Uurimusi Eesti Kliimast

Total Page:16

File Type:pdf, Size:1020Kb

Uurimusi Eesti Kliimast ( TARTU ÜLIKOOL GEOGRAAFIA INSTITUUT PUBLICATIONES INSTITUTI GEOGRAPHICI UNIVERSITATIS TARTUENSIS 93 ______ Uurimusi Eesti kliimast Toimetaja Jaak Jaagus Tartu 2003 PUBLICATIONES INSTITUTI GEOGRAPHICI UNIVERSITATIS TARTUENSIS 93 UNIVERSITY OF TARTU DEPARTMENT OF GEOGRAPHY PUBLICATIONES INSTITUTI GEOGRAPHICI UNIVERSITATIS TARTUENSIS 93 Studies on Climate of Estonia Editor Jaak Jaagus Tartu 2003 TARTU ÜLIKOOL GEOGRAAFIA INSTITUUT PUBLICATIONES INSTITUTI GEOGRAPHICI UNIVERSITATIS TARTUENSIS 93 Uurimusi Eesti kliimast Toimetaja Jaak Jaagus Tartu 2003 Väljaandja / Publisher: Tartu Ülikooli Geograafia Instituut Vanemuise 46, 51014 Tartu Eesti / Estonia [email protected] Toimetuskolleegium / Editorial advisory board: Jaak Jaagus, Hill Kulu, Ott Kurs, Ülo Mander, Tõnu Oja, Hannes Palang Toimetaja / Editor: Jaak Jaagus [email protected] Kaane kujundanud / Cover designed by Kalle Paalits © Tartu Ülikooli Geograafia Instituut ISSN 1406-3069 ISBN 9985-56-725-0 Tartu Ülikooli Kirjastus Tiigi 78, 50410 Tartu Tellimus nr. 104 Sisukord О. Kärner. Klimatoloogia - aritmeetiline rahvaluule või ratsionaalne andmetöötlus 9 A. Tarand. Tallinnas mõõdetud õhutemperatuuri aegrida 24 M. Sepp. Sünoptiline klimatoloogia: ülevaade ajaloost, arengust ja metoodikast 37 S. Keevallik. Trendid meteoroloogilistes parameetrites ja nende seos õhuvooluga vabas atmosfääris 53 J. Jaagus. Kliimamuutuse tendentsid Eestis 20. sajandi teisel poolel seostatuna muutustega atmosfääri tsirkulatsioonis 62 0. Tomingas. Atmosfääri tsirkulatsiooni indeksid Eesti jaoks ja nende seos ilmastiku kõikumistega 80 V. Truija, P. Post, J. Tuulik. Atmosfääri tsirkulatsiooni sünoptiline klassifikatsioon Läänemere piirkonnas ning selle seosed Eesti sademete ja temperatuuriga 102 V. Truija, P. Post. Peakomponentanalüüsil baseeruva atmosfääri tsirkulatsiooni klassifikatsiooni rakendamine Põhja-Euroopas 116 H. Tooming. Talve ja kevade seosed Eesti kliimas 129 J. Jaagus. Muutused Eesti rannikumere jääoludes 20. sajandi teisel poolel 143 T. Tammets. Pinnase ja õhu soojusressurssidest Võru ja Tartu andmetel 153 M. Kaasik. Kas Eesti talved on ennustatavad? 164 S. Vesselova, J. Kadaja. Hinnang Eesti ilmateenistuse temperatuuriprognoosidele.... 178 1. Ansper, C. Fortelius. HIRLAM-mudeli tuuleprognoosi hindamine Läänemerel.... 195 T. Tomson. Eesti tuule püsimuutlikkus 206 S. Keevallik. Tallinna lahe tuuled 217 T. Soomere. Tallinna lahe loodusliku lainetuse režiimist 227 A. Jaani, V. Beljazo. Peipsi veetaseme pikaajalised kõikumised ja nende Maa­ välised põhjused 242 A. Järvet. Võrtsjärve temperatuurirežiim 256 2 R. Ahas, A. Aasa. Fenoloogiliste kalendrite koostamise metoodika Kesk-ja Ida- Euroopa andmete näitel 268 V. Russak, I. Niklus. Päikesekiirguse vootiheduste suhe kui atmosfääri läbipaistvuse indikaator 288 K. Eerme, U. Veismann, R. Koppel. Erüteemsete ultraviolettkiirguse dooside tagasivaatav hindamine 295 Contents О. Kärner. Climatology - an arithmetic folklore or rational data processing? 