Table SI. the Expression of Differentially Expressed Mirnas

Total Page:16

File Type:pdf, Size:1020Kb

Table SI. the Expression of Differentially Expressed Mirnas Table SI. The expression of differentially expressed miRNAs. miRNA ID log2 fold‑change P‑value hsa‑mir‑19a 11.02 8.40x10‑32 hsa‑mir‑592 10.27 4.49x10‑17 hsa‑mir‑135b 10.05 1.90x10‑27 hsa‑mir‑577 8.32 4.59x10‑18 hsa‑mir‑372 8.29 3.56x10‑3 hsa‑mir‑450b 8.22 4.76x10‑24 hsa‑mir‑590 8.00 2.76x10‑37 hsa‑mir‑653 7.96 8.99x10‑12 hsa‑mir‑374a 7.51 3.69x10‑48 hsa‑mir‑7‑2 7.28 3.75x10‑13 hsa‑mir‑514a‑2 7.14 1.28x10‑4 hsa‑mir‑514a‑3 7.12 8.88x10‑5 hsa‑mir‑514a‑1 7.12 1.28x10‑4 hsa‑mir‑142 7.03 4.54x10‑33 hsa‑mir‑19b‑2 6.99 1.11x10‑41 hsa‑mir‑19b‑1 6.78 2.30x10‑44 hsa‑mir‑889 6.53 4.12x10‑35 hsa‑mir‑454 6.43 2.33x10‑31 hsa‑mir‑21 6.32 1.01x10‑97 hsa‑mir‑203b 6.29 4.62x10‑23 hsa‑mir‑4668 6.25 3.32x10‑10 hsa‑mir‑144 6.24 7.92x10‑23 hsa‑mir‑628 6.09 2.84x10‑16 hsa‑mir‑499a 6.05 7.20x10‑5 hsa‑mir‑1‑1 5.99 2.05x10‑11 hsa‑mir‑374c 5.98 6.65x10‑4 hsa‑mir‑424 5.96 1.20x10‑32 hsa‑mir‑153‑2 5.90 3.17x10‑18 hsa‑mir‑153‑1 5.88 1.10x10‑7 hsa‑mir‑552 5.80 1.06x10‑17 hsa‑mir‑542 5.76 6.19x10‑44 hsa‑mir‑376a‑1 5.74 1.28x10‑9 hsa‑mir‑1245a 5.71 1.25x10‑8 hsa‑mir‑1277 5.71 1.08 x10‑8 hsa‑mir‑20a 5.64 2.37x10‑7 hsa‑mir‑549a 5.61 2.25x10‑8 hsa‑mir‑29b‑1 5.47 2.98x10‑42 hsa‑mir‑5586 5.46 5.26x10‑8 hsa‑mir‑556 5.45 2.31x10‑7 hsa‑mir‑101‑1 5.41 3.44x10‑63 hsa‑mir‑141 5.40 5.50x10‑56 hsa‑mir‑4791 5.40 2.85x10‑6 hsa‑mir‑101‑2 5.40 1.42x10‑63 hsa‑mir‑335 5.37 7.05x10‑42 hsa‑mir‑452 5.35 4.59x10‑32 hsa‑mir‑1‑2 5.34 3.76x10‑10 hsa‑mir‑96 5.31 5.16x10‑25 hsa‑mir‑301a 5.31 1.86x10‑17 hsa‑mir‑548f‑1 5.31 1.07x10‑4 hsa‑mir‑215 5.21 1.1 x10‑12 hsa‑mir‑708 5.18 1.9 x10‑28 hsa‑mir‑182 5.17 1.18x10‑30 hsa‑mir‑508 5.17 3.95x10‑5 hsa‑mir‑376c 5.14 1.16x10‑6 hsa‑mir‑7705 5.12 1.97x10‑6 hsa‑mir‑3662 5.01 4.11x10‑5 hsa‑mir‑203a 5.00 2.0 x10‑24 Table SI. Continued. miRNA ID log2 fold‑change P‑value hsa‑mir‑3682 4.98 1.53x10‑6 hsa‑mir‑582 4.97 1.65x10‑31 hsa‑mir‑450a‑1 4.96 3.3 x10‑12 hsa‑mir‑450a‑2 4.93 6.47x10‑12 hsa‑mir‑4444‑2 4.92 1.83x10‑6 hsa‑mir‑570 4.92 5.1 x10‑6 hsa‑mir‑411 4.90 1.05x10‑17 hsa‑mir‑301b 4.83 4.11x10‑9 hsa‑mir‑380 4.80 1.31x10‑5 hsa‑mir‑206 4.80 1.12x10‑3 hsa‑mir‑16‑2 4.79 1.60x10‑40 hsa‑mir‑379 4.72 1.04x10‑36 