<<

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA

VERÔNICA APARECIDA MONTEIRO SAIA CEREDA

O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA

THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA

CAMPINAS

2016

1

VERÔNICA APARECIDA MONTEIRO SAIA CEREDA

O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA

THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA

Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica.

Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry.

ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA.

Orientador: Daniel Martins-de-Souza

CAMPINAS

2016 2

Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0

Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972

Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016.

Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia.

1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso. I. Martins- de-Souza, Daniel,1979-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: The proteome of the corpus callosum in schizophrenia Palavras-chave em inglês: Schizophrenia Mass spectrometry Corpus callosum Área de concentração: Bioquímica Titulação: Mestra em Biologia Funcional e Molecular Banca examinadora: Daniel Martins de Souza [Orientador] Fábio Cesar Gozzo André Schwambach Vieira Data de defesa: 19-06-2016 Programa de Pós-Graduação: Biologia Funcional e Molecular

3

Campinas, 19 de julho de 2016.

COMISSÃO EXAMINADORA

Prof. Dr. Daniel Martins de Souza

Prof. Dr. Fábio Cesar Gozzo

Prof. Dr. André Schwambach Vieira

Profa. Dra. Alessandra Sussulini

Prof. Dr. José Camillo Novello

Os membros da Comissão Examinadora acima assinaram a Ata de Defesa, que se encontra no processo de vida acadêmica do aluno.

4

DEDICATÓRIA

Dedico essa dissertação á minha mãe, que sempre teve como objetivo a nossa educação, esse trabalho é uma forma de mostrar o meu reconhecimento ao seu esforço.

Ao meu Luís por me encorajar em cada dificuldade, ter paciência comigo, me abraçar a cada obstáculo vencido e principalmente por me fazer desenvolver várias habilidades que eu não imaginava ter.

5

AGRADECIMENTOS

Em particular ao Prof. Dr. Daniel Martins de Souza, por me confiar a responsabilidade de ser a sua primeira aluna, me incentivar a cada passo, investir em minha carreira me proporcionando inúmeras oportunidades. Me orgulho muito de fazer parte do seu time, sinto que não poderia ter me desenvolvido mais do que me desenvolvi nesses últimos dois anos.

Ao Laboratório de Neuroproteomica, onde, como o chefe costuma falar, passei a maior parte do tempo nesses últimos dois anos. Quando me tornar uma professora, e tiver meu próprio lab, quero que ele tenha o nosso clima daqui. Tive a oportunidade de acompanhar seu crescimento do zero e aprendi muito com isso, não só sobre ciência mas também sobre vida. Tenho um carinho imenso por esse lugar, e o mais importante pelas pessoas dele.

A JuMi e JuCa por aguentarem minhas Veridianices, pela companhia em viagens, pelas cervejas, risadas mil, ajudas em horários normais, mas principalmente nos inoportunos, porque são nas madrugadas e férias que surgem as maiores inquietações.

Ao Paulinho, por todas as risadas e bobeiras, que foram muitas nesses últimos dois anos, principalmente as relacionadas com HD e por me ensinas muito dos seus truques de lab.

A Sheilinha, fofura, que para mim sempre vai ser fofa. Por chegar e se tornar uma amiga tão rápido e por ser companheirona em todas as horas.

6

A Dani, minha filinha do coração, por me deixar participar, mesmo que em pequenos detalhes, na sua formação, que tende ser uma jornada de sucesso, me orgulho muito de você.

Aos meus colegas de lab, que tornam meus dias mais felizes, Aline, Helena, Adriano, Carol, Giu,

Gui.

A minha sogra, Cíntia, por me incentivar, por me ensinar a lidar com “ uma coisa de cada fez”, e ser muito fofa e companheira sempre.

“Aqueles que passam por nós não vão sós. Deixam um pouco de si, levam um pouco de nós.”

Antoine de Saint-Exupéry

7

RESUMO

A esquizofrenia (SCZ) é um transtorno mental incurável que está relacionado ao neurodesenvolvimento e afeta cerca de 1% da população mundial. A SCZ pode ser considerada a principal forma de psicose devido a sua grande frequência e importância clínica, sendo devastadora tanto para o paciente quanto para os seus familiares. No presente trabalho foram analisados e comparados o proteoma e fosfoproteoma do corpo caloso provindos de pacientes com esquizofrenia e controles pareados coletados post-mortem. Foram usados amostras previamente enriquecida para as proteínas solúveis (citoplasma) e proteoma total, nessa última análise verificamos também o conjunto de proteínas diferencialmente fosforiladas. A análise desses conjuntos de amostras foram feitas por nano-cromatografia líquida seguida de espectrometria de massas em tandem (nano LC-MS/MS). As proteínas encontradas diferencialmente expressas em ambos os estudos foram submetidas a análise de vias metabólicas no programa Ingenuity Pathway Analysis. Foi encontrado que vias de sinalização celular estão desreguladas na maior região de substância branca cerebral, com destaque para as vias Efrina e 14-3-3. Os dados gerados nessa dissertação auxiliaram em uma melhor compreensão das bases moleculares da esquizofrenia, através da integração das vias bioquímicas e na identificação de moléculas-chave na patologia.

8

ABSTRACT

Schizophrenia (SCZ) is an incurable mental disorder that is related to neurodevelopment and af- fects about 1% of world population. SCZ can be considered the main form of psychosis given its high frequency and clinical significance, and it is devastating for both patients and family. This study aimed to analyze and compare the proteome and phosphoproteome of the corpus callosum stemmed from schizophrenia patients and matched controls collected post-mortem. We used pre- viously enriched samples to analyze soluble () and total proteome, in which were also identified the set of differentially phosphorylated proteins. The analysis of these sets of samples were made by nano liquid chromatography followed by tandem mass spectrometry (nano LC-MS / MS). The proteins found differentially expressed in both studies were subjected to anal- ysis of metabolic pathways in the Ingenuity Pathway Analysis software. It was found that signaling pathways are deregulated in most of cerebral white matter, especially the Ephrin and 14- 3-3 way. The data generated in this work aided in better understanding the molecular basis of schizophrenia, through the integration of biochemical pathways and the identification of key mol- ecules in the pathology.

