓN Carl Sagan improbable que es el papel que desempeñamos en esta historia colosal.» El mundo y sus demonios —DAVID CHRISTIAN, fundador de la Gran Historia EDICIÓN La ciencia como una luz en la oscuridad y autor de Mapas del tiempo: introducción a la Gran Historia. Rita Levi-Montalcini CORRECCIÓN: SEGUNDAS El viaje más improbable es una aventura apasionante para entender el origen del El as en la manga IMPROBABLE 7/4 Arnau DISEÑO Los dones reservados a la vejez universo y la vida desde el prisma de la Gran Historia, disciplina que concilia dis- WALTER ALVAREZ es profesor de Geología en la tintas ramas académicas para construir un retrato desde todas las perspectivas de Universidad de California, en Berkeley, y uno de REALIZACIÓN Ian Stewart un período histórico. Walter Alvarez, quien junto a su padre, Luis Alvarez, consi- Las matemáticas del cosmos los fundadores de la International Big History guió hallar en 1980 las primeras evidencias geológicas del impacto del meteorito Association. En 2002 fue galardonado con la CARACTERÍSTICAS Luigi Luca Cavalli-Sforza que causó la extinción de más del 50% de la vida animal sobre la Tierra (entre ellos, El VIAJE MÁS IMPROBABLE Medalla Penrose, el premio más distinguido en IMPRESIÓN CMYK Genes, pueblos y lenguas los dinosaurios), combina sus vastos conocimientos con Física y Arqueología para Geología. -
Board Meeting Minutes 3
IBHA Board of Directors Meeting Wednesday, August 6, 2014 Edgehill Mansion Garden Room Agenda 8:30 – 10:30 am 1. Opening the Meeting, Introduction of - Welcome to - New Board Members (Fred Spier, Chair) 2. Approval of 2012 Board Meeting Minutes 3. Presidential Remarks (David Christian) 4. Further Board Changes 5. Election of Officers 11:00 am – 12:30 pm 6. President’s Report (David Christian) 7. Publications Committee Report (Cynthia Brown, Esther Quaedackers) 8. Treasurer’s Report (Craig Benjamin) 9. Secretary’s Report (Lowell Gustafson) 1 – 3 pm 10. Advisory Council Report (Pamela Benjamin) 11. International Coordinator’s Report (Barry Rodrigue) 12. Archive IBHA papers (Barry Rodrigue) 13. Board Communication (Forum) 3:30 – 5 pm 14. Location for 2016 and perhaps 2018 IBHA Conferences (Esther Quaedackers). 15 Policies 16. New Business 17. Recognition and thanks. 18. Adjournment of Meeting Attending: Milly Alvarez, Walter Alvarez, Mojgan Behmand, Craig Benjamin, Pamela Benjamin, Cynthia Brown, David Christian, Lowell Gustafson, Jonathan Markley, Esther Quaedackers, Barry Rodrigue, Fred Spier, Joseph Voros, Sun Yue Absent (notified in advance), Andrey Korotayev 1. Fred Spier opened the meeting at 8:30 a.m. He welcomed the four new board members who will each be serving a three year term: Mojgan Behmand, Esther Quaedackers, Joseph Voros, and Sun Yue. Jonathan Markley was elected by acclamation to fill the seat that was open due to the resignation of Walter Alvarez. 2. Craig Benjamin moved and Esther Quadackers seconded a motion that the 2012 minutes be adopted as a true and accurate record of the 2012 board meeting. The motion was approved unanimously. -
Foundations of Complex Life: Evolution, Preservation and Detection on Earth and Beyond
National Aeronautics and Space Administration NASA Astrobiology Institute Annual Science Report 2016 Team Report: Foundations of Complex Life: Evolution, Preservation and Detection on Earth and Beyond, Massachusetts Institute of Technology Foundations of Complex Life Evolution, Preservation and Detection on Earth and Beyond Lead Institution: Massachusetts Institute of Technology Team Overview Foundations of Complex Life is a research project investigating the early evolution and preservation of complex life on Earth. We seek insight into the early evolution and preservation of complex life by refining our ability to identify evidence of environmental and biological change in the late Mesoproterozoic to Neoproterozoic eras. Better understanding how signatures of life and environment are preserved will guide how and where to look for evidence for life elsewhere in the universe—directly supporting the Curiosity mission on Mars and helping set strategic goals for future explorations of the Solar System and studies of the early Earth. Our Team pursues these questions under five themes: I. The earliest history of animals: We use methods from molecular biology, experimental taphonomy, and paleontology to explore what caused the early divergence of animals. Principal Investigator: II. Paleontology, sedimentology, and geochemistry: We track the origin of complex Roger Summons protists and animals from their biologically simple origins by documenting the stratigraphy, isotopic records, and microfossil assemblages of well-preserved rock successions from 1200 to 650 million years ago. III. A preservation-induced oxygen tipping point: We investigate how changes in the preservation of organic carbon may have driven the Neoproterozoic oxygenation of the oceans coincident with the appearance of complex life. -
The Geologic Time Scale Is the Eon
Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2. -
“Anthropocene” Epoch: Scientific Decision Or Political Statement?