hsa‑mir‑643 4.71 9.11x10‑6 hsa‑mir‑376a‑2 4.70 2.74x10‑5 hsa‑mir‑16‑1 4.69 1.35x10‑39 hsa‑mir‑5683 4.68 5.4 x10‑4 hsa‑mir‑98 4.66 1.26x10‑41 hsa‑mir‑559 4.65 7.61x10‑5 hsa‑mir‑545 4.61 2.23x10‑5 hsa‑mir‑3613 4.61 3.86x10‑23 hsa‑let‑7f‑1 4.55 1.38x10‑13 hsa‑let‑7f‑2 4.54 1.7 x10‑13 hsa‑mir‑466 4.51 1.88x10‑3 hsa‑mir‑374b 4.49 3.58x10‑41 hsa‑mir‑656 4.47 6.96x10‑5 hsa‑mir‑4677 4.46 8.19x10‑23 hsa‑mir‑580 4.45 1.24x10‑4 hsa‑mir‑126 4.38 7.36x10‑47 hsa‑mir‑4444‑1 4.35 4.8 x10‑5 hsa‑mir‑651 4.34 5.44x10‑12 hsa‑mir‑2355 4.33 1.38x10‑36 hsa‑mir‑655 4.32 3.99x10‑9 hsa‑mir‑218‑2 4.32 8.57x10‑13 hsa‑mir‑3117 4.31 2.47x10‑3 hsa‑mir‑429 4.31 6.10x10‑31 hsa‑mir‑660 4.28 2.08x10‑26 hsa‑mir‑148a 4.26 9.27x10‑32 hsa‑mir‑376b 4.24 1.03x10‑8 hsa‑mir‑217 4.22 4.21x10‑12 hsa‑mir‑5000 4.17 2.84x10‑9 hsa‑mir‑3189 4.14 6.71x10‑4 hsa‑mir‑4766 4.13 4.28x10‑4 hsa‑mir‑136 4.12 4.58x10‑20 hsa‑mir‑3912 4.09 7.05x10‑4 hsa‑mir‑561 4.08 2.25x10‑3 hsa‑mir‑15a 4.05 1.71x10‑38 hsa‑mir‑3942 3.99 6.52x10‑4 hsa‑mir‑106a 3.98 1.24x10‑8 hsa‑mir‑1255a 3.97 4.77x10‑4 hsa‑mir‑4662a 3.95 1.32x10‑8 hsa‑mir‑7‑3 3.93 7.68x10‑9 hsa‑mir‑369 3.91 1.73x10‑21 hsa‑mir‑3654 3.87 2.60x10‑3 hsa‑mir‑421 3.87 1.26x10‑12 hsa‑mir‑5706 3.85 7.99x10‑4 hsa‑mir‑4709 3.84 1.69x10‑3 hsa‑mir‑152 3.84 5.95x10‑35 Table SI. Continued. miRNA ID log2 fold‑change P‑value hsa‑mir‑32 3.71 1.99x10‑26 hsa‑mir‑188 3.71 3.03x10‑12 hsa‑mir‑548au 3.70 4.27x10‑3 hsa‑mir‑17 3.68 1.75x10‑30 hsa‑mir‑495 3.66 3.09x10‑17 hsa‑mir‑10a 3.65 9.94x10‑17 hsa‑mir‑192 3.61 1.35x10‑19 hsa‑mir‑6733 3.58 3.79x10‑3 hsa‑mir‑3684 3.57 3.65x10‑3 hsa‑mir‑496 3.45 7.32x10‑9 hsa‑mir‑196a‑2 3.43 4.10x10‑14 hsa‑mir‑33b 3.43 7.38x10‑8 hsa‑mir‑627 3.39 1.70x10‑8 hsa‑mir‑7‑1 3.37 6.86x10‑24 hsa‑mir‑95 3.36 5.76x10‑13 hsa‑mir‑3913‑2 3.34 7.24x10‑6 hsa‑mir‑199b 3.33 5.83x10‑18 hsa‑mir‑143 3.32 3.02x10‑10 hsa‑mir‑183 3.30 2.23x10‑17 hsa‑mir‑641 3.29 4.32x10‑3 hsa‑mir‑1537 3.26 6.44x10‑3 hsa‑mir‑30b 3.26 3.22x10‑22 hsa‑mir‑451a 3.23 4.32x10‑10 hsa‑mir‑223 3.22 1.56x10‑10 hsa‑mir‑33a 3.21 6.4 x10‑11 hsa‑mir‑3677 3.19 1.9 x10‑11 hsa‑mir‑190a 3.09 2.36x10‑13 hsa‑mir‑196b 3.07 3.31x10‑8 hsa‑mir‑4999 3.05 4.01x10‑4 hsa‑mir‑29c 2.98 3.98x10‑13 hsa‑mir‑29b‑2 2.89 5.13x10‑19 hsa‑mir‑224 2.87 2.48 x10‑12 hsa‑mir‑3664 2.86 9.37x10‑4 hsa‑mir‑338 2.84 1.53x10‑8 