9

ÍNDICE DE FIGURAS

Figura 1 - Esquema com a compilação de estudos proteômicos realizados em tecidos cerebrais post-mortem de pacientes com esquizofrenia e controles...... 4 Figura 2 - Esquema cérebro humano com destaque a região do corpo caloso...... 5 Figura 3 - Esquema de um espectrômetro de massa usado em análises proteômicas ...... 10 Figura 4 - Ilustração esquemática do equipamento Synapt G2 Si, adaptado de Waters Corporation...... 11 Figura 5 - Esquema dos tipos de fragmentação dissociação induzida por colisão (CID) adaptado de Santos (2011)...... 12 Figure 6 - Venn diagram depicting differences between expressed proteins in schizophrenia (SCZ), bipolar disorder (BPD) and major depressive disorder (MDD)………………………………….24 Figure 7 - Differentially expressed proteins commonly found in SCZ, MDD and BPD and their functional correlations using STRING database ………………………………………………...25 Figure 8 - Differentially expressed proteins predicted proteins as affected by deregulation them in SCZ, MDD and BPD……………………………………………………………………………..26 Figure 9 - Interaction network depicting similar proteins among diseases……………………....28 Figure 10 - 14-3-3-mediated Signaling as the main canonical pathway related to differentially expressed proteins in SCZ………………………………………………………………………..30 Figure 11 - Mitochondrial dysfunction as the main canonical pathway related to differentially expressed proteins in BPD……………………………………………………………………….33 Figure 12 - Oxidative as the main canonical pathways related to differentially expressed proteins in MDD………………………………………………………………………35 Figure 13 - Network of interactions among differentially expressed proteins according to an analysis of biological systems by Ingenuity Pathway Analysis………………………………….58 Figure 14 - Canonical pathways associated with differentially expressed proteins by Ingenuity Pathway Analysis………………………………………………………………………………...59 Figure 15 - Network of canonical pathways associated with (A) differentially expressed proteins and (B) differentially expressed phosphoproteins by Ingenuity Pathway Analysis………………78 Figure 16 - Ephrin B signaling. The canonical pathway is significantly associated with the differentially expressed proteins………………………………………………………………… 80

10

Figure 17 - Ciliary neurotrophic factor (CNTF) signaling. The canonical pathway is significantly associated with the differentially expressed phosphoproteins………………………………...... 82

11

ÍNDICE DE TABELAS

Table 1 - Clinical data of patients and controls ...... 76

Table 2 - Proteins differentially expressed in schizophrenia corpus callosum, classified according to their biological and molecular functions...... 78

Table 3 - Proteins consistently differentially expressed across different brain regions as referenced below……………………………………………………………………………………………..82

Table 4 - Proteins differentially phosphorylated in the corpus callosum of schizophrenia patients compared to healthy controls; proteins are identified by the peptides shown in

6………………………………………………………………………………………...... 96

Table 5 – Proteins differentially expressed in the corpus callosum of schizophrenia patients compared to healthy controls...... 98

Table 6 - Peptides differentially phosphorylated in the corpus callosum of schizophrenia patients compared to healthy controls ...... 117

12

LISTA DE ABREVIATURAS

2D-DIGE - Differential two-dimensional electrophoresis

2DE - Two-dimensional electrophoresis

ABPS - -binding proteins

ACC - Córtex cingulado anterior

ALDOA - Fructose-bisphosphate aldolase A

ATL - Anterior temporal lobe

BPD - Bipolar disorder

CC - Corpo caloso

CHAPS - 3-[3-cholamidopropyldimethylammonio]-1-propanesulfonate

CNTF - Ciliary neurotrophic factor

CPE - Calculated chlorpromazine equivalents

CSF - Cerebrospinal fluid

DLPFC - Córtex dorsolateral pré-frontal

DPYSL2 - Dihydropyrimidinase-related 2

DTT - Dithiothreitol

ELISA - Enzyme-linked immunosorbent assay

ENO2 - Gamma enolase

ESI - Electrospray ionisation

FC - Frontal cortex

GAP43 - Neuromodulin

GAPDH - Glyceraldehyde-3-phosphate dehydrogenase

GFAP - Glial fibrillary acidic protein

13

Glu-Fib - [Glu1]-Fibrinopeptide B

GNB4 - Guanine nucleotide binding protein

GSN -

IAA - Iodoacetamide

IC - Insular cortex

ICAT - Isotope-coded affinity tags

ICPL - Isotope-coded protein label

IEF - Isoelectric focusing

INA - Alpha-

IM – Mobilidade iônica

IPA - Ingenuity Pathway Analysis iTRAQ - Isobaric tags for relative and absolute quantification

KEGG - Kyoto Encyclopedia e Genomes

LSD - Ácido D-lisérgico

MBP - Myelin basic protein

MDD - Major depressive disorder

MDT - Mediodorsal thalamus

MOG - Myelin-oligodendrocyte glycoprotein

MRM - Multiple reaction monitoring

MS - Espectometria de massas

MS/MS - Espectrometria de Massas em Série mtDNA - Mitochondrial DNA mTOR - Mammalian target of rapamycin

14

MudPIT - Multidimensional protein identification technology nano LC-MS/MS - Nano-liquid chromatography-mass spectrometry

NCS - National Comorbidity Survey

NEFL - Light

NEFM - Medium neurofilaments

NMDA - N-methyl-D-aspartate

NSC - Neural stem cells

OPC - Oligodendrocyte precursor cells

OXPHOS - Oxidative phosphorylation

PI3K - Phosphoinositide-3-kinase

PKM - Pyruvate kinase

PRDX1 - Peroxiredoxin-1

PRM - Parallel reaction monitoring

PTMs - Post-translational modifications

REST - Repressor element 1-silencing

RP - Fase reversa

ROS – Reactive oxygen species

SCX - Strong Cation Exchange

SCZ - Esquizofrenia

SNAP25 - Synaptosomal-associated protein of 25 kda

SNC - Sistema Nervoso Central

SOD1 - Superoxide dismutase [Cu-Zn]

