National Park Service U.S

Total Page:16

File Type:pdf, Size:1020Kb

National Park Service U.S National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Change in Glacial Extent at Mount Rainier National Park from 1896 to 2015 Natural Resource Report NPS/MORA/NRR—2017/1472 ON THIS PAGE Extents of perennial snow, snowfields, and glaciers on Mount Rainier in 2015 from this study Courtesy of the National Park Service ON THE COVER Oblique aerial photo of the south face of Mount Rainier showing the Kautz, Success, Van Trump, Wilson, and Nisqually Glaciers. Photo taken 11/28/2015 at 5:00 PM. Photograph courtesy of Michael Gauthier and used with expressed permission. Change in Glacial Extent at Mount Rainier National Park from 1896 to 2015 Natural Resource Report NPS/MORA/NRR—2017/1472 Scott R. Beason National Park Service Mount Rainier National Park 55210 238th Ave E Ashford, WA 98304 June 2017 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data. Data in this report were collected and analyzed using methods based on established, peer-reviewed protocols and were analyzed and interpreted within the guidelines of the protocols. Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Government. This report is available in digital format from the Mount Rainier National Park website and the Natural Resource Publications Management website. To receive this report in a format that is optimized to be accessible using screen readers for the visually or cognitively impaired, please email [email protected]. Please cite this publication as: Beason, S. R. 2017. Change in glacial extent at Mount Rainier National Park from 1896 to 2015. Natural Resource Report NPS/MORA/NRR—2017/1472. National Park Service, Fort Collins, Colorado. NPS 105/138956, June 2017 ii Contents Page Figures................................................................................................................................................... iv Tables ..................................................................................................................................................... v Appendixes ............................................................................................................................................ v Plates ..................................................................................................................................................... vi Conversion Factors ............................................................................................................................... vi Glossary ................................................................................................................................................ vi Abstract ...............................................................................................................................................viii Acknowledgements .............................................................................................................................viii Introduction ............................................................................................................................................ 1 Study Area ............................................................................................................................................. 3 Previous Research .................................................................................................................................. 4 Methods .................................................................................................................................................. 5 Glacier extents (2015) and comparison with previous inventories ................................................ 5 Debris cover in 2015 ...................................................................................................................... 7 Errors and accuracy of 2015 inventory .......................................................................................... 7 Current Glacier Statistics ................................................................................................................ 8 Results .................................................................................................................................................. 10 2015 Glacier Extents .................................................................................................................... 10 2015 Debris Cover ........................................................................................................................ 11 Extent comparison over time ........................................................................................................ 14 Changes in Extent by Aspect ........................................................................................................ 23 Glacier Statistics ........................................................................................................................... 24 Literature Cited .................................................................................................................................... 27 iii Figures Page Figure 1. Mount Rainier National Park extent and study area. ............................................................. 3 Figure 2. Extent and dates of data sources used in mapping of glacial extents for the 2015 season. ........................................................................................................................................... 