23 A. Tarand. Time series of observed air temperature in Tallinn 30 M. Sepp. Synoptic climatology: overview of its history, development and methods 53 S. Keevallik. Trends in meteorological parameters and their relations with the wind velocity in the free atmosphere 61 J. Jaagus. Climate change tendencies in Estonia in relation with changes in atmospheric circulation during the second half of the 20th century 78 0. Tomingas. Atmospheric circulation indices for Estonia and their relationship with climatic variability 101 V. Truija, P. Post, J. Tuulik. Synoptic classification of atmospheric circulation in the region of the Baltic Sea and its connections to Estonian temperature and precipitation 113 V. Truija, P. Post. Applying an eigenvector-based classification of the atmospheric circulation for Northern Europe 128 H. Tooming. Winter-spring relationships in Estonian climate 141 J. Jaagus. Changes in sea ice conditions near the Estonian coast during the second half of the 20th century 152 T. Tammets. Evaluation of soil and air thermal resources during the heating period in Võru and Tartu 162 M. Kaasik. Are the winters in Estonia predictable? 177 S. Vesselova, J. Kadaja. Verification of temperature forecasts of Estonian weather service 193 1. Ansper, C. Fortelius. Verification of HIRLAM marine wind forecasts in the Baltic 205 T. Tomson. Steady-state variability of the Estonian wind 216 S. Keevallik. Winds on the Tallinn Bay 226 T. Soomere. Natural wave regime of Tallinn Bay 241 A. Jaani. Long-term water level fluctuations of Lake Peipsi (Chudskoe) and their extra-terrestrial reasons 254 A. Järvet. Thermal regime of Lake Võrtsjärv 267 R. Ahas, A. Aasa. Methods for compiling phenological calendars: the case study of Central and Eastern European database 287 V. Russak, I. Niklus. Beam-diffuse broadband irradiance ratio as a characteristic of atmospheric transparency 294 K. Eerme, U. Veismann, R. Koppel. Backward estimation of the erythemal ultraviolet doses 307 Publicationes Instituti Geographici Universitatis Tartuensis 93 (2003) 9-23 Klimatoloogia - aritmeetiline rahvaluule või ratsionaalne andmetöötlus? Olavi Kärner Tartu Observatoorium 1. Sissejuhatus Klimatoloogia on õpetus kliimast ja kliima (ehk ilmastu) kui nähtuse defineerimiseks on tehtud palju katseid. Seega ei tohiks olla just paha kui selles kirjatükis lähtuda ENEst: kliima on mingi paiga paljuaastane ilmade laad ja rütm; pidevalt muutuv atmosfääri seisund, mis avaldub paikkonna ilmastikus ja on vaadeldav pikema ajavahemiku (aastakümnete) ilmade statistikana. Pidevalt muutuv atmosfääri seisund sisaldab hurmavat määramatust ning kogu definitsioon mõjub sugereerivalt nagu haiku, või Ilmar Laabani hüüatus: Ilm läheb pimedaks, kui pilv teda imetab. Sellist nähtust on väga raske analüüsida, aga seda lihtsam kommenteerida eri vaatenurkadest lähtudes. Osa kommentaare nimetatakse teaduseks. Viimastest on praegu valitsev nn Globaalse Soojenemise teooria (IPCC, 1996; IPCC, 2001), mis kliima asemel tegeleb tema muutumisega. Selle lihtne ja hästi dekoreeritud põhiväide (et praegu toimub globaalne soojenemine peamiselt inimtegevuse tõttu) on tuletatud aasta keskmise kiirgusbilansi lihtsustatud interpretatsioonist. Maa kiirgusbilanss atmosfääri ülapiiril on tasakaalus, kui 70(l-/>) = F, kus 70 on atmosfääri ülapiirile langev keskmine päikseenergia hulk, p - süsteemi aluspind + atmosfäär albeedo ja F - süsteemist lahkuv soojuskiirgus, mis on võrdeline süsteemi efektiivse temperatuuri neljanda astmega. Et kasvuhoonegaasid (nagu C02) atmosfääris nõrgendavad süsteemist lahkuvat soojuskiirgust ja nende kontsentratsioon Maa atmosfääris pidevalt kasvab, arvatavalt inimtegevuse tagajärjel, ongi intriig käes - F kipub vähenema. Järelikult