SRM - Selected or selective reaction monitoring

15

STMN1 -

STRING - Search Tool for the Retrieval of Interacting Genes/Proteins

TOF - Time of Flight

TQ or QqQ - Triple quadrupole mass spectrometers

VAV2 - Guanine nucleotide exchange factory

WA - Área de Wernicke

XICS - Relative intensities of extracted ion chromatograms

YWAHZ - 14-3-3Z

YWHAE - 14-3-3 protein epsilon

YWHAG - 14-3-3 protein gamma

YWHAZ - 14-3-3 protein zeta/delta

YWHAZ - 14-3-3 zeta / delta

16

SUMÁRIO

DEDICATORIA ...... 5 AGRADECIMENTOS ...... 6 ÍNDICE DE FIGURAS...... 10 ÍNDICE DE TABELAS ...... 12 LISTA DE ABREVIATURAS ...... 13 1. INTRODUÇÃO ...... 19 1.1 ESQUIZOFRENIA ...... 19 1.2 PANORAMA PROTEÔMICO NA COMPREENSÃO DA ESQUIZOFRENIA ...... 21 1.3 CORPO CALOSO ...... 23 1.3.1 CÉLULAS DA GLIA ...... 23 1.3.2 FOSFOPROTEOMA ...... 24 1.4 ESPECTROMETRIA DE MASSAS APLICADA A PROTEÔMICA ...... 25 1.4.1 SYNAPT G2 Si ...... 29 2. OBJETIVOS...... 32 3. CAPITULO 1 ...... 33 Psychiatric disorders biochemical pathways unraveled by human brain proteomics ...... 33 4. CAPITULO 2 ...... 67 Proteomics of the corpus callosum unravel pivotal players in the dysfunction of , structure, and myelination in schizophrenia brains...... 67 5. CAPITULO 3 ...... 85 Differential proteome and phosphoproteome may impact cell signaling in the corpus callosum of schizophrenia patients ...... 85 6. CONCLUSÃO FINAL ...... 111 7. Perspectivas ...... 113 8. REFERÊNCIAS BIBLIOGRÁFICAS (Introdução, discussão e conclusão) ...... 114 9. ANEXOS ...... 117

17

ORGANIZAÇÃO DESTA DISSERTAÇÃO

Para uma melhor compreensão dessa dissertação, foi feita uma divisão com uma breve introdução contendo referencial teórico e 3 capítulos contendo artigos científicos escritos pela durante o desenvolvimento deste trabalho de mestrado. No primeiro artigo, uma revisão, foi abordada a importância dos estudos proteômicos em doenças psiquiátricas, como esquizofrenia, transtorno bipolar e depressão. Nessa revisão foram compilados estudos existentes em cérebro post-mortem de pacientes com essas três doenças, com a realização de uma análise global das proteínas diferencialmente encontrada em cada doença. Esse artigo contém também uma extensa revisão das técnicas proteômicas usadas nesse tipo de análise, o que nos levou a apenas descrever uma breve introdução na dissertação, evitando assim deixar a escrita repetitiva. Esse artigo foi submetido à revista European Archives of Psychiatry and Clinical Neuroscience (doi: 10.1007/s00406-016-0709-2). No segundo artigo foram analisadas proteínas solúveis (citoplasmáticas) do corpo caloso de cérebro post-mortem de pacientes com esquizofrenia. O objetivo desse trabalho foi identificar se as proteínas presentes nessa região tinham relação com o metabolismo energético encontrado desregulado em outras regiões cerebrais. A região citoplasmática foi escolhida pois é nela que se realiza a maior parte do metabolismo energético. Essas proteínas relacionadas ao metabolismo foram encontradas desreguladas, mas, além disso, muitas proteínas relacionadas à sinalização celular foram também encontradas desreguladas, o que serviu de incentivo para o próximo passo da análise com as proteínas fosforiladas, que são altamente relacionadas à sinalização celular. Esse artigo foi publicado na revista European Archives of Psychiatry and Clinical Neuroscience (2015; 265(7):601-612). Já no terceiro artigo, foram analisados o fosfoproteoma e o proteoma total do corpo caloso de pacientes com esquizofrenia, com a obtenção de uma visão geral do papel da substância branca, composta de principalmente células glias, na esquizofrenia. Com essas análises ressaltou-se o papel da sinalização celular, que já tinha sido apontada em estudos com outras regiões cerebrais. Esses resultados indicaram uma possível correlação dessas proteínas desreguladas com as células astrocitárias, motivo que direciona futuras pesquisas para a comunicação/sinalização astrócitos- neurônios. Esse artigo foi publicado online pela revista Schizophrenia Research (doi:10.1016/j.schres.2016.03.022).

18

1. INTRODUÇÃO

1.1 ESQUIZOFRENIA

Inicialmente, a esquizofrenia foi denominada como demência precoce, pelo psiquiatra francês Benedict Morel, já que a doença normalmente se manifestava no início da adolescência (Sadock and Sadock 2007). Em 1911, o psiquiatra Eugen Bleuler desenvolveu o termo esquizofrenia (do grego esquizo – “dividido”, frenia – “estado da mente”) e descreveu essa doença como sendo a dissociação das funções psíquicas, caracterizada pela perturbação das associações de pensamento e afetividade (Bleuler 1908). De acordo com a prevalência dos sintomas, a esquizofrenia pode ser dividida em diferentes subtipos: i) Catatônica, onde há predomínio de sintomas relacionados à psicomotricidade, como rigidez muscular, excitação, negativismo e posturas bizarras; ii) Desorganizada (ou hebefrênica), caracterizada por distúrbios de pensamento como incoerência, desagregação e dessensibilidade afetiva; iii) Paranóide, em que há predomínio de delírios e alucinações, principalmente alucinações auditivas, o que leva o paciente a apresentar ansiedade, alteração nas interações sociais e, em alguns casos, violência; iv) Residual, onde predominam os sintomas negativos, como afastamento social, inadequação afetiva, comportamento excêntrico e pensamento ilógico (revisado em (Purim 2006)). O desenvolvimento da SCZ envolve fatores exógenos (ou ambientais) e fatores endógenos (pré-disposição genética) e muitos dos seus aspectos moleculares ainda não foram completamente compreendidos. Embora seja evidente o caráter hereditário da esquizofrenia, como demonstrado em estudos com gêmeos idênticos, essa doença é caracterizada também pela junção de diversos pequenos fatores o que dificulta a detecção de genes específicos envolvidos no seu desenvolvimento (Gejman, Sanders, and Duan 2010). Os fatores ambientais envolvidos na doença, revisados em Martins-de-Souza 2008, são o abuso de álcool e drogas, a vida conturbada de centros urbanos, além dos fatores ligados ao neuro-desenvolvimento, como complicações obstétricas, luto materno na gestação e infecções virais severas. Assim como em todos os transtornos psiquiátricos, o diagnóstico dessa doença ainda é estritamente clínico, baseado apenas na entrevista paciente-médico, havendo divergências entre os psiquiatras no que diz respeito aos critérios de classificação dessa doença (Tsuang, Stone, and 19