hsa‑mir‑598 2.84 5.3 x10‑9 hsa‑mir‑340 2.80 1.16x10‑15 hsa‑mir‑337 2.75 5.77x10‑18 hsa‑mir‑18a 2.68 4.37x10‑11 hsa‑mir‑196a‑1 2.67 2.70x10‑10 hsa‑mir‑199a‑2 2.64 1.35x10‑14 hsa‑mir‑10b 2.63 6.49x10‑13 hsa‑mir‑24‑2 2.62 8.82x10‑42 hsa‑mir‑26b 2.60 5.91x10‑23 hsa‑mir‑27a 2.59 6.35x10‑21 hsa‑mir‑31 2.58 3.44x10‑3 hsa‑mir‑24‑1 2.57 6.4 x10‑40 hsa‑mir‑194‑1 2.53 5.35x10‑18 hsa‑mir‑494 2.51 2.69x10‑5 hsa‑mir‑6854 2.51 1.86x10‑4 hsa‑mir‑181d 2.51 2.26x10‑7 hsa‑mir‑147b 2.50 1.94x10‑5 hsa‑mir‑34a 2.49 1.02x10‑16 hsa‑mir‑146a 2.43 3.4 x10‑9 hsa‑mir‑584 2.38 2.03x10‑8 hsa‑mir‑151a 2.35 2.1 x10‑19 hsa‑mir‑199a‑1 2.35 1.72x10‑13 Table SI. Continued. miRNA ID log2 fold‑change P‑value hsa‑mir‑30e 2.24 5.30x10‑32 hsa‑mir‑22 2.23 8.91x10‑21 hsa‑mir‑26a‑1 2.22 1.13x10‑19 hsa‑mir‑26a‑2 2.17 1.00x10‑18 hsa‑mir‑3913‑1 2.12 5.2 x10‑4 hsa‑mir‑493 2.08 1.57x10‑11 hsa‑mir‑3136 2.08 4.07x10‑3 hsa‑let‑7g 2.04 1.15x10‑19 hsa‑mir‑5699 2.03 2.76x10‑3 hsa‑mir‑3065 2.02 1.28x10‑4 hsa‑mir‑324 ‑2.00 3.55x10‑40 hsa‑mir‑133b ‑2.01 1.74x10‑5 hsa‑mir‑5091 ‑2.02 5.38x10‑8 hsa‑mir‑484 ‑2.03 2.11x10‑43 hsa‑mir‑4707 ‑2.03 4.13x10‑5 hsa‑mir‑1270 ‑2.05 3.79x10‑7 hsa‑mir‑1468 ‑2.05 1.20x10‑16 hsa‑let‑7c ‑2.06 1.63x10‑11 hsa‑mir‑874 ‑2.08 4.07x10‑19 hsa‑mir‑671 ‑2.09 2.39x10‑33 hsa‑mir‑432 ‑2.10 1.64x10‑17 hsa‑mir‑320c‑1 ‑2.21 1.92x10‑9 hsa‑mir‑296 ‑2.23 1.59x10‑9 hsa‑mir‑378a ‑2.25 5.02x10‑43 hsa‑mir‑658 ‑2.27 2.25x10‑7 hsa‑mir‑5010 ‑2.35 3.8 x10‑4 hsa‑mir‑6716 ‑2.37 3.47x10‑12 hsa‑mir‑1229 ‑2.39 9.30x10‑10 hsa‑mir‑423 ‑2.40 7.45x10‑68 hsa‑mir‑4676 ‑2.42 7.41x10‑14 hsa‑mir‑2116 ‑2.43 7.75x10‑16 hsa‑mir‑3150b ‑2.44 3.82x10‑11 hsa‑mir‑3928 ‑2.45 5.46x10‑18 hsa‑mir‑375 ‑2.48 1.46x10‑19 hsa‑mir‑125b‑2 ‑2.48 9.28x10‑23 hsa‑mir‑7706 ‑2.48 1.05 x10‑25 hsa‑mir‑181a‑1 ‑2.49 2.71x10‑45 hsa‑mir‑125b‑1 ‑2.51 1.81x10‑23 hsa‑mir‑1228 ‑2.53 1.57x10‑17 hsa‑mir‑6892 ‑2.57 2.05x10‑26 hsa‑mir‑6820 ‑2.58 2.23x10‑10 hsa‑mir‑6798 ‑2.59 1.32x10‑9 hsa‑mir‑3127 ‑2.61 8.80x10‑31 hsa‑mir‑5698 ‑2.66 4.91x10‑11 hsa‑mir‑3615 ‑2.72 1.52x10‑34 hsa‑mir‑3605 ‑2.73 7.51x10‑25 hsa‑mir‑193b ‑2.74 2.07x10‑45 hsa‑mir‑4787 ‑2.78 6.16x10‑10 hsa‑mir‑3944 ‑2.79 8.01x10‑12 hsa‑mir‑2110 ‑2.81 6.77x10‑38 hsa‑mir‑6125 ‑2.83 3.70x10‑13 hsa‑mir‑760 ‑2.83 4.15x10‑17 hsa‑mir‑5187 ‑2.85 3.66x10‑17 hsa‑mir‑4728 ‑2.87 2.40x10‑12 hsa‑let‑7b ‑2.88 5.01x10‑102 hsa‑mir‑99b ‑2.90 8.09x10‑85 hsa‑mir‑7641‑1 ‑2.93 1.3 x10‑9 Table SI.
