A Microrna Feedback Circuit in Midbrain Dopamine Neurons

Total Page:16

File Type:pdf, Size:1020Kb

A Microrna Feedback Circuit in Midbrain Dopamine Neurons REPORTS rins, is not sufficient to colocalize these proteins at tacts, potentially increasing the local level of 22. Z. Wang et al., Science 304, 1164 (2004). the cell junctions. The PTPs generally have little phosphatase activity. Because of the high affinity 23. J. A. Besco, R. Hooft van Huijsduijnen, A. Frostholm, A. Rotter, Brain Res. 1116, 50 (2006). substrate specificity, and they rely on noncatalytic of the trans interaction, the balance between cell 24. M. Fuchs, T. Muller, M. M. Lerch, A. Ullrich, J. Biol. Chem. domains to control their subcellular distribution adhesion versus mobility can only be shifted by 271, 16712 (1996). and therefore indirectly regulate their activity by the action of the ADAM 10 protease (14). In both 25. G. C. M. Zondag, A. B. Reynolds, W. H. Moolenaar, J. Biol. restricting access to particular substrates at de- CD45 and RPTPm, however, ectodomain size and Chem. 275, 11264 (2000). 6 32 26. S. M. Brady-Kalnay et al., J. Cell Biol. 141, 287 (1998). fined locations ( , ). RPTPs are known to be rigidity appear to provide a mechanism to allow 27. X. F. Sui et al., Am. J. Pathol. 166, 1247 (2005). constitutively active, and ligand-induced inactiva- cell-cell spacings to regulate intercellular multi- 28. K. Miyaguchi, J. Struct. Biol. 132, 169 (2000). tion has been reported for type I and IV subfam- molecular assemblies. 29. T. J. Boggon et al., Science 296, 1308 (2002). ilies. Such a mechanism is unlikely to apply to type 30. L. A. Staehelin, Int. Rev. Cytol. 39, 191 (1974). IIB RPTPs, where an active enzyme would be References and Notes 31. W. He, P. Cowin, D. L. Stokes, Science 302, 109 (2003). 32. I. A. Yudushkin et al., Science 315, 115 (2007). required to maintain cadherin-catenin complexes 1. M. Perez-Moreno, C. Jamora, E. Fuchs, Cell 112, 535 (2003). 33. S. J. Davis, P. A. van der Merwe, Nat. Immunol. 7, 803 in a dephosphorylated state and thus contribute to 2. B. M. Gumbiner, Nat. Rev. Mol. Cell Biol. 6, 622 (2005). (2006). the stability of cell contacts (2). In this context, for 3. J. L. Sallee, E. S. Wittchen, K. Burridge, J. Biol. Chem. 34. K. Choudhuri, D. Wiseman, M. H. Brown, K. Gould, type IIB RPTPs, the ectodomain-mediated trans 281, 16189 (2006). P. A. van der Merwe, Nature 436, 578 (2005). 35. Single-letter abbreviations for the amino acid residues are homophilic interactions appear to represent the 4. R. L. Del Vecchio, N. K. Tonks, J. Biol. Chem. 280, 1603 (2005). as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; driving force for correct localization and function. 5. M. F. Gebbink et al., J. Cell Biol. 131, 251 (1995). H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; Our results on RPTPm suggest how the type 6. N. K. Tonks, Nat. Rev. Mol. Cell Biol. 7, 833 (2006). R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. IIB RPTPs modulate the stability of adherens 7. J. Besco, M. C. Popesco, R. V. Davuluri, A. Frostholm, 36. T. Maretzky et al., Proc. Natl. Acad. Sci. U.S.A. 102, 9182 A. Rotter, BMC Genomics 5, 14 (2004). (2005). junctions (Fig. 4). The ectodomain trans interac- m 8. A. R. Aricescu et al., EMBO J. 25, 701 (2006). 37. Coordinates and structure factors of eRPTP have been tionisswitchedoffatacidpH(8, 18) (i.e., until deposited in the PDB (www.rcsb.org) with the accession m 9. A. R. Aricescu, W. Lu, E. Y. Jones, Acta Crystallogr. D 62, RPTP reaches the cell surface). The rigid, ruler- 1243 (2006). number 2V5Y. We thank the staff of the ID 29 beamline like ectodomain then acts as a sensor of inter- 10. V. T. Chang et al., Structure 15, 267 (2007). at the European Synchrotron Radiation Facility for m cellular distances, matching cadherin-mediated 11. Materials and methods are available as supporting assistance with data collection; M. Gebbink for the RPTP material on Science Online. cDNA; P. Reeves and H. G. Khorana for the human cell contacts, at which point the trans interaction – – 12. V. Soroka et al., Structure 11, 1291 (2003). embryonic kidney 293S GnTI cell line; M. Shaw for serves as a spacer clamp, locking the phosphatase 13. M. Campan et al., Biochemistry 35, 3797 (1996). assistance with EM imaging; and J. Brown, M. Crispin, activity into proximity with the target substrates. 