Faraone 2000). Isso dificulta, em muitos casos, o diagnóstico precoce da doença, já que as doenças mentais têm vários sintomas em comum, gerando assim um atraso no início do tratamento correto do paciente. O tratamento se baseia principalmente no uso de fármacos antipsicóticos, que podem ser divididos em típicos e atípicos (Tandon, Nasrallah, and Keshavan 2010). Os antipsicóticos típicos atuam principalmente como antagonistas dopaminérgicos, podem causar efeitos colaterais extrapiramidais, discinesia tardia, sedação, rigidez muscular e cãibras (Tandon, Nasrallah, and Keshavan 2010). Já os atípicos, agem mais fracamente nos receptores de dopamina, e atuam também em receptores de glutamato e serotonina, assim, os efeitos colaterais ocorrem numa menor extensão, podendo, porém, causar outra gama de sintomas, como é o caso da síndrome metabólica (Lieberman et al. 2005), que é capaz de acarretar distúrbios cardiovasculares (Dieset et al. 2012). Devido a esses efeitos colaterais, cerca de 60% dos pacientes abandonam o tratamento, além dos 10% de pacientes que são refratários ao tratamento (Tandon 2010). Pacientes sem tratamento adequado têm uma deficiente qualidade de vida, não conseguindo trabalhar ou estudar, sendo que 40% desses pacientes tentam o suicídio, chegando a óbito em 4,9% dos casos (Hor and Taylor 2010). As diversas teorias sobre o desenvolvimento da esquizofrenia estão centradas em desregulações nos neurotransmissores. A hipótese dopaminérgica foi proposta depois de observações que indicaram que drogas usadas recreativamente como anfetamina e cocaína, que são agonistas de receptores dopaminergicos, causam psicoses relacionadas às que os pacientes com SCZ vivenciam (Meltzer and Stahl 1976). A teoria seretonérgica também foi formulada a partir de sintomas psicóticos que LSD (ácido D-lisérgico), um droga recreativa, causava. Essa substância possui a ação agonista em receptores de serotonina, ou seja, o mal funcionamento desse receptor, induzido pela droga, pode causar sintomas parecidos com os da SCZ (Shaw and Woolley 1958). A hipótese glutamatérgica foi baseada na possibilidade de antagonistas dos receptores de glutamato do tipo N-metil D-Aspartato (NMDA), também induzirem psicose semelhante a que ocorre em pacientes com SCZ (Javitt and Zukin 1991). A hipótese sináptica, por sua vez, está baseada em estudos de cérebros post-mortem, neuroimagem, estudos farmacológicos, genéticos, proteômicos e com modelos animais, que mostraram que há um déficit nas interações sinápticas (Jaaro-Peled et al. 2010; Maynard et al. 2001). Essa hipótese é um misto das outras citadas, onde há convergência de pequenos fatores que

20

levam à deficiência sináptica que causa os sintomas que estão relacionados com a SCZ. Essa hipotese abrange também a idade de desenvolvimento da doença, pois a conectividade sináptica anormal no período da infância é modesta, passando despercebida em muitos casos, devido à redundância dos contatos sinápticos dessa época, porém, no período de maturação do sistema nervoso, que ocorre na pré-puberdade (idade que normalmente se iniciam os sintomas), essas disfunções sinápticas se tornam aparentes (Frankle, Lerma, and Laruelle 2003). Apesar de toda a teoria em que essas hipóteses estão baseadas e todos os outros estudos realizados a fim de compreender as bases moleculares da esquizofrenia, pouco ainda se sabe sobre a gênese da doença. Devido a isso, se faz necessário a realização de mais estudos onde se possa melhor entender alguns aspectos ainda não revelados da SCZ, e assim, poder melhor conectar os resultados já obtidos, a fim de conseguir uma melhor compreensão integrada da sua fisiopatologia.

1.2 PANORAMA PROTEÔMICO NA COMPREENSÃO DA ESQUIZOFRENIA Estudos proteômicos realizados em tecidos cerebrais post-mortem de pacientes e controles têm sido de grande valia para a compreensão das bases moleculares da esquizofrenia (Martins-de- Souza et al. 2012). Para encontrar esses aspectos ainda não descobertos sobre essa doença, se faz necessário o estudo de outras regiões e áreas cerebrais e sub-proteômicas, incluindo o mapeamento das modificações pós-traducionais. Com o emprego das mais diversas técnicas proteômicas de um modo exploratório, nosso grupo analisou até agora cinco diferentes regiões cerebrais – córtex dorsolateral pré-frontal (DLPFC), lobo temporal anterior (ATL), área de Wernicke (WA), córtex cingulado anterior (ACC) e tálamo – coletadas post-mortem de pacientes com esquizofrenia, propondo um mapa das possíveis interações moleculares envolvidas na doença, como mostrado na Figura 1.