temperatuur peab tõusma, et bilanssi uuesti tasakaalu viia (/oja p eeldatakse siin konstantseks jäävat). Muutus lineaarse trendi kujul on kergesti mõistetav ja praegu tegeleb suur osa klimatolooge energiliselt soojenemisele kinnituste leidmisega. Seda teooriat on arvatavasti kõige enam vaja teatud suurfirmadel ja riikidel, et saada endale teaduslikke eeliseid ärimaailmas. Ilma tugeva rahalise süstita ei laiutaks muidu nii kaua teooria, mis ei tunnista ei moodsat aegridade analüüsi ega temperatuuri (vt Christy et ai, 2000) ja kiirgusmõõtmiste tulemusi satelliitidelt. Sisuliselt tunneb IPCC töörühm end hästi Laabani seltsis: Ainsa loogalöögiga loob Rrosi Selaviste oma loogelise loogika. Püüe IPCC mõtteviisi tegelikkusega sobitada viib aga tavainimese kiiresti Hendrik Visnapuu juurde: Oo, maailm, purjus jumalate okse! Enne, kui saab luua õpetust kliimast ja tema muutusest, tuleb koguda piisavalt andmeid muutlikkuse kohta Maa kliimasüsteemis (st atmo-, hüdro-, krüo- ja biosfääris). Asjaliku analüüsi tarbeks on vaja pidevalt muutuv atmosfääri seisund esitada kvantitatiivselt mõõdetavates suurustes. Õhutemperatuur on üks selliseid suurusi. Ilmade laadi ja rütmi uurimist on lihtne alustada aastasest käigust. Päiksekiirguse aastane käik mingi piirkonna jaoks toob endaga kaasa ka suure õhutemperatuuri aastase käigu, mis on esimeses lähenduses perioodiline funktsioon. Kõrvalekalded sellest keskmisest aastasest 3 9 Publicationes Instituîi Geographici Universitatis Tartuensis 93 (2003) 9-23 käigust võivad olla küllalt juhuslikud, sest nad on tingitud paljude erinevate (ener­ geetiliselt märksa nõrgemate) mõjutuste koostööst. Nii tuleb esimeses lähenduses sobitada keskmine aastane käik ja jääkide omadusi uurida statistiliste meetoditega. Statistika osa meteoroloogias on tegelikult tänamatu. Hüpoteeside kontroll väikese satsi omaduste järgi suurte kogumite omaduste selgitamiseks seisab eeldusel, et mõlemad on saadud samadel tingimustel. Meteoroloogias ei saa see eeldus kunagi kehtida, sest kliimasüsteemi käigus hoidev päiksekiirgus on pidevalt muutuv, seda nii Maa orbiidi parameetrite muutuste (Berger, Loutre, 1991) kui ka solaarkonstandi /0 enda värinate (Fröhlich, Lean, 1998a, b) tõttu. Seega on võimalik järeldusi teha vaid olemasoleva, juba mõõdetud rea piirides. Globaalsete, ajaliselt suhteliselt lühikeste temperatuuriridade muutlikkust statsionaarsuse seisukohalt vaatles Kärner (2001b). Käesolev artikkel analüüsib lokaalse temperatuuri muutlikkust samast vaatevinklist. Andmebaasina kasutatakse siin Kesk- Inglismaa õhutemperatuuri (CET) aegrida. Kesk-Inglismaa tähendab kolmnurka Bristoli, Manchesteri ja Londoni vahel ning rea moodustamise põhimõtteid selgitab Parker et ai (1992). Igapäevane õhutemperatuuri registreerimine neis jaamades algas aastal 1772, mis teeb sellest reast maailma pikima mõõdetud temperatuuride rea. 230 aastase rea muutlikkuse
Recommended publications
  • EGS Aastaraamat 2016.Cdr