The “Anthropocene” epoch: Scientific decision or political statement? Stanley C. Finney*, Dept. of Geological Sciences, California Official recognition of the concept would invite State University at Long Beach, Long Beach, California 90277, cross-disciplinary science. And it would encourage a mindset USA; and Lucy E. Edwards**, U.S. Geological Survey, Reston, that will be important not only to fully understand the Virginia 20192, USA transformation now occurring but to take action to control it. … Humans may yet ensure that these early years of the ABSTRACT Anthropocene are a geological glitch and not just a prelude The proposal for the “Anthropocene” epoch as a formal unit of to a far more severe disruption. But the first step is to recognize, the geologic time scale has received extensive attention in scien- as the term Anthropocene invites us to do, that we are tific and public media. However, most articles on the in the driver’s seat. (Nature, 2011, p. 254) Anthropocene misrepresent the nature of the units of the International Chronostratigraphic Chart, which is produced by That editorial, as with most articles on the Anthropocene, did the International Commission on Stratigraphy (ICS) and serves as not consider the mission of the International Commission on the basis for the geologic time scale. The stratigraphic record of Stratigraphy (ICS), nor did it present an understanding of the the Anthropocene is minimal, especially with its recently nature of the units of the International Chronostratigraphic Chart proposed beginning in 1945; it is that of a human lifespan, and on which the units of the geologic time scale are based. -
Golden Spikes, Transitions, Boundary Objects, and Anthropogenic Seascapes
sustainability Article A Meaningful Anthropocene?: Golden Spikes, Transitions, Boundary Objects, and Anthropogenic Seascapes Todd J. Braje * and Matthew Lauer Department of Anthropology, San Diego State University, San Diego, CA 92182, USA; [email protected] * Correspondence: [email protected] Received: 27 June 2020; Accepted: 7 August 2020; Published: 11 August 2020 Abstract: As the number of academic manuscripts explicitly referencing the Anthropocene increases, a theme that seems to tie them all together is the general lack of continuity on how we should define the Anthropocene. In an attempt to formalize the concept, the Anthropocene Working Group (AWG) is working to identify, in the stratigraphic record, a Global Stratigraphic Section and Point (GSSP) or golden spike for a mid-twentieth century Anthropocene starting point. Rather than clarifying our understanding of the Anthropocene, we argue that the AWG’s effort to provide an authoritative definition undermines the original intent of the concept, as a call-to-arms for future sustainable management of local, regional, and global environments, and weakens the concept’s capacity to fundamentally reconfigure the established boundaries between the social and natural sciences. To sustain the creative and productive power of the Anthropocene concept, we argue that it is best understood as a “boundary object,” where it can be adaptable enough to incorporate multiple viewpoints, but robust enough to be meaningful within different disciplines. Here, we provide two examples from our work on the deep history of anthropogenic seascapes, which demonstrate the power of the Anthropocene to stimulate new thinking about the entanglement of humans and non-humans, and for building interdisciplinary solutions to modern environmental issues. -
Professor Preston Cloud
Professor Preston Cloud (1912-Jl990) (Preston Cloud, a great name in Earth Science is no more, His was a versatile mind which probed into many aspects of Earth history. We pro duce below a short life history of the famous professor written specially for the Journal by Somadev Bhattacharji, Professor of Geology, New York State University, Brooklyn, New York.