21

Figura 1 - Esquema com a compilação de estudos proteômicos realizados em tecidos cerebrais post-mortem de pacientes com esquizofrenia e controles

Por mais que deficiências no metabolismo energético (Martins-de-Souza et al. 2011) e de oligodendrócitos (Martins-de-Souza 2010; Cassoli 2015) tenham sido observadas mais frequentemente nas diferentes regiões cerebrais, proteínas relacionadas à sinalização celular também foram detectadas, sugerindo falhas na comunicação intracelular (Martins-de-Souza et al. 2009). De acordo com novas hipóteses, incluindo nossos dados de proteômica, estas podem não estar restritas aos neurônios, mas presentes também nas células da glia (White and Kramer-Albers

22

2014). Essas células se encontram em maior quantidade na substância branca do cérebro, sendo assim de grande importância o estudo dessa região.

1.3 CORPO CALOSO

O corpo caloso (Figura 2) situado no centro da cérebro humano, constitui a maior porção de substância branca do cérebro, conectando os hemisférios cerebrais direito e esquerdo, facilitando assim a comunicação inter-hemisférica (Fitsiori et al. 2011). Estudos morfológicos, eletrofisiológicos e neuropsicológicos sugerem alterações no corpo caloso de pacientes com esquizofrenia (Guo 2013; Rotarska-Jagiela 2008; Innocenti 2003). Essa região cerebral consiste basicamente de axônios neuronais e de células da glia (Fitsiori et al. 2011).

Figura 2 - Esquema do cérebro humano com destaque para a região do corpo caloso

1.3.1 CÉLULAS DA GLIA As células da glia, eventualmente chamadas de neuroglia, podem ser classificadas de acordo com a sua origem embrionária em dois grupos distintos, morfológica e funcionalmente: o primeiro é a microglia, que tem origem mesodermal, e o segundo a macroglia de origem ectodermal (Ranson; Kettenmann, 1990). A microglia é responsável pela defesa imune primária

23

do sistema nervoso central (SNC), suas células possuem similaridades aos macrófagos, e recentemente foram associadas ao processo de eliminação e establização das sinapses (Schafer et al. 2013). Já a macroglia possui dois tipos célulares principais, os astrócitos, que são as células gliais mais abundantes do SNC e os oligodendrócitos (Gomes 2013). Os oligodendrócitos correspondem à 51% das células que envolvem os neurônios (Polak et al., 1982), essas células realizam funções como sinalização trófica, síntese de fatores de crescimento e mielinização de axónios de neurônios (Du & Dreyfus, 2002). Já os astrócitos desempenham uma série de funções essenciais para a homeostase do SNC, incluindo manutenção dos níveis iônicos do meio extracelular; captação e liberação de diversos neurotransmissores; participação na formação da barreira hematoencefálica; secreção de fatores tróficos essenciais para a sobrevivência e diferenciação dos neurônios, direcionamento de axônios e formação e funcionamento das sinapses (Meldolesi 2005; Stipursky et al. (2010; 2011; 2012), além dessas células terem grande impacto no controle energético cerebral, em razão do fornecimento de energia e metabólitos (Rouach et al. 2008). Esses vias são reguladas principalmente por modificações pós- traducionais realizadas em proteínas chaves desses processos.

1.3.2 FOSFOPROTEOMA A fosforilação é a mais compreendida das modificações pós-traducionais, sendo chave na regulação de processos biológicos intracelulares (Morandell 2006; Reinders 2005). A fosforilação de proteínas está envolvida na regulação de diversos processos celulares, tais como metabolismo, transcrição, regulação da tradução e degradação de proteínas, homeostase, sinalização e comunicação celular, proliferação, diferenciação e sobrevivência celular (Hunter, 2000; Graves, 1999). Como a fosforilação é uma modificação reversível, mudanças da atividade protéica podem ser precisamente controladas por fosforilação/desfosforilação em resposta aos estímulos celulares e/ou ambientais. Os múltiplos locais de fosforilação em eucariontes são os resíduos de serina, treonina e tirosina, que permitem modular várias funções diferentes da mesma proteína, dependendo do sítio modificado (Thingholm 2009). A importância do ciclo de fosforilação/desfosforilação é confirmada pelo alto número de proteínas quinases e fosfatases, que constituem cerca de 2% de todo o genoma humano (Jaros

24

2012; Manning 2002). Além disso, estima-se que mais de 50% de todas as proteínas são fosforiladas durante o seu tempo de vida (Reinders 2005) e que podem existir mais de 100.000 sítios de fosforilação no proteoma humano (Zhang 2002). Embora algumas proteínas são constitutivamente fosforiladas, a maioria das proteínas é apenas transitoriamente fosforilada de acordo com o ambiente celular em que ela se encontra. Devido a essa dinâmica, há uma concentração relativamente baixa de proteínas fosforiladas em um proteoma total, o que dificulta as análises. Por isso, estratégias analíticas, principalmente no que se refere à análise proteomica, foram desenvolvidas para a caracterização de peptídeos fosforilados.

1.4 ESPECTROMETRIA DE MASSAS APLICADA A PROTEÔMICA O proteoma é definido como o conjunto de proteínas expressas por uma célula, tecido ou organismo em um determinado tempo sob uma dada condição (adaptado de Wilkins et al. 1996). O estudo do proteoma e tudo que abrange as proteínas, atualmente, é denominado proteômica. Como as proteínas são as bases dos processos metabólicos celulares e consequentemente do organismo como um todo, qualquer alteração no equilíbrio proteico pode acarretar em mudanças fisiológicas que muitas vezes são associadas à alguma doença. Atualmente, a ferramenta principal usada em estudos proteômicos é a espectrômetria de massas (MS), sendo um esquema mostrado na Figura 3. Ela consiste na caracterização de moléculas com base na medida da razão massa/carga (m/z) de seus íons, ou seja, para que uma molécula seja caracterizada por MS ela precisa ser ionizada. A ionização é a conversão de um átomo ou molécula em um íon pela adição ou remoção de partículas carregadas, ocorrendo através da permuta de elétrons ou outros íons. Há diversos técnicas de ionização usados em MS, sendo duas delas mais usadas em proteômica. A primeira das técnicas e a ionizaçao por eletrospray (ESI), nessa técnica, os analitos são dissolvidos em um solvente aquoso e bombeados em um fino capilar, onde altas tensões são aplicadas, criando um forte campo elétrico e assim a amostra é dispersa em aerossol, isso faz com que haja a evaporação do excesso de solventes, processo que é auxiliado por um gás inerte a temperaturas elevadas que envolve o aerossol, as moléculas previamente carregadas repelem umas as outros até que ocorre um colapso na gota e as moléculas sejam expelidas em forma de íons (Ho et al. 2003). Já a ionização dessorção a laser auxiliada por matriz (Matrix Assisted Laser