Recommended publications
  • Strategies to Increase ß-Cell Mass Expansion
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents .................................................................................................
    [Show full text]
  • Ejercicio Físico En La Patogenia De La Artritis Inducida Por Proteoglicano En Ratón
    UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE CIENCIAS DE LA CULTURA FÍSICA SECRETARÍA DE INVESTIGACIÓN Y POSGRADO EJERCICIO FÍSICO EN LA PATOGENIA DE LA ARTRITIS INDUCIDA POR PROTEOGLICANO EN RATÓN TESIS QUE PARA OBTENER EL GRADO DE: DOCTORA EN CIENCIAS DE LA CULTURA FÍSICA PRESENTA: M. EN C. SUSANA AIDEÉ GONZÁLEZ CHÁVEZ DIRECTOR DE TESIS: DR. CÉSAR FRANCISCO PACHECO TENA CHIHUAHUA, CHIH., MÉXICO, SEPTIEMBRE DE 2017 UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE CIENCIAS DE LA CULTURA FÍSICA SECRETARÍA DE INVESTIGACIÓN Y POSGRADO El que suscribe, integrante del Núcleo Complementario del Programa de Doctorado Interinstitucional en Ciencias de la Cultura Física de la Facultad de Ciencias de la Cultura Física de la Universidad Autónoma de Chihuahua. CERTIFICA Que el presente trabajo titulado “Ejercicio físico en la patogenia de la artritis inducida por proteoglicano en ratón”, ha sido realizado bajo mi dirección en el Laboratorio de Investigación PABIOM de la Facultad de Medicina y Ciencias Biomédicas de la Universidad Autónoma de Chihuahua, por la M. en C. Susana Aideé González Chávez para optar por el grado de: DOCTORA EN CIENCIAS DE LA CULTURA FÍSICA Esta es una investigación original que ha sido realizada con rigor ético y científico, por lo que autorizo su presentación ante el grupo de sinodales correspondiente. Para los fines que haya lugar, se extiende la presente a los doce días del mes de Septiembre del dos mil diecisiete. Atentamente Dr. César Francisco Pacheco Tena Doctor en Ciencias Médicas Facultad de Medicina y Ciencias Biomédicas, UACH i UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE CIENCIAS DE LA CULTURA FÍSICA SECRETARÍA DE INVESTIGACIÓN Y POSGRADO El presente trabajo “Ejercicio físico en la patogenia de la artritis inducida por proteoglicano en ratón” realizado por la M.