14. L. Anders et al., Mol. Cell. Biol. 26, 3917 (2006). W.-C. Hon, and D. Stuart for discussions. The work was The spacer-clamp action of RPTPm represents the 15. V. B. Cismasiu, S. A. Denes, H. Reilander, H. Michel, funded by Cancer Research UK (CR-UK). E.Y.J. is a CR-UK Principal Research Fellow. inverse strategy to the size-exclusion mechanism S. E. Szedlacsek, J. Biol. Chem. 279, 26922 (2004). 16. S. M. Brady-Kalnay, A. J. Flint, N. K. Tonks, J. Cell Biol. proposed to regulate the cell surface location of 122, 961 (1993). Supporting Online Material www.sciencemag.org/cgi/content/full/317/5842/1217/DC1 another RPTP, CD45; in that case, the mismatch 17. J. Cheng et al., J. Biol. Chem. 272, 7264 (1997). Materials and Methods between the RPTP ectodomain and the inter- 18. M. F. Gebbink et al., J. Biol. Chem. 268, 16101 (1993). 19. G. C. M. Zondag et al., J. Biol. Chem. 270, 14247 (1995). Figs. S1 to S6 cellular spacing is thought to contribute to T cell Table S1 20. J. Sap, Y. P. Jiang, D. Friedlander, M. Grumet, J. Schlessinger, References signaling by expelling the phosphatase activity Mol. Cell. Biol. 14, 1 (1994). from local zones of cell-cell contact (33, 34). 21. M. Fuchs, H. Wang, T. Ciossek, Z. Chen, A. Ullrich, Mech. 4 May 2007; accepted 17 July 2007 Unlike CD45, RPTPm is maintained at cell con- Dev. 70, 91 (1998). 10.1126/science.1144646 the differentiation of murine embryonic stem A MicroRNA Feedback Circuit (ES) cells into DNs (4, 5). An ES cell line was obtained that expresses Dicer enzyme condition- in Midbrain Dopamine Neurons ally [containing LoxP recombinase sites that flank both chromosomal copies of the Dicer Jongpil Kim,1 Keiichi Inoue,1 Jennifer Ishii,1 William B. Vanti,1 Sergey V. Voronov,1 gene, herein termed floxed Dicer (6)]. Introduc- Elizabeth Murchison,2 Gregory Hannon,2 Asa Abeliovich1* tion of Cre recombinase into these cells by lentiviral transduction leads to the deletion of MicroRNAs (miRNAs) are evolutionarily conserved, 18- to 25-nucleotide, non–protein coding Dicer in nearly 100% of cells (fig. S1A). transcripts that posttranscriptionally regulate gene expression during development. miRNAs also ES cultures were differentiated to a midbrain occur in postmitotic cells, such as neurons in the mammalian central nervous system, but their DN phenotype using the embryoid body (EB) function is less well characterized. We investigated the role of miRNAs in mammalian midbrain protocol (fig. S1B) (5, 7). Cre-mediated deletion dopaminergic neurons (DNs). We identified a miRNA, miR-133b, that is specifically expressed in of Dicer at a stage when postmitotic DNs first midbrain DNs and is deficient in midbrain tissue from patients with Parkinson’s disease. miR-133b arise led to a nearly complete loss of DN accu- regulates the maturation and function of midbrain DNs within a negative feedback circuit that mulation, as quantified by the expression of includes the paired-like homeodomain transcription factor Pitx3. We propose a role for this markers including tyrosine hydroxylase (TH) feedback circuit in the fine-tuning of dopaminergic behaviors such as locomotion. (Fig. 1A). Other mature neuronal classes, includ- ing GABAergic neurons, were reduced in these icroRNAs (miRNAs) are derived from Midbrain dopaminergic neurons (DNs) play a long primary transcripts through se- central role in complex