25

Desorption Ionization, MALDI) é um tipo de ionização por irradiação pulsada a laser onde a amostra é misturada a uma matriz específica, principalmente compostos aromáticos, que auxilia a sua ionização, já que a matriz energizada transfere sua energia ao analito provocando a ionização desse. A ionização do tipo MALDI é caracterizada como branda (DASS, 2007). Além da fonte de ionização, um espectrômetro de massas tipicamente contém outras duas partes: o analisador de massas, onde a massa/carga (m/z) do íon é medida e o detector onde é captada e amplificada a informação do analisador. Há vários tipos de analisadores, e cada um tem uma maior aplicabilidade para o tipo de análise feita. Um dos analisadores usados em estudos proteômicos é o time of flight (TOF), nessa análise, a partir do tempo em que moléculas ionizadas percorrem uma trajetória de comprimento conhecido em um tubo de voo, a mensuração da relação m/z do íon é realizada. Já o quadrupolo, que é formado por quatro barras metálicas, utiliza campos elétricos oscilantes para estabilizar ou desestabilizar seletivamente os íons durante a sua passagem pelo quadrupolo, o que possibilita a separação desses de acordo com os seus valores de m/z (Hoffmann e Stroobant 2007). O Orbitrap é um analisador do tipo trap, onde os íons se deslocam a partir de um campo eletrostático ao redor de um eletrodo central o que faz com que esses íons tenham um movimento padrão complexo em espiral e, a partir de cálculos feitos pela transformada de Fourier, levando em consideração a oscilação de cada molécula, temos a medida com alta extatidão da razão m/z do analito (Scigelova 2006). Ao final do processo o detector do MS identifica e amplifica o sinal desses íons, convertendo os feixes de íons em sinais elétricos, que são armazenados e traduzidos em espectros de massas. Esses espectros são analisados em programas computacionais específicos, como MASCOT®, PLGS®, Sequest®, Progenesis®, MaxQuant entre outros, e quando comparados com um banco de dados de espectros teoricamente obtidos, gerados a partir do genoma do organismo em questão, possibilita a identificação das proteínas obtidas experimentalmente. Análises desse tipo podem gerar uma quantidade maciça de dados, ainda mais quando se trata de misturas biológicas complexas, em consequência disso, visualizar, analisar e categorizar esses tipos de dados tem sido um grande desafio (Cagney 2003). Além de análises de interação proteína- proteína e as vias a qual essas estão envolvidas serem fundamentais para se entender completos fenótipos celulares. Devido ao citado anteriormente, várias ferramentas de análise in silico vem

26

sendo desenvolvidas e aprimoradas facilitando desse modo os estudos proteômicos. Uma dessas ferramentas é o programa Ingenuity Pathways (IPA), que, além das características citadas acima, ainda promove insight sobre interações químicas, fenótipos celulares e doenças que estão relacionadas às proteínas de estudo. Esse programa é baseado em algorítmos que usam informações da literatura previamente descritas para determinar essas redes de interação e por isso possui uma maior confiabilidade em seus resultados comparados com outras ferramentas de bioinformática (Calvano et al. 2005). Outra ferramenta muito usada é a Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, http://string-db.org/), que consiste em um banco de dados dedicado à interação proteína-proteína, tanto no âmbito físico quanto no funcional, levando em consideração informações de várias fontes, incluindo repositórios experimentais, métodos de previsão computacional e artigos publicados. STRING abrange cerca de 2,5 milhões de proteínas a partir de 630 organismos, o que proporciona uma visão abrangente das interações entre proteína de um dataset de resultados (Jensen 2008). O software de bioinformática Kyoto Encyclopedia Genes e Genomes (KEGG, http://www.genome.ad.jp/kegg/ ) é um conjunto de bancos de dados que visa a compreensão e simulação do fenótipo de células e organismo a partir de um banco de dados de informações do genoma. Para isso, i) ele integra dados e conhecimentos sobre as interações proteína-proteína e possíveis reações químicas ligadas a processos celulares específicos; ii) reconstroi redes de interação de organismos que tem seu genoma completamente sequenciado; e por fim, iii) pode ser ultilizado para estudos proteômicos, principalmente os de integração de mapas metabólicos, representando-os em forma de gráficos (Kanehisa, 2000). Outro software amplamente utilizado é o Blast2Go (http://www.blast2go.de), que é uma ferramenta de anotação, visualização e analises, onde é possível realizar a investigação, em base de dados via Ontology, sendo adequada para analises de investigação tanto de genes, quanto de proteínas (Conesa 2005). As três últimas ferramentas (STRING, KEGG, BLAST2Go) são disponíveis online sem custo, já o programa IPA é um programa pago, esse último, por possuir um banco de dados curado manualmente, tem um maior confiabilidade nos dados gerados.

27

Figura 3 - Esquema de uma plaforma usado em análises proteômicas

28

1.4.1 SYNAPT G2 Si O espectrômetro de massas (MS) usado por nosso grupo de pesquisa é o Synapt G2 Si (Waters Corp., Milford, EUA), figura 4, equipado com uma fonte de ionização do tipo eletrospray (ESI). O Synapt é uma aparelho do tipo Q-TOF, ou seja, possui dois tipos de analisadores hibridizados, um quadrupolo (Q) seguido de um analisador do tipo time of flight (TOF). Esse MS também possui uma cela de mobilidade iônica (IM) do tipo “travelling wave ion mobility- TWIM”.

Figura 4 - Ilustração esquemática do equipamento Synapt G2 Si, adaptado de Waters Corporation.