6 Figure 3. Extent of perennial snow and glaciers at Mount Rainier in 2015, based on data in Table 2. ............................................................................................................................................ 10 Figure 4. Extents of glacial debris cover and exposed ice on glaciers at Mount Rainier in 2015, based on data from Table 3.. ...................................................................................................... 12 Figure 5. Overall change in surface area for all glaciers at Mount Rainier from 1896- 2015, based on data in Table 4. ............................................................................................................ 14 Figure 6. Change in surface area of glaciers from 1896 to 2015 that had a 2015 extent greater than five square kilometers, based on data in Table 4. ............................................................ 20 Figure 7. Change in surface area of glaciers from 1896 to 2015 that had a 2015 extent between 1 and 5 square kilometers, based on data in Table 4. ............................................................ 21 Figure 8. Change in surface area of glaciers from 1896 to 2015 that had a 2015 extent less than 1 square kilometer, based on data in Table 4. ....................................................................... 22 Figure 9. Change in extent of glaciers by aspect from 1896 to 2015 at Mount Rainier, based on data from Table 7. ................................................................................................................. 23 iv Tables Page Table 1. Image data sources acquired and analyzed for this study. See Figure 2 for map of coverage. ............................................................................................................................................ 5 Table 2. Extent of glacial ice, snowfields, and perennial snow in 2015 at Mount Rainier. ................ 11 Table 3. Extent of debris-covered area on glaciers in 2015 at Mount Rainier. ................................... 13 Table 4. Comparison of extents of glaciers at Mount Rainier over time (excluding unnamed perennial ice/snow fields). .................................................................................................... 15 Table 5. Total area change in extent between inventory periods for each glacier at Mount Rainier. Listed units are in square kilometers (km2). ........................................................................... 16 Table 6. Total
Recommended publications
  • Emplacement of a Silicic Lava Dome Through a Crater Glacier: Mount St Helens, 2004–06
    14 Annals of Glaciology 45 2007 Emplacement of a silicic lava dome through a crater glacier: Mount St Helens, 2004–06 Joseph S. WALDER, Richard G. LaHUSEN, James W. VALLANCE, Steve P. SCHILLING United States Geological Survey, Cascades Volcano Observatory, 1300 Southeast Cardinal Court, Vancouver, Washington WA 98683-9589, USA E-mail: [email protected] ABSTRACT. The process of lava-dome emplacement through a glacier was observed for the first time after Mount St Helens reawakened in September 2004. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry and geodetic measure- ments document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal alpine glaciers. Unlike normal temperate glaciers, the crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano’s groundwater system rather than flowing through a drainage network along the bed. INTRODUCTION ice bodies have been successively squeezed between the Since October 2004, a lava dome has been emplaced first growing lava dome and the crater walls. through, and then alongside, glacier ice in the crater of Several examples of lava-dome emplacement into ice Mount St Helens, Washington state, US.
    [Show full text]
  • Outline for Thesis
    THESIS APPROVAL The abstract and thesis of Thomas H. Nylen for the Master of Science in Geology presented October 25, 2001, and accepted by the thesis committee and the department. COMMITTEE APPROVALS: _______________________________________ Andrew G. Fountain, Chair _______________________________________ Scott F. Burns _______________________________________ Christina L. Hulbe _______________________________________ Keith S. Hadley Representative of the Office of Graduate Studies DEPARTMENTAL APPROVAL: _______________________________________ Michael L. Cummings, Chair Department of Geology ABSTRACT An abstract of the thesis of Thomas H. Nylen for the Master of Science in Geology presented October 25, 2001. Title: Spatial and Temporal Variations of Glaciers (1913-1994) on Mt. Rainier and the Relation with Climate Databases have been constructed for the purpose of studying glacier changes at Mt. Rainier. Glacier cover on Mt. Rainier decreased 18.5% (112.3 km2 to 88.1 km2) between 1913 and 1971 at a rate of about -0.36 km2 a-1. The total area in 1994 was 87.4 km2, which equates to a rate of -0.03 km2 a-1 since 1971. Glaciers with southerly aspect lost significantly more area than those with a northerly aspect, 26.5% and 17.5% of the total area, respectively. Measured and estimated total volumes for Mt. Rainier glaciers also decreased. From 1913 to 1971 the total volume decreased 22.7% from 5.62 km3 to 4.34 km3 and from 1971 to 1994 decreased 3.1% to 4.21 km3. Nisqually Glacier shows three cycles of retreat and advance but an overall loss of 0.44 km2 since 1931. Cross-correlation with snowfall suggests about a decade response time for the glaciers.