behaviors such as reward 1Departments of Pathology and Neurology, Center for Mquential processing by the Drosha and addiction, and these cells are lost in Par- Neurobiology and Behavior, and Taub Institute, Columbia ribonuclease and the Dicer enzyme (1). In the kinson’s disease. A number of transcription fac- University, College of Physicians and Surgeons 15-403, 630 West 168th Street, New York, NY 10032, USA. context of an RNA-induced silencing complex, tors have been identified that regulate midbrain 2 3 Watson School of Biological Sciences, Cold Spring Harbor miRNAs guide the cleavage of target mRNAs DN development, function, and survival ( ). Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY and/or inhibit their translation. miRNAs regulate However, the role of posttranscriptional mecha- 11724, USA. developmental cell fate decisions in the nervous nisms is unknown. To establish a function for *To whom correspondence should be addressed. E-mail: system and elsewhere (2). miRNAs, we first used an in vitro model system: [email protected] 1220 31 AUGUST 2007 VOL 317 SCIENCE www.sciencemag.org REPORTS Fig. 1. Dicer is essential for the midbrain DN phenotype. (A) Floxed Dicer conditional knockout ES cultures (flx/flx) were differentiated by the EB method, transduced with Cre or control green fluorescent protein (GFP) lentivirus, and analyzed by immunostaining with antibodies specific for TH (red), TujI (green), and GABA (blue). Cultures transduced with a lentiviral Cre vector (vCre) but not control GFP lentivirus (vGFP) were essentially devoid of TH+ neurons, whereas TujI+ and GABA+ cells were re- duced by approximately 40 to 60%. (n =3independent samples per group). Scale bar, 100 mm. Data represent mean ± SEM; analysis loss of 90% of midbrain DNs in the substantia nigra (SN) and ventral of variance (ANOVA) test, *P <0.05.(B) The Dicer deletion phenotype, as in tegmental area (VTA) and their axonal projections to the striatum relative to (A), can be “rescued” by transfection of midbrain-derived small RNAs (<200 control littermates (DATCRE/+:Dicer flox/+)(n = 3 for each genotype).
Recommended publications
  • A Heterozygous Variant in the Human Cardiac Mir-133 Gene, MIR133A2, Alters Mirna Duplex Processing and Strand Abundance
    Ohanian et al. BMC Genetics 2013, 14:18 http://www.biomedcentral.com/1471-2156/14/18 RESEARCH ARTICLE Open Access A heterozygous variant in the human cardiac miR-133 gene, MIR133A2, alters miRNA duplex processing and strand abundance Monique Ohanian1†, David T Humphreys2,3†, Elizabeth Anderson4, Thomas Preiss5 and Diane Fatkin1,2,3,6* Abstract Background: MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Sequential cleavage of miRNA precursors results in a ~22 nucleotide duplex of which one strand, the mature miRNA, is typically loaded into the RNA-induced silencing complex (RISC) while the passenger strand is degraded. Very little is known about how genetic variation might affect miRNA biogenesis and function. Results: We re-sequenced the MIR1-1, MIR1-2, MIR133A1, MIR133A2, and MIR133B genes, that encode the cardiac- enriched miRNAs, miR-1 and miR-133, in 120 individuals with familial atrial fibrillation and identified 10 variants, including a novel 79T > C MIR133A2 substitution. This variant lies within the duplex at the 30 end of the mature strand, miR-133a-3p, and is predicted to prevent base-pairing and weaken thermostability at this site, favoring incorporation of the passenger strand, miR-133a-5p, into RISC. Genomic DNA fragments containing miR-133a-2 precursor sequences with 79T and 79C alleles were transfected into HeLa cells. On Northern blotting the 79T allele showed strong expression of miR-133a-3p with weak expression of miR-133a-5p. In contrast, the 79C allele had no effect on miR-133a-3p but there was a significant increase (mean 3.6-fold) in miR-133a-5p levels.