-Ed. With the death of Professor Preston Cloud, Emeritus Professor of Geology at the Department of Geological Sciences, University of California, Santa Barbara~ the Earth Sciences have lost one of their most eminent spokesman. Professor Cloud was born in eastern Massachusetts in 1912. He started his undergraduate study of geology in a one-professor department at George Washing ton University at Washington, D.C. while holding a tenuous job in the Smith sonian Institution's Natural History Museum during the great depression yea'rs in the U.S.A. This early experience influenced his later career in geology. He graduated from George Washington University in 1938, and continued on to receive his Ph.D. from Yale University at New Haven, Connecticut in 1940. After a long association with the U.S. Geological Survey as a geologist and paleonto logist, he retired in 1979. He also taught at the Missouri School of Mines~ Harvard University, The University of Minnesota, and the University of California at both Los Angeles and Santa Barbara. In the last years of his active retired life, Santa Barbara was his base, but he travelled widely to see · real geology' and lectured and inspired many, beside being busy writing. -
A Complex Microbiota from Snowball Earth Times: Microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA
A complex microbiota from snowball Earth times: Microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA Frank A. Corsetti*†, Stanley M. Awramik‡, and David Pierce‡ *Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089; and ‡Department of Geological Sciences, Preston Cloud Research Laboratory, University of California, Santa Barbara, CA 93106 Communicated by John C. Crowell, University of California, Santa Barbara, CA, January 29, 2003 (received for review October 7, 2002) A thin carbonate unit associated with a Sturtian-age (Ϸ750–700 did they experience severe or moderate extinction during the million years ago) glaciogenic diamictite of the Neoproterozoic glacial events? Did surviving clades undergo radiation after Kingston Peak Formation, eastern California, contains microfossil the glacial events, as might be predicted with such an environ- evidence of a once-thriving prokaryotic and eukaryotic microbial mental crisis (e.g., ref. 7)? Can we observe evidence of the community (preserved in chert and carbonate). Stratiform stroma- environmental filter (3) or ‘‘bottlenecks’’ (7) that have been tolites, oncoids, and rare columnar stromatolites also occur. The hypothesized? microbial fossils, which include putative autotrophic and hetero- Here, we report the implications of diverse fossil microbiotas trophic eukaryotes, are similar to those found in chert in the from the Death Valley region, California, found immediately underlying preglacial units. They indicate that microbial life preceding and within (or possibly capping) demonstrably glacial adapted to shallow-water carbonate environments did not suffer strata deposited during one of the Neoproterozoic snowball the significant extinction postulated for this phase of low-latitude Earth episodes. Although diverse microbiotas are known from glaciation and that trophic complexity survived through snowball strata that immediately postdate snowball events (e.g., Tindir Earth times. -
Origins of Life in the Universe Zackary Johnson
11/4/2007 Origins of Life in the Universe Zackary Johnson OCN201 Fall 2007 [email protected] Zackary Johnson http://www.soest.hawaii.edu/oceanography/zij/education.html Uniiiversity of Hawaii Department of Oceanography Class Schedule Nov‐2Originsof Life and the Universe Nov‐5 Classification of Life Nov‐7 Primary Production Nov‐9Consumers Nov‐14 Evolution: Processes (Steward) Nov‐16 Evolution: Adaptation() (Steward) Nov‐19 Marine Microbiology Nov‐21 Benthic Communities Nov‐26 Whale Falls (Smith) Nov‐28 The Marine Food Web Nov‐30 Community Ecology Dec‐3 Fisheries Dec‐5Global Ecology Dec‐12 Final Major Concepts TIMETABLE Big Bang! • Life started early, but not at the beginning, of Earth’s Milky Way (and other galaxies formed) history • Abiogenesis is the leading hypothesis to explain the beginning of life on Earth • There are many competing theories as to how this happened • Some of the details have been worked out, but most Formation of Earth have not • Abiogenesis almost certainly occurred in the ocean 20‐15 15‐94.5Today Billions of Years Before Present 1 11/4/2007 Building Blocks TIMETABLE Big Bang! • Universe is mostly hydrogen (H) and helium (He); for Milky Way (and other galaxies formed) example –the sun is 70% H, 28% He and 2% all else! Abundance) e • Most elements of interest to biology (C, N, P, O, etc.) were (Relativ 10 produced via nuclear fusion Formation of Earth Log at very high temperature reactions in large stars after Big Bang 20‐13 13‐94.7Today Atomic Number Billions of Years Before Present ORIGIN OF LIFE ON EARTH Abiogenesis: 3 stages Divine Creation 1. -