    [Show full text]
  • A Heterozygous Variant in the Human Cardiac Mir-133 Gene, MIR133A2, Alters Mirna Duplex Processing and Strand Abundance
    Ohanian et al. BMC Genetics 2013, 14:18 http://www.biomedcentral.com/1471-2156/14/18 RESEARCH ARTICLE Open Access A heterozygous variant in the human cardiac miR-133 gene, MIR133A2, alters miRNA duplex processing and strand abundance Monique Ohanian1†, David T Humphreys2,3†, Elizabeth Anderson4, Thomas Preiss5 and Diane Fatkin1,2,3,6* Abstract Background: MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Sequential cleavage of miRNA precursors results in a ~22 nucleotide duplex of which one strand, the mature miRNA, is typically loaded into the RNA-induced silencing complex (RISC) while the passenger strand is degraded. Very little is known about how genetic variation might affect miRNA biogenesis and function. Results: We re-sequenced the MIR1-1, MIR1-2, MIR133A1, MIR133A2, and MIR133B genes, that encode the cardiac- enriched miRNAs, miR-1 and miR-133, in 120 individuals with familial atrial fibrillation and identified 10 variants, including a novel 79T > C MIR133A2 substitution. This variant lies within the duplex at the 30 end of the mature strand, miR-133a-3p, and is predicted to prevent base-pairing and weaken thermostability at this site, favoring incorporation of the passenger strand, miR-133a-5p, into RISC. Genomic DNA fragments containing miR-133a-2 precursor sequences with 79T and 79C alleles were transfected into HeLa cells. On Northern blotting the 79T allele showed strong expression of miR-133a-3p with weak expression of miR-133a-5p. In contrast, the 79C allele had no effect on miR-133a-3p but there was a significant increase (mean 3.6-fold) in miR-133a-5p levels.
    [Show full text]
  • Transcriptomic Profiling of Pancreatic Alpha, Beta and Delta Cell Populations Identifies Delta Cells As a Principal Target for Ghrelin in Mouse Islets
    Diabetologia (2016) 59:2156–2165 DOI 10.1007/s00125-016-4033-1 ARTICLE Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets Alice E. Adriaenssens1 & Berit Svendsen2,3 & Brian Y. H. Lam1 & Giles S. H. Yeo1 & Jens J. Holst2,3 & Frank Reimann1 & Fiona M. Gribble 1 Received: 15 March 2016 /Accepted: 1 June 2016 /Published online: 7 July 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract using islets with delta cell restricted expression of the calcium Aims/hypothesis Intra-islet and gut–islet crosstalk are critical reporter GCaMP3, and in perfused mouse pancreases. in orchestrating basal and postprandial metabolism. The aim Results A database was constructed of all genes expressed in of this study was to identify regulatory proteins and receptors alpha, beta and delta cells. The gene encoding the ghrelin underlying somatostatin secretion though the use of receptor, Ghsr, was highlighted as being highly expressed transcriptomic comparison of purified murine alpha, beta and enriched in delta cells. Activation of the ghrelin receptor and delta cells. raised cytosolic calcium levels in primary pancreatic delta Methods Sst-Cre mice crossed with fluorescent reporters were cells and enhanced somatostatin secretion in perfused used to identify delta cells, while Glu-Venus (with Venus re- pancreases, correlating with a decrease in insulin and gluca- ported under the control of the Glu [also known as Gcg]pro- gon release. The inhibition of insulin secretion by ghrelin was moter) mice were used to identify alpha and beta cells.