29

Com esse equipamento é possível fazer experimentos do tipo análise independente de dados (data-independent analysis-DIA), que consiste em espectrometria de massas sequencial (MSe, ou tandem MS) envolvendo a fragmentação de peptídeos seguida da posterior análise de sua sequência de aminoácidos. O processo de fragmentação mais ultilizado em MSe é a técnica de dissociação induzida por colisão (Collision Induced Dissociation-CID); nela os peptídeos são selecionados em um primeiro analisador, nesse caso o quadrupolo, e acelerados em uma região do espectrômetro de massas com um gás inerte (hélio, argônio ou nitrogênio), o que acarreta na colisão entre os íons e as moleculas desse gás fazendo com que a energia dessa colisão seja transferida para as ligações presentes nos íons, os quais são fragmentados (Levin, 2011). Essa fragmentações podem ser classificadas em tipos específicos: i) se a carga no íon se concentrar no N-terminal, a fragmentação pode ser dos tipos a, b e c, dependendo em que ligação ocorre a fragmentação desse íon, ii) se a carga do íon se encontra na região do C-terminal, é classificada como x,y e z, também dependendo do local de fragmentação, sendo os pares de fragmentação x/a, y/z e c/z. Os locais de fragmentação e o tipo de classificação podem ser visualizado na figura y. Como a ligação peptídica é a ligação mais lábel nessas moléculas, espera- se que haja uma maior formação do par de fragmentos do tipo –b/-y em experimentos do tipo CID (Roepstorff, 1984).

Figura 5 - Esquema dos tipos de fragmentação por dissociação induzida por colisão (CID), adaptado de Santos (2011). 30

Outra particularidade desse MS é que ele possui uma cela de mobilidade iônica (IM) do tipo “travelling wave ion mobility-TWIM”. Ela adiciona um fator a mais na separação dos íons o que possibilita uma nova dimensão na separação de moléculas, especialmente quando se trata de amostras de misturas complexas, como é o caso de tecidos e culturas celulares. A IM pode ser definida como a velocidade com que um íon se desloca sob influência de um campo elétrico em uma câmara contendo um gás inerte, caracterizado pelo drift time, que é o tempo em que ele leva para realizar esse deslocamento. O valor do drift time é caracteristico para cada íon e sobre influência da secção de choque de colisão (collision cross section - CCS), uma propriedade físico-química que está relacionada com a estrutura química e conformação 3D, que é particular a cada molécula (revisado em (Lalli)). A cela de mobilidade iônica do Synapt G2 Si é subdividida em câmaras: a TRAP, onde os íons que vieram do quadrupolo ficam aprisionados e em intervalos regulares são injetados na câmara de mobilidade iônica. Nessa segunda cela, os íons são submetidos a um gradiente de voltagem controlado através de rádio frequência (RF), o que faz com que eles viagem através da câmara preenchida com um gás inerte sendo separados de acordo com o drift time. Já na terceira e ultima cela, a TRANSFER, os íon são guiados ao analisador TOF, mantendo assim a separação adquirida pela mobilidade iônica. Outra função dessa câmara é fragmentar os íons quando o MS está no modo High Definition Mass Spectrometry (HDMSe), que é a junção das técnicas IM com MSe (revisado em (Lalli)). Essas particularidades do Synapt G2 Si permitem uma melhor separação de isômeros, eliminação de interferentes, obtenção de espectros mais limpos, além de uma melhor capacidade de identificação de compostos, características essas que são importantes em análises proteômicas.

31

2. OBJETIVOS

Os objetivos desta dissertação foram encontrar proteínas diferencialmente expressas no corpo caloso coletados post-mortem de pacientes com esquizofrenia em relação à controles mentalmente sadios, de modo a contribuir com o mapa mostrado anteriormente (Figura 1), pretendendo uma melhor compreensão da doença em nível molecular, atualmente ainda pouco conhecida. Nosso objetivo específico foi observar o papel da maior região de substância branca no desenvolvimento da SCZ. Para isso, foram analisadas proteínas citoplasmaticas, proteínas totais e as proteínas que apresentam diferenças de fosforilação nos cérebros de pacientes com esquizofrenia.

32

3. CAPITULO 1

Artigo submetido para publicação no Journal of Proteomics

PSYCHIATRIC DISORDERS BIOCHEMICAL PATHWAYS UNRAVELED BY HUMAN BRAIN PROTEOMICS

Verônica M. Saia-Cereda1, Juliana S. Cassoli1, Daniel Martins-de-Souza1,2*, Juliana M. Nascimento1, 3

1- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas

(UNICAMP), Campinas, SP, Brazil.

2- UNICAMP’s Neurobiology Center, Campinas, Brazil.

3- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil

Abstract

Approximately 25% of the world population is affected by a mental disorder at some point in their life. Yet, only in the mid-twentieth century a biological cause has been proposed for these diseases. Since then, several studies have been conducted towards a better comprehension of those disorders, and although a strong genetic influence was revealed, the role of these genes in disease mechanism is still unclear. This led most recent studies to focus on the molecular basis of mental disorders. One line of investigation that has risen in the post-genomic era is proteomics, due to its power of revealing proteins and biochemical pathways associated to biological systems. Therefore, this review compiled and analyzed data of differentially expressed proteins, which were found in postmortem brain studies of the three most prevalent psychiatric diseases: schizophrenia, bipolar disorder and major depressive disorders. Overviewing both the proteomic methods used in postmortem brain studies and the most consistent metabolic pathways found altered in these diseases. We have unraveled those disorders share about 21% of proteins affected, and though most are related to energy metabolism pathways deregulation, the main differences found are 14-3-3- mediated signaling in schizophrenia, mitochondrial dysfunction in bipolar disorder and oxidative phosphorylation in depression. Keywords: proteome, mass spectrometry-based proteomics, schizophrenia, bipolar disorder, major depressive disorder, postmortem brain

33

1 INTRODUCTION Since ancient Egypt, mankind attempts to understand mental illness, however, only around the mid-twentieth century a probable biological cause was confirmed. Since then, modern psychiatry has established a set of systematic criteria for diagnosis, psychological therapies, and the development of new drugs. And despite all progress, the prevalence of neuropsychiatric disorders has not diminished. Strong genetic influence of these diseases has been elucidated, yet the role of such genes is still unclear [1]. Hence, more detailed molecular based studies are necessary for a better understanding of mental disorders. Approximately 25% of the world population will, at some point in their lifetime, be affected by a mental disorder [2]. Among the leading causes of disability, especially among woman between 15-44 year-old, are several mental disorders, five of these disorders are listed as the first cause of burden, schizophrenia as the fifth, and bipolar disorder as the seventh [3]. These diseases cause an increased risk of additional health problems, premature death, in addition to suicide attempts [4,5].