    [Show full text]
  • 1961 Climbers Outing in the Icefield Range of the St
    the Mountaineer 1962 Entered as second-class matter, April 8, 1922, at Post Office in Seattle, Wash., under the Act of March 3, 1879. Published monthly and semi-monthly during March and December by THE MOUNTAINEERS, P. 0. Box 122, Seattle 11, Wash. Clubroom is at 523 Pike Street in Seattle. Subscription price is $3.00 per year. The Mountaineers To explore and study the mountains, forests, and watercourses of the Northwest; To gather into permanent form the history and traditions of this region; To preserve by the encouragement of protective legislation or otherwise the natural beauty of Northwest America; To make expeditions into these regions in fulfillment of the above purposes; To encourage a spirit of good fellowship among all lovers of outdoor Zif e. EDITORIAL STAFF Nancy Miller, Editor, Marjorie Wilson, Betty Manning, Winifred Coleman The Mountaineers OFFICERS AND TRUSTEES Robert N. Latz, President Peggy Lawton, Secretary Arthur Bratsberg, Vice-President Edward H. Murray, Treasurer A. L. Crittenden Frank Fickeisen Peggy Lawton John Klos William Marzolf Nancy Miller Morris Moen Roy A. Snider Ira Spring Leon Uziel E. A. Robinson (Ex-Officio) James Geniesse (Everett) J. D. Cockrell (Tacoma) James Pennington (Jr. Representative) OFFICERS AND TRUSTEES : TACOMA BRANCH Nels Bjarke, Chairman Wilma Shannon, Treasurer Harry Connor, Vice Chairman Miles Johnson John Freeman (Ex-Officio) (Jr. Representative) Jack Gallagher James Henriot Edith Goodman George Munday Helen Sohlberg, Secretary OFFICERS: EVERETT BRANCH Jim Geniesse, Chairman Dorothy Philipp, Secretary Ralph Mackey, Treasurer COPYRIGHT 1962 BY THE MOUNTAINEERS The Mountaineer Climbing Code· A climbing party of three is the minimum, unless adequate support is available who have knowledge that the climb is in progress.
    [Show full text]
  • Tacoma, Washington 1990 DEPARTMENT of the INTERIOR
    SUMMARY OF WATER-RESOURCES ACTIVITIES OF THE U.S. GEOLOGICAL SURVEY IN WASHINGTON: FISCAL YEAR 1989 Compiled by Judith A. Wayenberg U.S. GEOLOGICAL SURVEY Open-File Report 90-180 Tacoma, Washington 1990 DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director COVER PHOTOGRAPH: Columbia River Gorge near Washougal, Washington; view is upstream to the east. For additional information Copies of this report can be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Books ^ind Open-File Reports Section 1201 Pacific Avenue, Suite 600 Builditig 810, Federal Center Tacoma, Washington 98402 Box 25^25 Denver!, Colorado 80225 ii CONTENTS Page Introduction------------------------------------------------------------- 1 Mission of the U.S. Geological Survey------------------------------------ 2 Mission of the Water Resources Division---------------------------------- 3 Cooperating agencies----------------------------------------------------- 5 Collection of water-resources quantity and quality data------------------ 7 Surface-water data--------------------------------------------------- 7 Ground-water data---------------------------------------------------- 9 Meteorological data-------------------------------------------------- 9 Interpretive hydrologic investigations----------------------------------- 9 WA-007 Washington water-use program---------------------------------- 10 WA-232 Ground-water availability and predicted water-level declines within the basalt aquifers
    [Show full text]
  • The Recession of Glaciers in Mount Rainier National Park, Washington
    THE RECESSION OF GLACIERS IN MOUNT RAINIER NATIONAL PARK, WASHINGTON C. FRANK BROCKMAN Mount Rainier National Park FOREWORD One of the most outstanding features of interest in Mount Rainier National Park is the extensive glacier system which lies, almost entirely, upon the broad flanks of Mount Rainier, the summit of which is 14,408 feet above sea-level. This glacier system, numbering 28 glaciers and aggregating approximately 40-45 square miles of ice, is recognized as the most extensive single peak glacier system in continental United States.' Recession data taken annually over a period of years at the termini of six representative glaciers of varying type and size which are located on different sides of Mount Rainier are indicative of the rela- tive rate of retreat of the entire glacier system here. At the present time the glaciers included in this study are retreating at an average rate of from 22.1 to 70.4 feet per year.2 HISTORY OF INVESTIGATIONS CONDUCTED ON THE GLACIERS OF MOUNT RAINIER Previous to 1900 glacial investigation in this area was combined with general geological reconnaissance surveys on the part of the United States Geological Survey. Thus, the activities of S. F. Em- mons and A. D. Wilson, of the Fortieth Parallel Corps, under Clarence King, was productive of a brief publication dealing in part with the glaciers of Mount Rainier.3 Twenty-six years later, in 1896, another United States Geological Survey party, which included Bailey Willis, I. C. Russell, and George Otis Smith, made additional SCircular of General Information, Mount Rainier National Park (U.S.