    [Show full text]
  • The Role of TGFβ Type III Receptor in Lung Cancer Cell Migration And
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-26-2018 1:00 PM The role of TGFβ type III receptor in lung cancer cell migration and invasion Anthony Ziccarelli The University of Western Ontario Supervisor Di Guglielmo, John The University of Western Ontario Graduate Program in Physiology and Pharmacology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Anthony Ziccarelli 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Recommended Citation Ziccarelli, Anthony, "The role of TGFβ type III receptor in lung cancer cell migration and invasion" (2018). Electronic Thesis and Dissertation Repository. 5454. https://ir.lib.uwo.ca/etd/5454 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i Abstract Metastasis is responsible for 90% of cancer-related deaths. An important early step in the metastatic process is epithelial-to-mesenchymal transition (EMT) of tumor cells. Stimulated by TGFβ signaling, cells that undergo EMT have increased migratory and invasive potential, resulting in metastasis and the development of tumors at a secondary site. The TGFβ type 3 receptor (TβR3) has been implicated in modulating TGFβ signaling, yet its functional outcomes remain unclear. My findings demonstrated that TβR3 silencing does not alter TGFβ-dependent Smad2 phosphorylation in neither H1299, not A549 non- small cell lung carcinoma cells but reduces Smad2 expression in H1299 cells.
    [Show full text]
  • NLRP3 Inflammasome at the Interface of Inflammation, Endothelial
    cells Review NLRP3 Inflammasome at the Interface of Inflammation, Endothelial Dysfunction, and Type 2 Diabetes Ilona M. Gora *, Anna Ciechanowska and Piotr Ladyzynski Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; [email protected] (A.C.); [email protected] (P.L.) * Correspondence: [email protected] Abstract: Type 2 diabetes mellitus (T2DM), accounting for 90–95% cases of diabetes, is characterized by chronic inflammation. The mechanisms that control inflammation activation in T2DM are largely unexplored. Inflammasomes represent significant sensors mediating innate immune responses. The aim of this work is to present a review of links between the NLRP3 inflammasome, endothelial dys- function, and T2DM. The NLRP3 inflammasome activates caspase-1, which leads to the maturation of pro-inflammatory cytokines interleukin 1β and interleukin 18. In this review, we characterize the structure and functions of NLRP3 inflammasome as well as the most important mechanisms and molecules engaged in its activation. We present evidence of the importance of the endothelial dysfunction as the first key step to activating the inflammasome, which suggests that suppressing the NLRP3 inflammasome could be a new approach in depletion hyperglycemic toxicity and in averting the onset of vascular complications in T2DM. We also demonstrate reports showing that the expression of a few microRNAs that are also known to be involved in either NLRP3 inflammasome activation or endothelial dysfunction is deregulated in T2DM. Collectively, this evidence suggests that T2DM is an inflammatory disease stimulated by pro-inflammatory cytokines. Finally, studies revealing the role of glucose concentration in the activation of NLRP3 inflammasome are analyzed.
    [Show full text]
  • Noncoding Rnas As Novel Pancreatic Cancer Targets
    NONCODING RNAS AS NOVEL PANCREATIC CANCER TARGETS by Amy Makler A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2018 Copyright 2018 by Amy Makler ii ACKNOWLEDGEMENTS I would first like to thank Dr. Narayanan for his continuous support, constant encouragement, and his gentle, but sometimes critical, guidance throughout the past two years of my master’s education. His faith in my abilities and his belief in my future success ensured I continue down this path of research. Working in Dr. Narayanan’s lab has truly been an unforgettable experience as well as a critical step in my future endeavors. I would also like to extend my gratitude to my committee members, Dr. Binninger and Dr. Jia, for their support and suggestions regarding my thesis. Their recommendations added a fresh perspective that enriched our initial hypothesis. They have been indispensable as members of my committee, and I thank them for their contributions. My parents have been integral to my successes in life and their support throughout my education has been crucial. They taught me to push through difficulties and encouraged me to pursue my interests. Thank you, mom and dad! I would like to thank my boyfriend, Joshua Disatham, for his assistance in ensuring my writing maintained a logical progression and flow as well as his unwavering support. He was my rock when the stress grew unbearable and his encouraging words kept me pushing along.