    [Show full text]
  • Universidade Estadual De Campinas Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA CAMPINAS 2016 1 VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica. Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA. Orientador: Daniel Martins-de-Souza CAMPINAS 2016 2 Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016. Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso.
    [Show full text]
  • Two Locus Inheritance of Non-Syndromic Midline Craniosynostosis Via Rare SMAD6 and 4 Common BMP2 Alleles 5 6 Andrew T
    1 2 3 Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and 4 common BMP2 alleles 5 6 Andrew T. Timberlake1-3, Jungmin Choi1,2, Samir Zaidi1,2, Qiongshi Lu4, Carol Nelson- 7 Williams1,2, Eric D. Brooks3, Kaya Bilguvar1,5, Irina Tikhonova5, Shrikant Mane1,5, Jenny F. 8 Yang3, Rajendra Sawh-Martinez3, Sarah Persing3, Elizabeth G. Zellner3, Erin Loring1,2,5, Carolyn 9 Chuang3, Amy Galm6, Peter W. Hashim3, Derek M. Steinbacher3, Michael L. DiLuna7, Charles 10 C. Duncan7, Kevin A. Pelphrey8, Hongyu Zhao4, John A. Persing3, Richard P. Lifton1,2,5,9 11 12 1Department of Genetics, Yale University School of Medicine, New Haven, CT, USA 13 2Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA 14 3Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA 15 4Department of Biostatistics, Yale University School of Medicine, New Haven, CT, USA 16 5Yale Center for Genome Analysis, New Haven, CT, USA 17 6Craniosynostosis and Positional Plagiocephaly Support, New York, NY, USA 18 7Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA 19 8Child Study Center, Yale University School of Medicine, New Haven, CT, USA 20 9The Rockefeller University, New York, NY, USA 21 22 ABSTRACT 23 Premature fusion of the cranial sutures (craniosynostosis), affecting 1 in 2,000 24 newborns, is treated surgically in infancy to prevent adverse neurologic outcomes. To 25 identify mutations contributing to common non-syndromic midline (sagittal and metopic) 26 craniosynostosis, we performed exome sequencing of 132 parent-offspring trios and 59 27 additional probands.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • (Pnss) En Genes Candidatos Para Las Características De La Fibra En Alpacas
    Revista peruana de biología 26(1): 087 - 094 (2019) Identificación bioinformática de Polimorfismos de doi: http://dx.doi.org/10.15381/rpb.v26i1.15911 ISSN-L 1561-0837; eISSN: 1727-9933 Nucleótido Simple (PNSs) en genes candidatos para Universidad Nacional Mayor de San Marcos las características de la fibra en alpacas (Vicugna pacos) Bioinformatic identification of Single Nucleotide Polymor- Trabajos originales phisms (SNPs) in candidate genes for fiber characteristics in Presentado: 31/07/2018 alpacas (Vicugna pacos) Aceptado: 03/02/2019 Publicado online: 30/03/2019 Correspondencia: 1 *Autor para correspondencia Alvaro Gonzalo Fernández Suárez* , Gustavo Augusto Gutiérrez 1 Universidad Nacional Agraria La Molina. Av. La Reynoso 1, Federico Abel Ponce de León Bravo 2 Molina S/N, Lima 12. 2 University of Minnesota, St. Paul, MN 55108, 1 Universidad Nacional Agraria La Molina, Perú. United States. 2 University of Minnesota, United States. Email AGFS: [email protected] Email GAGR: [email protected] Email FAPLB: [email protected] ORCID FAPdLB: 0000-0001-8645-553X ORCID GAGR: 0000-0002-1896-0048 Citación: Resumen Fernández Suárez A.G., G.A. Gutiérrez Reynoso, El objetivo fue identificar y predecir la ubicación de polimorfismos de nucleótido F.A. Ponce de León Bravo. 2019. Bioinformatic simple (PNSs) en genes relacionados al crecimiento de la fibra. Se realizó el estudio identification of Single Nucleotide Polymorphisms con un total de 31 genes de queratina (KRT9, KRT12, KRT13, KRT14, KRT16, KRT18, (SNPs) in candidate genes for fiber characteristics KRT20, KRT25, KRT1, KRT3, KRT5, KRT6a, KRT6b, KRT6c, KRT7, KRT8, KRT71, KRT80, in alpacas (Vicugna pacos). Revista peruana de KRT31, KRT32, KIRT40, KRT81, KRT82, KRT10, KRT15, KRT17 KRT19, KRT2, KRT4, biología 26(1): 087 - 094 (Febrero 2019).