    [Show full text]
  • Eric Simonson's Expedition 8000
    Mt. Rainier: 4 ½ Day Summit Climb Ingraham Glacier / Disappointment Cleaver Route © 2009 International Mountain Guides Why Choose This Program? Our 4 ½ Day Ingraham Glacier/Disappointment Cleaver summit program is the most relaxed approach offered to climb Mt. Rainier. The four-day program increases our opportunity for success on the mountain. There is time incorporated into this program for resting and recovery after each day’s activities. We climb as light and efficiently as possible and rely on the shelter at Camp Muir to avoid carrying extra gear or tents. The extra day spent at Camp Muir allows for better acclimatization to the altitude prior to the summit day, and more time to enjoy the majestic glacier environment with your climbing team. We maximize training by adding a half day pre-climb orientation and instructional meeting at IMG’s Headquarters in Ashford, just outside the park. We incorporate training en route during the trip to Camp Muir and utilize the following day at Muir to rest, conduct the bulk of our training and acclimatize. By spending two nights at Camp Muir prior to the summit day, we avoid carrying heavier packs up to a higher camp. There is a tradeoff in doing this, but we feel the extra time spent at Muir and the lighter overall pack weight fairly evenly offsets the advantages of departing on summit day from a higher camp. This is especially suited for those who would prefer to go as light as possible. IMG employs a light and efficient philosophy for climbing. To minimize the weight on your backs we provide shelter, stoves, cook gear and group climbing gear for you at Camp Muir.
    [Show full text]
  • 2010 CENSUS - CENSUS TRACT REFERENCE MAP: Lewis County, WA 121.217411W LEGEND Emmons Glacier
    46.862203N 46.867049N 121.983702W 2010 CENSUS - CENSUS TRACT REFERENCE MAP: Lewis County, WA 121.217411W LEGEND Emmons Glacier Y P SYMBOL DESCRIPTION SYMBOL LABEL STYLE South Mowich Fryingpan Glacier A I Glacier E K R I C M Federal American Indian Puyallup Glacier E A Reservation L'ANSE RES 1880 0 Bumping Lk Ingraham Glacier 5 0 3 7 7 Off-Reservation Trust Land, Hawaiian Home Land T1880 Tahoma Glacier Oklahoma Tribal Statistical Area, Alaska Native Village Statistical Area, KAW OTSA 5340 Tribal Designated Statistical Area State American Indian W Tama Res 4125 ilson Glacier Reservation Kautz Glacier South Tahoma Glacier Nisqually Glacier Cowlitz Glacier State Designated Tribal Statistical Area Lumbee STSA 9815 Alaska Native Regional Corporation NANA ANRC 52120 State (or statistically equivalent entity) NEW YORK 36 County (or statistically Mount Rainier Natl Pk equivalent entity) ERIE 029 Minor Civil Division (MCD)1,2 Bristol town 07485 123 PIERCE 053 Consolidated City MILFORD 47500 S LEWIS 041 d R lley 1,3 Va e Incorporated Place s Davis 18100 i rad Pa Census Designated Place (CDP) 3 Incline Village 35100 ns Cany e on v e R t d S Census Tract 33.07 706 DESCRIPTION SYMBOL DESCRIPTION SYMBOL Interstate 3 Water Body Pleasant Lake W o l d 706 706 r o 2 R 2 F 1 U.S. Highway 0 e Cre d t at ek a d Swamp or Marsh Okefenokee Swamp Sk N N R R i v d sq e N u D ally Riv State Highway 4 Glacier Bering Glacier 4 Marsh Ln 4 Other Road N d D a R e t v F v or Na e R t D d F 4WD Trail, Stairway, 0 o r 1 r o 2 F Military Fort Belvoir D e t Alley, Walkway,
    [Show full text]
  • Evidence of a Changing Climate Impacting the Fluvial Geomorphology of the Kautz Creek on Mt
    EVIDENCE OF A CHANGING CLIMATE IMPACTING THE FLUVIAL GEOMORPHOLOGY OF THE KAUTZ CREEK ON MT. RAINIER by Melanie R. Graeff A Thesis Submitted in partial fulfillment of the requirements for the degree Master of Environmental Studies The Evergreen State College June, 2017 ©2017 by Melanie R. Graeff. All rights reserved. This Thesis for the Master of Environmental Studies Degree by Melanie R. Graeff has been approved for The Evergreen State College by ________________________ Michael Ruth, M.Sc Member of the Faculty ________________________ Date ABSTRACT Evidence of a Changing Climate Impacting the Fluvial Geomorphology of the Kautz Creek on Mt. Rainier Melanie Graeff Carbon dioxide emissions have stimulated the warming of air and ocean temperatures worldwide. These conditions have fueled the intensity of El Nino-Southern Oscillation and Atmospheric River events by supplying increased water vapor into the atmosphere. These precipitation events have impacted the fluvial geomorphology of a creek on the southwestern flank of the Kautz Creek on Mt. Rainier, Washington. Using GIS software was the primary means of obtaining data due to the lack of publications published on the Kautz Creek. Time periods of study were set up from a 2012 publication written by Jonathan Czuba and others, that mentioned observations of the creek that dated from 1960 to 2008. In combining those observations of the Kautz and weather data from the weather station in Longmire, Washington, this allowed for a further understanding of how climate change has affected the fluvial geomorphology of the Kautz Creek over time. GIS software mapping showed numerous changes on the creek since 2008.