    E E EESTI GEOGRAAFIA SELTSI S EESTI GEOGRAAFIA SELTSI T I G E O G R A A F I A S E L T S I A A KÖIDE S KÖIDE 41. T 41. A R A A M A T 4 1 . k ö i d e ISSN 0202 - 1811 EESTI GEOGRAAFIA SELTSI AASTARAAMAT 41. köide ESTONIAN GEOGRAPHICAL SOCIETY YEARBOOK OF THE ESTONIAN GEOGRAPHICAL SOCIETY VOL. 41 Edited by Arvo Järvet TALLINN 2016 EESTI GEOGRAAFIA SELTSI AASTARAAMAT 41. KÖIDE Toimetanud Arvo Järvet TALLINN 2016 YEARBOOK OF THE ESTONIAN GEOGRAPHICAL SOCIETY VOL. 41 EESTI GEOGRAAFIA SELTSI AASTARAAMAT 41. KÖIDE Edited by: Arvo Järvet Toimetaja: Arvo Järvet Aastaraamatu väljaandmist on toetanud Tartu Ülikooli geograafia osakond Autoriõigus: Eesti Geograafia Selts, 2016 ISSN 0202-1811 Eesti Geograafia Selts Kohtu 6 10130 Tallinn www.egs.ee Trükitud OÜ Vali Press SAATEKS Eelmisel aastal jõudis Eesti Geograafia Selts 60. juubelini, mida me hilissügisel ka väärikalt tähistasime. EGSi aastaraamatu viljapõllult on võetud 40 lõikust ja käesoleva väljaandega algab viies kümnend. Geo- graafide aastaraamat on meie rahvuslik kultuuripärand, looming ja endale kindla koha leidnud väljaanne. Esimese EGSi aastaraamatu ”Saateks” lõpetab lause: ”Eesti Geograafia Selts loodab, et tema aastaraamat, mille eesmärgiks on kaasa aidata geograafilise uurimistöö ja kodu-uurimise arengule, koondab enda ümber arvuka kaastööliste-geograafide pere.” Paljuski tänu EGSi aastaraamatule on kestnud eesti ja Eestiga seotud geograafilise uurimistöö talletamine omakeelses kirjasõnas tänapäevani. Aastaraamatute mahust on suurema osa hõlmanud uurimused Eesti geo- graafia alalt, mis on ka loomulik, sest rahvuslik väljaanne peabki esmalt avaldama kodumaaga seotud uurimistulemusi. Esimene EGSi aastaraamat ilmus trükist kaks aastat pärast seltsi asutamist ja sisaldas ülevaateartikleid loodus-, majandus- ja kooligeograafia olukor- rast ning edasiarendamise perspektiividest Eestis.
    [Show full text]
  • Data Assimilation of Sea Surface Temperature and Salinity Using Basin
    Data assimilation of sea surface temperature and salinity using basin- scale EOF reconstruction: a feasibility study in the NE Baltic Sea Mihhail Zujev1, Jüri Elken1, Priidik Lagemaa1 1Department of Marine Systems, Tallinn University of Technology, Tallinn, EE12618, Estonia 5 Correspondence to: Jüri Elken ([email protected]) Abstract. The tested data assimilation (DA) method based on EOF (Empirical Orthogonal Functions) reconstruction of observations decreased centred root-mean-square difference (RMSD) of surface temperature (SST) and salinity (SSS) in reference to observations in the NE Baltic Sea by 22% and 34%, respectively, compared to the control run without DA. The method is based on the covariance estimates from long period model data. The amplitudes of the pre-calculated dominating 10 EOF modes are estimated from point observations using least-squares optimization; the method builds the variables on a regular grid. The study used large number of in situ FerryBox observations along four ship tracks from 1 May to 31 December 2015, and observations from research vessels. Within DA, observations were reconstructed as daily SST and SSS maps on the coarse grid with a resolution of 5 10 arc minutes by N and E (ca 5 nautical miles) and subsequently were interpolated to the fine grid of the prognostic model with a resolution of 0.5 1 arc minutes by N and E (ca 0.5 nautical miles). The fine grid 15 observational fields were used in the DA relaxation scheme with daily interval. DA with EOF reconstruction technique was found feasible for further implementation studies, since: 1) the method that works on the large-scale patterns (mesoscale features are neglected by taking only the gravest EOF modes) improves the high-resolution model performance by comparable or even better degree than in the other published studies, 2) the method is computationally effective.