    [Show full text]
  • Number 12 December 2010
    VolumeVolume 14 1 - -Number Number 12 1 MayDecember - September 2010 1997 Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Scope The Atlas of Genetics and Cytogenetics in Oncology and Haematology is a peer reviewed on-line journal in open access, devoted to genes, cytogenetics, and clinical entities in cancer, and cancer-prone diseases. It presents structured review articles ("cards") on genes, leukaemias, solid tumours, cancer-prone diseases, more traditional review articles on these and also on surrounding topics ("deep insights"), case reports in hematology, and educational items in the various related topics for students in Medicine and in Sciences. Editorial correspondance Jean-Loup Huret Genetics, Department of Medical Information, University Hospital F-86021 Poitiers, France tel +33 5 49 44 45 46 or +33 5 49 45 47 67 [email protected] or [email protected] Staff Mohammad Ahmad, Mélanie Arsaban, Houa Delabrousse, Marie-Christine Jacquemot-Perbal, Maureen Labarussias, Vanessa Le Berre, Anne Malo, Catherine Morel-Pair, Laurent Rassinoux, Sylvie Yau Chun Wan - Senon, Alain Zasadzinski. Philippe Dessen is the Database Director, and Alain Bernheim the Chairman of the on-line version (Gustave Roussy Institute – Villejuif – France). The Atlas of Genetics and Cytogenetics in Oncology and Haematology (ISSN 1768-3262) is published 12 times a year by ARMGHM, a non profit organisation, and by the INstitute for Scientific and Technical Information of the French
    [Show full text]
  • Analysis of the Toxicogenomic Effects of Exposure to Persistent Organic Pollutants (Pops) in Slovakian Girls: Correlations Between Gene Expression and Disease Risk
    Environment International 39 (2012) 188–199 Contents lists available at SciVerse ScienceDirect Environment International journal homepage: www.elsevier.com/locate/envint Analysis of the toxicogenomic effects of exposure to persistent organic pollutants (POPs) in Slovakian girls: Correlations between gene expression and disease risk Partha Sarathi Mitra a, Somiranjan Ghosh a, Shizhu Zang a, Dean Sonneborn b, Irva Hertz-Picciotto b, Tomas Trnovec c, Lubica Palkovicova c, Eva Sovcikova c, Svetlana Ghimbovschi d, Eric P. Hoffman d, Sisir K. Dutta a,⁎ a Howard University, Washington, DC, United States b University of California Davis, Davis, Davis, CA, United States c Slovak Medical University, Bratislava, Slovakia d Children's National Medical Center, Washington, DC, United States article info abstract Article history: The chemical composition of persistent organic pollutants (POPs) in the environment is not uniform throughout Received 20 May 2011 the world, and these contaminants contain many structurally different lipophilic compounds. In a well-defined Accepted 11 September 2011 study cohort in the Slovak Republic, the POP chemicals present in the peripheral blood of exposed children Available online 8 December 2011 were chemically analyzed. The chemical analysis data revealed that the relative concentration and profile of structurally different organic pollutants, including polychlorinated biphenyls (PCBs), 2,2′-bis(4-chlorophenyl)- Keywords: 1,1-dichloroethylene (p,p′-DDE), 2,2′-bis(4-chlorophenyl)-1,1,1-trichloro-ethane (p,p′-DDT), hexachloroben- Persistent Organic Pollutant (POP) β β Gene environment interaction zene (HCB) and -hexachlorocyclohexane ( -HCH), may vary from individual to individual, even within the Gene expression same exposure area. These chemicals can be broadly classified into two groups.