    [Show full text]
  • The Dynamics and Mass Budget of Aretic Glaciers
    DA NM ARKS OG GRØN L ANDS GEO L OG I SKE UNDERSØGELSE RAP P ORT 2013/3 The Dynamics and Mass Budget of Aretic Glaciers Abstracts, IASC Network of Aretic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) • GEOLOGICAL SURVEY OF D EN MARK AND GREENLAND DANISH MINISTAV OF CLIMATE, ENEAGY AND BUILDING ~ G E U S DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 201 3 / 3 The Dynamics and Mass Budget of Arctic Glaciers Abstracts, IASC Network of Arctic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF CLIMATE, ENERGY AND BUILDING Indhold Preface 5 Programme 6 List of participants 11 Minutes from a special session on tidewater glaciers research in the Arctic 14 Abstracts 17 Seasonal and multi-year fluctuations of tidewater glaciers cliffson Southern Spitsbergen 18 Recent changes in elevation across the Devon Ice Cap, Canada 19 Estimation of iceberg to the Hansbukta (Southern Spitsbergen) based on time-lapse photos 20 Seasonal and interannual velocity variations of two outlet glaciers of Austfonna, Svalbard, inferred by continuous GPS measurements 21 Discharge from the Werenskiold Glacier catchment based upon measurements and surface ablation in summer 2011 22 The mass balance of Austfonna Ice Cap, 2004-2010 23 Overview on radon measurements in glacier meltwater 24 Permafrost distribution in coastal zone in Hornsund (Southern Spitsbergen) 25 Glacial environment of De Long Archipelago
    [Show full text]
  • 1934 the MOUNTAINEERS Incorpora.Ted T�E MOUNTAINEER VOLUME TWENTY-SEVEN Number One
    THE MOUNTAINEER VOLUME TWENTY -SEVEN Nom1-0ae Deceml.er, 19.34 GOING TO GLACIER PUBLISHED BY THE MOUNTAIN�ER.S INCOaPOllATBD SEATTLI: WASHINGTON. _,. Copyright 1934 THE MOUNTAINEERS Incorpora.ted T�e MOUNTAINEER VOLUME TWENTY-SEVEN Number One December, 1934 GOING TO GLACIER 7 •Organized 1906 Incorporated 1913 EDITORIAL BOARD, 1934 Phyllis Young Katharine A. Anderson C. F. Todd Marjorie Gregg Arthur R. Winder Subscription Price, $2.00 a Year Annual (only) Seventy-five Cents Published by THE MOUNTAINEERS Incorporated Seattle, Washington Entered as second class matter, December 15, 1920, at the Postofflce at Seattle, Washington, under the Act of March 3, 1879. TABLE OF CONTENTS Greeting ........................................................................Henr y S. Han, Jr. North Face of Mount Rainier ................................................ Wolf Baiter 3 r Going to Glacier, Illustrated ............... -.................... .Har iet K. Walker 6 Members of the 1934 Summer Outing........................................................ 8 The Lake Chelan Region ............. .N. W. <J1·igg and Arthiir R. Winder 11 Map and Illustration The Climb of Foraker, Illitstrated.................................... <J. S. Houston 17 Ascent of Spire Peak ............................................... -.. .Kenneth Chapman 18 Paradise to White River Camp on Skis .......................... Otto P. Strizek 20 Glacier Recession Studies ................................................H. Strandberg 22 The Mounta,ineer Climbers................................................