    [Show full text]
  • Destination: Estonia
    E S T Destination: O N Estonia I Relocation Guide A REPUBLIC OF ESTONIA CAPITAL Tallinn AREA 45,227 sq. km POPULATION 1,315,000 CURRENCY ONE SMALL NORDIC COUNTRY, Euro COUNTLESS REASONS TO FALL IN LOVE. 1. COUNTRY OVERVIEW 2. MOVING TO ESTONIA 6. EDUCATION 7. HEALTHCARE 4 Key Facts and Figures 16 Residence Permits 50 Pre-school Education 60 Health Insurance 7 Geography 21 Moving Pets 52 Basic Education 62 Family Physicians 8 Climate and Weather 22 Moving Your Car 54 Secondary Education 64 Specialised Medical Care 10 Population 56 Language Immersion Programmes 65 Dental Care CONTENTS 11 Language 56 Higher Education 66 Emergency Rooms and Hospitals 12 Religion 58 Continuous Education 13 Politics and Government 14 Public Holidays 14 Flag Days in Estonia 3. HOUSING 4. WORKING 5. TAXES AND BANKING 8. TRANSPORT 9. EVERYDAY LIFE 24 Renting Property 36 Work Permits 46 General Taxes 68 Driving in Estonia 84 e-Estonia 26 Buying and Selling Immovable Property 38 Employment Contracts 47 Income Tax 74 Your Car 86 Media 28 Utilities 40 Setting Up a Company 48 Everyday Banking 77 Parking 88 Shopping 31 Telecom Services 42 Finding a Job 78 Public Transport 90 Food 33 Postal Services 82 Taxis 91 Eating out 34 Moving Inside Estonia 92 Health and Beauty Services 35 Maintenance of Sidewalks 93 Sports and Leisure 94 Cultural Life 96 Travelling in Estonia On the cover: Reet Aus PhD, designer. Lives and works in Estonia. Photo by Madis Palm The Relocation Guide was written in cooperation with Talent Mobility Management www.talentmobility.ee 1.
    [Show full text]
  • Statistics of Different Public Forecast Products of Temperature and Precipitation in Estonia
    174 Proceedings of the Estonian Academy of Sciences, 2014, 63, 2, 174–182 Proceedings of the Estonian Academy of Sciences, 2014, 63, 2, 174–182 doi: 10.3176/proc.2014.2.07 Available online at www.eap.ee/proceedings Statistics of different public forecast products of temperature and precipitation in Estonia Sirje Keevallika*, Natalja Spirinab, Eva-Maria Sulab, and Inga Vauc a Marine Systems Institute at Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia b Estonian Environment Agency, Mustamäe tee 33, 10616 Tallinn, Estonia c Estonian Information Technology College, Raja 4c, 12616 Tallinn, Estonia Received 30 October 2013, revised 10 March 2014, accepted 2 April 2014, available online 20 May 2014 Abstract. Day (0600–1800 UTC) maximum and night (1800–0600 UTC) minimum temperature forecasts as well as prediction of the occurrence of precipitation are evaluated for different sites in Estonia: southern coast of the Gulf of Finland (Tallinn), West- Estonian archipelago (Kuressaare), and inland Estonia (Tartu). The forecasts are collected from Estonian weather service. Several traditional verification methods are used, first of all reliability (root mean square error (RMSE)) and validity (mean error (ME)). Detailed analysis is carried out by means of the contingency tables that enable the user to calculate percent correct, percent underestimated, and percent overestimated. The contingency tables enable the user to calculate conditional probabilities of the realizations of certain forecasts. The paper is user-oriented and does not analyse the forecast technique. On the other hand, attention is drawn to the subjectivity of such evaluation, as the results may depend on the forecast presentation style and/or on the choice of the features of the meteorological parameter under consideration.