38—GEOLOGIC AGE SYMBOL FONT (Stratagemage) REF NO STRATIGRAPHIC AGE SUBDIVISION TYPE AGE SYMBOL KEYBOARD POSITION for Stratagemage FONT
Federal Geographic Data Committee U.S. Geological Survey Open-File Report 99–430 Public Review Draft - Digital Cartographic Standard for Geologic Map Symbolization PostScript Implementation (filename: of99-430_38-01.eps) 38—GEOLOGIC AGE SYMBOL FONT (StratagemAge) REF NO STRATIGRAPHIC AGE SUBDIVISION TYPE AGE SYMBOL KEYBOARD POSITION FOR StratagemAge FONT 38.1 Archean Eon A Not applicable (use Helvetica instead) 38.2 Cambrian Period _ (underscore = shift-hyphen) 38.3 Carboniferous Period C Not applicable (use Helvetica instead) 38.4 Cenozoic Era { (left curly bracket = shift-left square bracket) 38.5 Cretaceous Period K Not applicable (use Helvetica instead) 38.6 Devonian Period D Not applicable (use Helvetica instead) 38.7 Early Archean (3,800(?)–3,400 Ma) Era U Not applicable (use Helvetica instead) 38.8 Early Early Proterozoic (2,500–2,100 Ma) Era R (capital R = shift-r) 38.9 Early Middle Proterozoic (1,600–1,400 Ma) Era G (capital G = shift-g) 38.10 Early Proterozoic Era X Not applicable (use Helvetica instead) 38.11 Eocene Epoch # (pound sign = shift-3) 38.12 Holocene Epoch H Not applicable (use Helvetica instead) 38.13 Jurassic Period J Not applicable (use Helvetica instead) 38.14 Late Archean (3,000–2,500 Ma) Era W Not applicable (use Helvetica instead) 38.15 Late Early Proterozoic (1,800–1,600 Ma) Era I (capital I = shift-i) 38.16 Late Middle Proterozoic (1,200–900 Ma) Era E (capital E = shift-e) 38.17 Late Proterozoic Era Z Not applicable (use Helvetica instead) 38.18 Mesozoic Era } (right curly bracket = shift-right square bracket) 38.19 Middle Archean (3,400–3,000 Ma) Era V Not applicable (use Helvetica instead) 38.20 Middle Early Proterozoic (2,100–1,800 Ma) Era L (capital L = shift-l) 38.21 Middle Middle Proterozoic (1,400–1,200 Ma) Era F (capital F = shift-f) 38.22 Middle Proterozoic Era Y Not applicable (use Helvetica instead) A–38–1 Federal Geographic Data Committee U.S. -
Utah's Geologic Timeline Utah Seed Standard 7.2.6: Make an Argument from Evidence for How the Geologic Time Scale Shows the Ag
Utah’s Geologic Timeline Utah SEEd Standard 7.2.6: Make an argument from evidence for how the geologic time scale shows the age and history of Earth. Emphasize scientific evidence from rock strata, the fossil record, and the principles of relative dating, such as superposition, uniformitarianism, and recognizing unconformities. (ESS1.C) Activity Details: The students begin with a blank calendar and a list of events in the Earth’s, and additionally Utah’s, history. These events span billions of years, but such numbers are too large to visualize and compare. In order to help the mind understand such enormous lengths of time, the year of the event is scaled to what it would Be proportionate to a calendar year (numBers are from The Utah Geological Survey and Kentucky Geological Survey). The students go through the list and fill out their calendar to visualize the geologic timeline of the Earth and Utah, and then answer some analysis questions to help solidify their understanding. Students will need four differently-colored colored pencils or crayons to complete the activity. Background: The following information is taken from The Utah Geological Survey, written by Mark Milligan. It may Be helpful to define some of the terms with the students so they understand where and how ages come from. Geologists generally know the age of a rock By determining the age of the group of rocks, or formation, that it is found in. The age of formations is marked on a geologic calendar known as the geologic time scale. Development of the geologic time scale and dating of formations and rocks relies upon two fundamentally different ways of telling time: relative and absolute.