    [Show full text]
  • What Can We Learn from Mount Rainier Meltwater? Claire Todd Pacific Lutheran University
    What can we learn from Mount Rainier meltwater? Claire Todd Pacific Lutheran University Emmons Glacier, White River What can we learn from Mount Rainier meltwater? Claire Todd Pacific Lutheran University Luke Weinbrecht, Elyssa Tappero, David Horne, Bryan Donahue, Matt Schmitz, Matthew Hegland, Michael Vermeulen, Trevor Perkins, Nick Lorax, Kristiana Lapo, Greg Pickard, Cameron Wiemerslage, Ryan Ransavage, Allie Jo Koester, Nathan Page, Taylor Christensen, Isaac Moening-Swanson, Riley Swanson, Reed Gunstone, Aaron Steelquist, Emily Knutsen, Christina Gray, Samantha Harrison, Kyle Bennett, Victoria Benson, Adriana Cranston, Connal Boyd, Sam Altenberger, Rainey Aberle, Alex Yannello, Logan Krehbiel, Hannah Bortel, Aerin Basehart Emmons Glacier, White River Why meltwater? • Provides a window into the subglacial environment • Water storage and drainage • Sediment generation, storage and evacuation • Interaction with the hydrothermal system Geologic Hazards Emmons Glacier, • Outburst floods and debris flows White River Volcanic hazards • (e.g., Brown, 2002; Lawler et al., 1996; Collins, 1990) Field Sites - criteria • As close to the terminus as possible, to avoid • Contribution to discharge from non-glacial streams (snowmelt) • Impact of atmospheric mixing on water chemistry • Deposition or entrainment of sediment outside of the Emmons Glacier, subglacial environment White River • Single channel, to achieve • Complete (as possible) representation of the subglacial environment Carbon Emmons Glacier, White River Glacier Field Sites – Channel
    [Show full text]
  • Mount Rainier National Park, Washington
    NATIONAL PARK . WASHINGTON MOUNT RAINIER WASHINGTON CONTENTS "The Mountain" 1 Wealth of Gorgeous Flowers 3 The Forests 5 How To Reach the Park 8 By Automobile 8 By Railroad and Bus 11 By Airplane 11 Administration 11 Free Public Campgrounds 11 Post Offices 12 Communication and Express Service 12 Medical Service 12 Gasoline Service 12 What To Wear 12 Trails 13 Fishing 13 Mount Rainier Summit Climb 13 Accommodations and Expenses 15 Summer Season 18 Winter Season 18 Ohanapecosh Hot Springs 20 Horseback Trips and Guide Service 20 Transportation 21 Tables of Distances 23 Principal Points of Interest 28 References 32 Rules and Regulations 33 Events of Historical Importance 34 Government Publications 35 UNITED STATES DEPARTMENT OF THE INTERIOR • Harold L. Ickes, Secretary NATIONAL PARK SERVICE Arno B. Cammerer, Director UNITED STATES GOVERNMENT PRINTING OFFICE • 1938 AN ALL-YEAR PARK Museums.—The park museum, headquarters for educational activities, MOUNT RAINIER NATIONAL PARK may be fully enjoyed throughout the and office of the park naturalist are located in the museum building at year. The summer season extends from early June to early November; the Longmire. Natural history displays and wild flower exhibits are main­ winter ski season, from late November well into May. All-year roads make tained at Paradise Community House, Yakima Park Blockhouse, and the park always accessible. Longmire Museum. Nisquaiiy Road is open to Paradise Valley throughout the year. During Hikes from Longmire.—Free hikes, requiring 1 day for the round trip the winter months this road is open to general traffic to Narada Falls, 1.5 are conducted by ranger naturalists from the museum to Van Trump Park, miles by trail from Paradise Valley.
    [Show full text]