    [Show full text]
  • Dear Sir/Madam: We Sincerely Thank the Referees for Their Detailed Comments That Greatly Helped Us to Improve the Manuscript
    Dear Sir/Madam: We sincerely thank the Referees for their detailed comments that greatly helped us to improve the manuscript. We have given careful consideration to all remarks and have expanded some sections of the paper. Also, we have carefully edited the entire text and removed several minor issues and typos. 5 The comments of Referees are represented using normal font below and our response and a description of corrections using italics. Sincerely Tarmo Soomere, Katri Pindsoo and Maris Eelsalu 03 November 2019 10 Anonymous Referee #1 (Received and published: 3 June 2019) The study is aimed to investigate the alongshore variability of the empirical statistical distribution of maximum wave set-up occurrence in a morphologically complicated situation. The area in exam is embedded in the Gulf of Finland, in the eastern Baltic Sea. The selected shoreline has been divided in very small segments, each 15 containing the coastal grid output of a triply nested climatological run of the WAve Model. The maximum set-up has been calculated algebraically from the properties of the wave field at the breaker line, the water depth and the orientation of the shoreline in each segment for each member of the climatology. At each segment, the frequency of occurrence is then plotted against the simulated maximum wave set-up and a quadratic-exponent (three- parameter) law is fitted to the data. In 3/4 of the segments the higher-order coefficient is found equal to zero at 20 the 95% confidence level. In all the other cases, the leading quadratic coefficient is not null at the 95% confidence level, so a Wald (invert Gaussian) distribution is assumed.
    [Show full text]
  • Useful Information for Living in Tallinn/Estonia
    1 1 USEFUL INFORMATION FOR LIVING IN TALLINN /ESTONIA 2 3 GENERAL INFORMATION .........................................................4 ✘ CLIMATE ...................................................................................................................... 5 ✘ HOLIDAYS AND CUSTOMS ................................................................................................. 5 ✘ ARRIVING & SETTLING IN .................................................................................................. 6 ✘ EMERGENCY SERVICES ..................................................................................................... 7 ✘ USEFUL INFORMATION SITES, NUMBERS & NEWSPAPERS .......................................................... 8 MEDICAL SERVICES & E MERGENCIES ........................................ 11 TRANSPORT & COMMUNI CATIONS .......................................... 16 ESTONIA WITH CHILDRE N ...................................................... 22 ✘SCHOOLS & PRE-SCHOOLS .............................................................................................. 22 ✘ WHERE TO GO WITH KIDS ............................................................................................... 23 TOUR IST INFORMATION ........................................................ 27 C U L T U R E & ENTERTAINMENT .................................................. 30 ✘ EVENT & PLACE INFORMATION ....................................................................................... 30 ✘ CULTURAL EVENTS MONTHLY ........................................................................................
    [Show full text]
  • Indigenous and Alien Vascular Plant Species in a Northern European Urban Setting (Tallinn, Estonia)
    Proceedings of the Estonian Academy of Sciences, 2015, 64, 3, 1–9 Proceedings of the Estonian Academy of Sciences, 2016, 65, 4, 431–441 doi: 10.3176/proc.2016.4.09 Available online at www.eap.ee/proceedings Indigenous and alien vascular plant species in a northern European urban setting (Tallinn, Estonia) Tiina Elvisto*, Margus Pensa, and Elo Paluoja School of Natural Sciences and Health, Tallinn University, Narva mnt. 25, 10120 Tallinn, Estonia Received 16 November 2015, revised 15 January 2016, accepted 18 January 2016, available online 28 November 2016 © 2016 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution- NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/). Abstract. In recent decades ecologists have accorded special attention to urban areas as loci for the introduction and possible invasion of alien species. Data are lacking on urban flora that would allow having an overview of these phenomena in the Baltic Sea region including in all Scandinavia. This study seeks to address this missing information by establishing the species composition of indigenous and spontaneous alien vascular plants on the territory of Tallinn city, Estonia, and comparing the presence of alien species in the city’s greenery-rich areas with their presence more generally in Tallinn. In order to accomplish this, vegetation inventories were conducted on 10 greenery-rich 1 km² quadrants in the city and then a database of vascular plant species in Tallinn was compiled using these data together with those from other studies. Inventory data analysed using non- metric multidimensional ordination and permutation tests produced a comparison of indigenous to alien species for the whole of Tallinn.