    [Show full text]
  • Us 2018 / 0305689 A1
    US 20180305689A1 ( 19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0305689 A1 Sætrom et al. ( 43 ) Pub . Date: Oct. 25 , 2018 ( 54 ) SARNA COMPOSITIONS AND METHODS OF plication No . 62 /150 , 895 , filed on Apr. 22 , 2015 , USE provisional application No . 62/ 150 ,904 , filed on Apr. 22 , 2015 , provisional application No. 62 / 150 , 908 , (71 ) Applicant: MINA THERAPEUTICS LIMITED , filed on Apr. 22 , 2015 , provisional application No. LONDON (GB ) 62 / 150 , 900 , filed on Apr. 22 , 2015 . (72 ) Inventors : Pål Sætrom , Trondheim (NO ) ; Endre Publication Classification Bakken Stovner , Trondheim (NO ) (51 ) Int . CI. C12N 15 / 113 (2006 .01 ) (21 ) Appl. No. : 15 /568 , 046 (52 ) U . S . CI. (22 ) PCT Filed : Apr. 21 , 2016 CPC .. .. .. C12N 15 / 113 ( 2013 .01 ) ; C12N 2310 / 34 ( 2013. 01 ) ; C12N 2310 /14 (2013 . 01 ) ; C12N ( 86 ) PCT No .: PCT/ GB2016 /051116 2310 / 11 (2013 .01 ) $ 371 ( c ) ( 1 ) , ( 2 ) Date : Oct . 20 , 2017 (57 ) ABSTRACT The invention relates to oligonucleotides , e . g . , saRNAS Related U . S . Application Data useful in upregulating the expression of a target gene and (60 ) Provisional application No . 62 / 150 ,892 , filed on Apr. therapeutic compositions comprising such oligonucleotides . 22 , 2015 , provisional application No . 62 / 150 ,893 , Methods of using the oligonucleotides and the therapeutic filed on Apr. 22 , 2015 , provisional application No . compositions are also provided . 62 / 150 ,897 , filed on Apr. 22 , 2015 , provisional ap Specification includes a Sequence Listing . SARNA sense strand (Fessenger 3 ' SARNA antisense strand (Guide ) Mathew, Si Target antisense RNA transcript, e . g . NAT Target Coding strand Gene Transcription start site ( T55 ) TY{ { ? ? Targeted Target transcript , e .
    [Show full text]
  • The Role of Cardiac Transcription Factor NKX2-5 in Regulating the Human Cardiac Mirnaome Deevina Arasaratnam1,2, Katrina M
    www.nature.com/scientificreports Corrected: Publisher Correction OPEN The role of cardiac transcription factor NKX2-5 in regulating the human cardiac miRNAome Deevina Arasaratnam1,2, Katrina M. Bell1, Choon Boon Sim1, Kathy Koutsis1, David J. Anderson1, Elizabeth L. Qian1, Edouard G. Stanley 1,3,4, Andrew G. Elefanty1,3,4, Michael M. Cheung1,3, Alicia Oshlack 1, Anthony J. White5, Charbel Abi Khalil6, James E. Hudson7, Enzo R. Porrello1,8 & David A. Elliott 1,2,3* MicroRNAs (miRNAs) are translational regulatory molecules with recognised roles in heart development and disease. Therefore, it is important to defne the human miRNA expression profle in cardiac progenitors and early-diferentiated cardiomyocytes and to determine whether critical cardiac transcription factors such as NKX2-5 regulate miRNA expression. We used an NKX2-5eGFP/w reporter line to isolate both cardiac committed mesoderm and cardiomyocytes. We identifed 11 miRNAs that were diferentially expressed in NKX2-5 -expressing cardiac mesoderm compared to non-cardiac mesoderm. Subsequent profling revealed that the canonical myogenic miRNAs including MIR1-1, MIR133A1 and MIR208A were enriched in cardiomyocytes. Strikingly, deletion of NKX2-5 did not result in gross changes in the cardiac miRNA profle, either at committed mesoderm or cardiomyocyte stages. Thus, in early human cardiomyocyte commitment and diferentiation, the cardiac myogenic miRNA program is predominantly regulated independently of the highly conserved NKX2-5 -dependant gene regulatory network. Te heart is the frst functional organ to develop in the human embryo, and the organ most commonly afected by disease in infants and adults. Heart development is tightly controlled by an evolutionarily conserved network of transcription factors and disruption of this network can result in a variety of congenital heart malformations.
