Insights from Conventional and Unconventional Myosins A
Total Page:16
File Type:pdf, Size:1020Kb
Structure-Function Analysis of Motor Proteins: Insights from Conventional and Unconventional Myosins A Thesis SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Karl J. Petersen IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Margaret A. Titus, Advisor David D. Thomas, Co-Advisor December 2016 © Karl J. Petersen 2016 Acknowledgements This thesis would not exist without the patient support of my advisors, Meg Titus and Dave Thomas. Any shortcomings are my own. Collaborators Holly Goodson, Anne Houdusse, and Gant Luxton also provided invaluable training and support. I am also grateful for essential services provided by departmental staff: Sarah Blakely Anderson, Octavian Cornea, Sarah Dittrich, Karen Hawkinson, Michelle Lewis, Mary Muwahid, Laurie O’Neill, Darlene Toedter, with apologies to others not listed. Thanks to friends and colleagues at the University of Minnesota: Ashley Arthur, Kelly Bower, Brett Colson, Sinziana Cornea, Chi Meng Fong, Greg Gillispie, Piyali Guhathakurta, Tejas Gupte, Tom Hays, Norma Jiménez Ramírez, Dawn Lowe, Allison MacLean, Santiago Martínez Cifuentes, Jared Matzke, Megan McCarthy, Joachim Mueller, Joe Muretta, Kurt Peterson, Mary Porter, Ewa Prochniewicz, Mike Ritt, Cosmo Saunders, Shiv Sivaramakrishnan, Ruth Sommese, Doug Tritschler, Brian Woolums. i Abstract Myosin motor proteins play fundamental roles in a multitude of cellular processes. Myosin generates force on cytoskeletal actin filaments to control cell shape, most dramatically during cytokinesis, and has a conserved role in defining cell polarity. Myosin contracts the actin cytoskeleton, ensuring prompt turnover of cellular adhesion sites, retracting the cell body during migration and development, and contracting muscle among diverse other functions. How myosins work, and why force generation is essential for their function, is in many cases an open question. Chapter 2 presents a structure-function analysis of the amoebozoan myosin 7 (DdMyo7) in live Dictyostelium discoideum cells. DdMyo7 bears structural resemblance to human Myosin 7 (a protein involved in maintenance of the retina, stereocilia of the ear, and gut microvilli) but has functional similarity to human Myosin 10, a regulator of cell adhesion that is also essential in formation of actin-based structures called filopodia. Phylogenetic analysis of these related proteins shows that DdMyo7 is not directly related to any human myosin but rather represents a molecular ancestor of several vertebrate myosins (Myo7, Myo10 and Myo15). Functional analysis focused on rescue of myo7– cells. The two MyTH4-FERM domains were fully redundant in rescuing formation of filopodia. A conserved Myo7 regulatory motif in the C-terminal FERM domain was found to stimulate filopodia formation when mutated, establishing DdMyo7 as a filopodial motor with features of Myo7 and Myo10. A molecular chimera of DdMyo7 motor/lever arm region fused to the MF domain of human Myo10 partially rescued filopodia formation, ii suggesting the MF domain plays a similar role in filopodia in divergent organisms. Structural information must be combined with physiological data to understand the mechanism of myosin motor function. Structural studies have long focused on conventional myosin 2 as a model due to ease of protein expression and purification. This approach has yielded considerable data regarding the static structures and in vitro kinetics of the myosin mechanochemical cycle; however, high-resolution methods to observe the dynamics of myosin activation in cells have been lacking. Chapter 4 introduces methods and instrumentation for rapid, precise measurement of fluorescence lifetime. This is a necessary step toward Myo2-based live cell FRET sensors described in Chapter 5. Implications of this work for future studies of myosin physiological function are discussed in Chapter 6. iii Table of Contents Acknowledgements .............................................................................................................. i Abstract ............................................................................................................................... ii Table of Contents ............................................................................................................... iv List of Tables ................................................................................................................... viii List of Figures .................................................................................................................... ix Abbreviations ..................................................................................................................... xi 1 Mechanical Control of Cell Shape and Motion by Actin and Myosin ....................... 1 1.1 Motor Proteins .............................................................................................. 1 1.2 Actin-based Cell Motility ............................................................................. 4 1.3 Conventional Myosins: Continuous Contraction .......................................... 6 1.4 Unconventional Myosins: Tension and Transport ........................................ 8 1.5 Dictyostelium is a Developmental Model Organism .................................. 10 1.6 MyTH4-FERM Myosins ............................................................................. 15 2 MyTH4-FERM Myosins Have an Ancient and Conserved Role in Filopodia Formation .......................................................................................................................... 26 2.1 Chapter Summary ....................................................................................... 26 iv 2.2 Introduction ................................................................................................. 27 2.3 Results ......................................................................................................... 31 2.3.1 Phylogenetic Relationship Between DdMyo7 and Metazoan Myosins 31 2.3.2 DdMyo7 is Present in Filopodia and Required for Their Formation .. 33 2.3.3 Complementary Roles of the DdMyo7 Head and Tail in Filopod Initiation 34 2.3.4 DdMyo7 FERM2 Domain Regulates Filopod Formation and Elongation 37 2.3.5 A Minimal Filopod Motor ................................................................... 41 2.3.6 Functional Conservation of MF Domains Across Kingdoms ............. 42 2.4 Discussion ................................................................................................... 45 2.4.1 Evolution of MF myosins .................................................................... 45 2.4.2 Minimal and conserved features of MF myosin required for filopod formation. 49 2.4.3 Conclusions ......................................................................................... 50 2.5 Methods....................................................................................................... 52 2.6 Acknowledgements ..................................................................................... 62 2.7 Figures......................................................................................................... 66 v 3 Biophysics of Myosin Function ................................................................................ 82 3.1 Historical Overview .................................................................................... 82 3.2 Crystallography and Cryo-Electron Microscopy ........................................ 83 3.3 Fluorescence Spectroscopy ......................................................................... 86 3.4 Biochemical and Mechanical Assays.......................................................... 90 4 Fluorescence Lifetime Plate Reader: Resolution and Precision Meet High- Throughput ........................................................................................................................ 94 4.1 Chapter Summary ....................................................................................... 94 4.2 Introduction ................................................................................................. 95 4.3 Materials and Methods ................................................................................ 97 4.3.1 Instrument ............................................................................................ 97 4.3.2 Microplate Preparation ........................................................................ 98 4.3.3 Data Analysis ....................................................................................... 98 4.4 Experimental Results ................................................................................ 101 4.4.1 Lifetime Compared with Intensity ..................................................... 101 4.4.2 Linearity of Detection ........................................................................ 103 4.4.3 Signal Quality .................................................................................... 104 4.4.4 Resolution of Lifetimes ..................................................................... 106 vi 4.5 Discussion ................................................................................................. 107 4.6 Acknowledgements ................................................................................... 111 4.7 Figures....................................................................................................... 112 5 Myosin Biosensors .................................................................................................