    [Show full text]
  • Download Full Text (Pdf)
    Contents 2 Foreword 4 Acknowledgement 5 Reader’s Guide and How to Use This Report 7 Supplementary Data 9 Conclusions 10 Abbreviations 14 Chapter 1 District Heating and Potential Heat Sources in 15 the Baltic States Key findings 15 District heating today 16 Heat pumps today 27 Characteristics of existing district heating areas 34 High-temperature heat sources 37 Low-temperature heat sources 43 Excess heat potential of heat sources used by large-scale heat 52 pumps Low-temperature heat source potential based on GIS 60 proximity analysis Example of three district heating areas with access to heat 62 sources Chapter 2 Modelling the Future of Power and Heat 66 Supply in the Baltic States with Heat Pumps Key findings 66 Previous modelling results relevant for HPs in future energy 67 scenarios in the Baltics Current practice of heat pump representation in energy 75 planning Our modelling approaches 79 2 Energy system development 89 Scenario analysis of the future of district heating in the Baltics 92 Summary of results for each Baltic state 97 Sensitivity analysis 108 Chapter 3 Drivers Behind Widespread Adoption of Heat 111 Pumps and Cooling Technologies Key findings 111 Power-to-heat technologies and their drivers 112 Danish experiences on large-scale heat pumps for district 132 heating Large-scale heat pumps for district cooling 143 A potential Baltic path for large-scale heat pumps 149 Chapter 4 Socio-Economic Impact of Power-to-Heat 151 Solutions on the Heating Sector Key findings 151 Impact on individual consumers when switching to 152 power-2-heat
    [Show full text]
  • Analysis of the Spatio-Temporal Variability of Air Temperature Near the Ground Surface in the Central Baltic Area from 2005 to 2019
    atmosphere Article Analysis of the Spatio-Temporal Variability of Air Temperature Near the Ground Surface in the Central Baltic Area from 2005 to 2019 Agu Eensaar Centre for Sciences, Tallinn University of Applied Sciences, Pärnu mnt 62, 10135 Tallinn, Estonia; [email protected] Abstract: In this study, we analyzed the changes in the average daily, monthly, seasonal, and annual surface air temperatures based on the temperature data obtained from seven stations (1 January 2005– 31 December 2019; 15 years) belonging to the central Baltic area (Stockholm, Tallinn, Helsinki, Narva, Pärnu, Tartu, and Võru). The statistical analysis revealed that there was a strong correlation between the daily average surface air temperature of the studied cities (range: 0.95–0.99). We analyzed the frequency distribution of the average surface air temperatures in addition to the Kruskal–Wallis and Dunn’s tests (significance level of 0.05) to demonstrate that the difference in air temperatures between Narva, Tallinn, Tartu, and Stockholm are critical. The Welch’s t-test (significance level 0.05), used to study the differences in the average monthly air temperature of the cities in question, showed that the surface air temperatures in Stockholm do not differ from Tallinn air temperatures from May to August. However, the surface air temperatures of Narva were similar to those of Tallinn in September. According to our results, the trends in the changes of monthly average surface air temperatures have a certain course during the year (ranging from 1.8 ◦C (Stockholm) to 4.5 ◦C (Võru and Tartu) per decade in February).