    [Show full text]
  • Single-Nucleus RNA-Seq of Differentiating Human Myoblasts Reveals the Extent of Fate Heterogeneity
    Published online 26 August 2016 Nucleic Acids Research, 2016, Vol. 44, No. 21 e158 doi: 10.1093/nar/gkw739 Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity Weihua Zeng1,2, Shan Jiang1,2, Xiangduo Kong3, Nicole El-Ali1,2, Alexander R. Ball, Jr3, Christopher I-Hsing Ma3, Naohiro Hashimoto4, Kyoko Yokomori3,* and Ali Mortazavi1,2,* 1Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, USA, 2Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697-2280, USA, 3Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA 92697-1700, USA and 4Department of Regenerative Medicine, National Center for Geriatrics and Gerontology, 7–430 Morioka, Oobu, Aichi 474–8522, Japan Received February 25, 2016; Revised August 09, 2016; Accepted August 12, 2016 ABSTRACT INTRODUCTION Myoblasts are precursor skeletal muscle cells that Approximately 40% of the human body consists of skeletal differentiate into fused, multinucleated myotubes. muscle (1). The minimum functional unit of skeletal mus- Current single-cell microfluidic methods are not op- cle is the multinucleated myotube, which originates from timized for capturing very large, multinucleated cells fusing myoblasts. Muscle cell differentiation (myogenesis) such as myotubes. To circumvent the problem, we entails activation of muscle-specific transcription network governed by four partially-redundant muscle-specific reg- performed single-nucleus transcriptome analysis. ulatory factors (MRFs) (Myf5, MyoD1, Myogenin and Using immortalized human myoblasts, we performed MRF4/Myf6) working together with E proteins and MEF2 RNA-seq analysis of single cells (scRNA-seq) and family members (2).
    [Show full text]
  • Supplemental Data
    Supplemental Information Clinical Summary and Rationale for the Designation of Non-Tolerant (n=5) Patient #3, a multiparous female with 29% PRA by flow cytometry pre-operatively (0% by cytotoxicity), required immunosuppression resumption due to Banff 1A acute rejection documented by a biopsy at month 25. This was performed because a 24-month protocol biopsy at the time of complete withdrawal had shown “borderline acute rejection”. Stable renal function accompanied both biopsies (i.e. subclinical rejection). Patient #1 had a normal pre-withdrawal protocol biopsy but developed findings of Banff 1A acute rejection on the next biopsy done after 1 year off meds (Table 1), all without renal dysfunction, i.e. subclinical rejection, (Figure 2C and D). The third withdrawal failure (Patient #4) also had subclinical Banff 1A acute rejection in the 36-month protocol biopsy after 1 year off immunosuppression despite a normal 24-month biopsy. Of the 2 other non-tolerant subjects never withdrawn, one (Patient #7) developed electron-dense immune complex deposit glomerulonephritis and proteinuria (2 gm/day) 12 months post-transplantation and was considered to have recurrent disease, unsuspected preoperatively. Finally, Patient #10 developed proteinuria (4 gm/day) 18 months post- transplantation with the transplant biopsy showing focal segmental glomerulosclerosis, possibly the cause of his native ESRD (not biopsied pre-transplant). Both these patients had immunosuppression continued, consistent with clinical practice. Non-Protocol Related Adverse Events (No adverse events were protocol related) Adverse events included a skin rash that developed in 8 of the first 10 recipients after the second dose of Al, resolving within 72 hours.