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Chromatin Remodeling in Epstein-Barr Virus After Induction of the Lytic Phase: Molecular Characterization of the Role of Bzlf1 and Its Interactions
    DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER FAKULTÄT FÜR BIOLOGIE DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN CHROMATIN REMODELING IN EPSTEIN-BARR VIRUS AFTER INDUCTION OF THE LYTIC PHASE: MOLECULAR CHARACTERIZATION OF THE ROLE OF BZLF1 AND ITS INTERACTIONS MARISA SCHÄFFNER Dissertation eingereicht am 30. April 2015 Erstgutachter: Prof. Dr. Dirk Eick Zweitgutachter: Prof. Dr. Heinrich Leonhardt Tag der mündlichen Prüfung: 26.11.2015 ERKLÄRUNG Hiermit erkläre ich, dass die vorliegende Arbeit mit dem Titel „CHROMATIN REMODELING IN EPSTEIN-BARR VIRUS AFTER INDUCTION OF THE LYTIC PHASE: MOLECULAR CHARACTERIZATION OF THE ROLE OF BZLF1 AND ITS INTERACTIONS“ von mir selbstständig und ohne unerlaubte Hilfsmittel angefertigt wurde, und ich mich dabei nur der ausdrücklich bezeichneten Quellen und Hilfsmittel bedient habe. Die Arbeit wurde weder in der jetzigen noch in einer abgewandelten Form einer anderen Prüfungskommission vorgelegt. München, 30. April 2015 Marisa Schäffner CONTENT 1. Introduction....................................................................................................................... 7 1.1 The architecture of chromatin.......................................................................................... 7 1.1.1 Nucleosomes are histone octamers ........................................................................ 7 1.1.1.1 Nucleosome components.................................................................................. 7 1.1.1.2 Histone modifications and histone variants.....................................................
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Insights from Conventional and Unconventional Myosins A
    Structure-Function Analysis of Motor Proteins: Insights from Conventional and Unconventional Myosins A Thesis SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Karl J. Petersen IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Margaret A. Titus, Advisor David D. Thomas, Co-Advisor December 2016 © Karl J. Petersen 2016 Acknowledgements This thesis would not exist without the patient support of my advisors, Meg Titus and Dave Thomas. Any shortcomings are my own. Collaborators Holly Goodson, Anne Houdusse, and Gant Luxton also provided invaluable training and support. I am also grateful for essential services provided by departmental staff: Sarah Blakely Anderson, Octavian Cornea, Sarah Dittrich, Karen Hawkinson, Michelle Lewis, Mary Muwahid, Laurie O’Neill, Darlene Toedter, with apologies to others not listed. Thanks to friends and colleagues at the University of Minnesota: Ashley Arthur, Kelly Bower, Brett Colson, Sinziana Cornea, Chi Meng Fong, Greg Gillispie, Piyali Guhathakurta, Tejas Gupte, Tom Hays, Norma Jiménez Ramírez, Dawn Lowe, Allison MacLean, Santiago Martínez Cifuentes, Jared Matzke, Megan McCarthy, Joachim Mueller, Joe Muretta, Kurt Peterson, Mary Porter, Ewa Prochniewicz, Mike Ritt, Cosmo Saunders, Shiv Sivaramakrishnan, Ruth Sommese, Doug Tritschler, Brian Woolums. i Abstract Myosin motor proteins play fundamental roles in a multitude of cellular processes. Myosin generates force on cytoskeletal actin filaments to control cell shape, most dramatically during cytokinesis, and has a conserved role in defining cell polarity. Myosin contracts the actin cytoskeleton, ensuring prompt turnover of cellular adhesion sites, retracting the cell body during migration and development, and contracting muscle among diverse other functions. How myosins work, and why force generation is essential for their function, is in many cases an open question.
    [Show full text]