    [Show full text]
  • Spectral Actinometry at SMEAR-Estonia
    https://doi.org/10.5194/acp-2020-1173 Preprint. Discussion started: 22 December 2020 c Author(s) 2020. CC BY 4.0 License. Measurement report: Spectral actinometry at SMEAR-Estonia Andres Kuusk1 and Joel Kuusk1 1Tartu Observatory, University of Tartu, 61602 Tõravere, Estonia Correspondence: Andres Kuusk ([email protected]) 1 https://doi.org/10.5194/acp-2020-1173 Preprint. Discussion started: 22 December 2020 c Author(s) 2020. CC BY 4.0 License. Abstract. Systematic spectral measurements of downwelling solar radiation,both of global and diffuse, have been collected in summer- time during 8 years in the hemi-borealzone in south east Estonia near the SMEAR-Estonia research station. The measurements provided information about the variation of spectral and total fluxes of downwelling hemispherical global and diffuse solar ra- 5 diation in the wavelength range from 300 to 2160 nm with spectral resolution of 3 nm in UV to 16 nm in SWIR spectral regions. Unique data have been collected and quantitative description of the variability of the measured spectra is provided. For the description of the synoptic situation during measurements, instead of cloud cover, the ratio of measured to possible total flux in the spectral range of 320–1800 nm is used. This ratio could be used as the primary meteorological parameter instead of cloud cover which is difficult to measure instrumentally. 10 1 Introduction Measurements of global and diffuse downwelling radiation are carried out in Estonia at Tartu-Tõravere actinometric station of Estonian Weather Service since 1955 (Russak and Kallis, 2003). Both, global and diffuse irradiance are measured with pyranometers which are spectrally integrating sensors.
    [Show full text]
  • Minifacts About Estonia 2014 107X155.Indd
    MINIFACTS ABOUT ESTONIA Contents Republic of Estonia 2 Nature 4 Population 6 Culture 10 Public health 12 Education 16 Labour market 18 Labour costs and wages 22 Gross domestic product 24 Finance 28 Foreign trade 34 Industry 38 Agriculture 42 Energy 44 Research and development 46 Information technology 48 Tourism 52 Data sources. Web sites on Estonia 54 Republic of Estonia The Republic of Estonia is a parliamentary republic. The Head of State is the President, elected for fi ve years. The incumbent President is Toomas Hendrik Ilves who was elected for a new tenure on 29 August 2011. National legislature is a unicameral Parliament of 101 members – it is called the Riigikogu and is elected for a term of four years. The 12th Riigikogu was elected on 6 March 2011. The Republic of Estonia was proclaimed on 24 February 1918. In November of the same year, the War of Independence started, which ended on 2 February 1920 when the Tartu Peace Treaty was signed and Soviet Russia recognised the independence of the Republic of Estonia. On 22 September 1921, Estonia became a member of the League of Nations. During World War II, the Republic of Estonia lost its independence – fi rst it was occupied by the Soviet Union (1940–1941) and then by Germany (1941–1944). In autumn 1944, the Republic of Estonia was annexed by the Soviet Union for nearly 50 years. The occupation period lasted for decades and culminated with the Singing Revolution in 1988. The restoration of Estonian independence was declared on 20 August 1991. The Republic of Estonia is a member of the United Nations since 17 September 1991, a member of NATO since 29 March 2004 and a member of the European Union since 1 May 2004.
    [Show full text]
  • FULLTEXT01.Pdf
    http://www.diva-portal.org This is the published version of a paper published in Atmosphere. Citation for the original published paper (version of record): Orru, K., Tillmann, M., Ebi, K L., Orru, H. (2018) Making Administrative Systems Adaptive to Emerging Climate Change-Related Health Effects: Case of Estonia Atmosphere, 9(6): 221 https://doi.org/10.3390/atmos9060221 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-150862 atmosphere Article Making Administrative Systems Adaptive to Emerging Climate Change-Related Health Effects: Case of Estonia Kati Orru 1,*, Mari Tillmann 2, Kristie L. Ebi 3 and Hans Orru 4,5 ID 1 Institute of Social Sciences, University of Tartu, Lossi 36, 51003 Tartu, Estonia 2 Estonian Police and Border Guard Board, Pärnu mnt 139, 15060 Tallinn, Estonia; [email protected] 3 Department of Global Health, University of Washington, Seattle, WA 98105, USA; [email protected] 4 Institute of Family Medicine and Public Health, University of Tartu, Ravila 19, 50411 Tartu, Estonia; [email protected] 5 Department of Public Health and Clinical Medicine, Umea University, 901 87 Umea, Sweden * Correspondence: [email protected]; Tel.: +372-737-5188 Received: 30 April 2018; Accepted: 5 June 2018; Published: 9 June 2018 Abstract: To facilitate resilience to a changing climate, it is necessary to go beyond quantitative studies and take an in-depth look at the functioning of health systems and the variety of drivers shaping its effectiveness.
    [Show full text]