    [Show full text]
  • 肌细胞特异性micrornas生物学效应研究进展 韩晓杰 杨莎莎 段婷婷 徐玉东 王 宇 杨永清* 尹磊淼* (上海中医药大学, 上海 201203)
    中国细胞生物学学报 Chinese Journal of Cell Biology 2016, 38(6): 729–735 DOI: 10.11844/cjcb.2016.06.0038 肌细胞特异性microRNAs生物学效应研究进展 韩晓杰 杨莎莎 段婷婷 徐玉东 王 宇 杨永清* 尹磊淼* (上海中医药大学, 上海 201203) 摘要 microRNAs(miRNAs)是一类含有20~22个核苷酸的非编码单链小分子RNA, 发挥转录 后水平负调控基因表达和翻译的作用, 具有生物学功能多样性, 可作为多种疾病诊断和预后重要分 子标志。该文介绍了肌细胞特异性miRNAs, 如miR-1、miR-133、miR-145、miR-206基因等染色 体分布、序列、组织表达丰度、主要通路, 并对肌细胞特异性miRNAs在气管平滑肌、血管平滑肌、 心肌等细胞中的生物学效应研究进展进行综述。 关键词 肌细胞特异性microRNAs; 生物学效应; 气管平滑肌; 血管平滑肌; 心肌; 骨骼肌 The Progress on Biological Effect of Muscle-specific MicroRNAs Han Xiaojie, Yang Shasha, Duan Tingting, Xu Yudong, Wang Yu, Yang Yongqing*, Yin Leimiao* (Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China) Abstract miRNAs are a class of small non-coding, single stranded tiny molecule RNA (containing 20- 22 nucleotides) that negatively regulates gene expression and translation at post-translational level. They have diverse biological functions and can be used as significant molecule markers for disease diagnosis and prognosis. _ x±s In this review, muscle-specific miRNAs were introduced, such as the distribution of chromosome, sequence, tissue expression abundance and main pathway of miR-1, miR-133, miR-145 and miR-206. Their biological effects in airway smooth muscle, vascular smooth muscle and cardiac muscle were also discussed. Keywords muscle-specific microRNA; biological effect; airway smooth muscle; vascular smooth muscle; cardiac muscle; skeletal muscle microRNAs(miRNAs)是一类非编码单链小分子 调控家族, 其中人类有1 881条, 小鼠有1 193条, 大鼠 RNA, 长度约为20~22个核苷酸, 广泛存在于真核细 有495条。 胞中, 发挥转录后水平负调控基因的表达和翻译的
    [Show full text]
  • Genomic Biomarkers Correlate with HLA-Identical Renal Transplant Tolerance
    BRIEF COMMUNICATION www.jasn.org Genomic Biomarkers Correlate with HLA-Identical Renal Transplant Tolerance † ‡ ‡ Joseph R. Leventhal,* James M. Mathew,* Daniel R. Salomon, Sunil M. Kurian, | | Manikkam Suthanthiran,§ Anat Tambur,* John Friedewald,* Lorenzo Gallon,* Jane Charette,* † Josh Levitsky,*¶ Yashpal Kanwar,** Michael Abecassis,* and Joshua Miller* *Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Departments of †Microbiology-Immunology and **Pathology, Northwestern University Feinberg School of Medicine, Chicago Illinois; ‡Department of Molecular and Experimental Medicine, The Scripps Research Institute and Scripps Center for Organ Transplantation, La Jolla, California; §Department of Transplantation Medicine, Weill Cornell Medical College, New York, New York; and Divisions of |Nephrology and ¶Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois ABSTRACT The ability to achieve immunologic tolerance after transplantation is a therapeutic disease recurrence, and continued immu- goal. Here, we report interim results from an ongoing trial of tolerance in HLA- nosuppression. The remaining three pa- identical sibling renal transplantation. The immunosuppressive regimen included tients had (subclinical) biopsy rejection alemtuzumab induction, donor hematopoietic stem cells, tacrolimus/mycopheno- after complete withdrawal (Figure 1, C late immunosuppression converted to sirolimus, and complete drug withdrawal by and D, and Tables 1 and 2), and immuno- 24 months post-transplantation. Recipients were considered tolerant if they had suppression was reinstated, solely based normal biopsies and renal function after an additional 12 months without immuno- on the biopsies, without increase in panel suppression. Of the 20 recipients enrolled, 10 had at least 36 months of follow-up reactive antibodies (PRAs) or positive after transplantation.
    [Show full text]