1.1 THE BURDEN OF MENTAL DISORDERS Currently, depressive disorders are the most common mental illnesses worldwide, estimated to affect about 350 million people of all ages [3]. Major depressive disorder (MDD) is associated with high health costs [6], and according to the National Comorbidity Survey (NCS) have prevalence of 14.4% over lifetime, and 7.1% on a 12-month period [7]. The main symptoms of this disease are depressed mood and/or loss of interest or pleasure [8], while secondary symptoms are change in sleep, appetite, fatigue/energy loss, feelings of worthlessness or guilt, diminished concentration, and suicidal thoughts [8,9]. The basis for MDD treatment still consists in antidepressants, and only 30-40% of the patients satisfactorily respond to them [10,11]. There are several hypotheses aiming to explain the molecular basis of MDD, however the pathophysiology of these diseases is only partially understood [12–14]. Schizophrenia (SCZ) is a chronic mental disorder that usually emerges at the end of adolescence and develops slowly for months or even years [15]. SCZ may affect up to 1% of the world

34

population and presents a hereditability of 80-85% [16], which may cause a lifespan reduction of almost 20 years [17]. A burden that displays different symptoms, which are classified as positive, such as hallucinations, deliria and thought disorders; and negative, such as social interaction disorders, lack of motivation and anhedonia. Furthermore, cognitive deficiencies, such as the reduction of executive functions, selective attention, working memory and mental flexibility, may also be present [18]. As a multifactorial disease, SCZ involves exogenous and endogenous factors since the beginning of neurodevelopment [19]. Some of the molecular aspects of SCZ are still to be unraveled, while the connection among the known aspects has still to be improved towards a more integrated understanding of its physiopathology. Bipolar disorder (BPD) is another chronic psychiatric disorder that may affect up to 4% of the world adult population [20]. It is characterized by two well-defined mood shifts, from manic to depressive mood, and it is possible to have periods with symptoms from both states. The diagnosis of BPD is performed clinically. This is a challenge, since the disease has a great heterogeneity, with unclear limits when compared to other psychiatric disorders [21]. Lithium is by far the most commonly used drug for BPD, and works as a mood-stabilizing agent; nevertheless, its specific way of action was not yet entirely unraveled. However, there are several theories trying to explain its action mechanism; such as ionic channels alterations, or modulation [21–23]. A cause factor for BPD remains unknown, what is already known is that some biochemical, genetic and environmental disturbed patterns may trigger the disease. The study of the brain is the most natural way to understand these neuropathologies, aiming to find possible causes for those brain disorders [24]. In addition, cellular and molecular arrangements differ between brain regions; thus, a better comprehension arises from characterizing them at the molecular level and their correlation with the disease pathobiology. Hence, this review aims to evaluate and connect proteomic studies of human brain from patients with SCZ, MDD and BPD, in order to better understand those diseases. These studies employed a myriad of proteomic techniques, which are described in detail below. 2 PROTEOMIC METHODS USED IN NEUROPSYCHIATRIC STUDIES 2.1 2DE/2D-DIGE The pioneer technique employed not only in psychiatric studies, but in proteomic investigations in general, was the two-dimensional electrophoresis (2DE) [25]. Since the 70’s, when developed

35

[25], this technique is widely used in proteomic studies. Hence, between 2000 and 2010 half of the articles in proteomics in PubMed employed 2DE as its main method of study [26], which is still used for some particular questions, such as the study of intact proteins [26]. The 2DE combines two techniques: isoelectric focusing (IEF), followed by a separation by SDS-PAGE. Therefore, as all techniques of electrophoretic separation, molecules with charge migrate under the influence of an electric field, and their migration velocity will depend on specific features of these molecules, such as size, shape and electrical charge. The large use of 2DE in proteomic studies evidenced some of the inherent limitations of this technique for proteome characterization and quantitation. Gel to gel variations, leading to experimental reproducibility issues; staining methods which may either lack on sensitivity (for coomassie-stained gels) or lack in exact protein concentration (for silver-stained gels). Thus, by late 90’s this technique was powered by the development of differential two-dimensional electrophoresis (2D-DIGE) [27]. Herein, proteins are covalently labeled in their lysine residues with fluorescent cyanins (-Cy3, Cy5 and Cy2) and the samples are mixed prior electrophoretic separation, enabling precise and more sensitive proteome quantification. Consequently increasing reproducibility and sensitivity, as samples can be compared in a single gel [28]. Also, advances in 2DE staining methods as Pro-Q® Diamond for phosphorylated proteins [29] and LRSH (Lissamine rhodamine B sulfonyl hydrazine) [30] for glycoproteins enabled the quantification of post-translational modifications (PTMs). Inherent limitations of 2DE, which also applies to 2D-DIGE, are the difficulty of separating hydrophobic and extremely acidic or basic proteins, which can be partially solved by protein extraction methods using detergents. Moreover, proteins larger than 150 kDa and smaller than 10 kDa can be missed, demanding experiments using several gels with variable acrylamide concentrations. Computational analyses of gels are rather semi-automated, demanding manual corrections for the quantification of protein expression. Even with all limitations, 2DE/2D-DIGE are genuinely a top-down analytical approach [26]. Their resolution power are remarkable as they are capable of resolving more than 10,000 protein spots in a single run [31], besides resolving protein isoforms and post-translational modifications. But their application to proteomics heavily relies on mass spectrometry for the identification of proteins.

36

2.2 MASS SPECTROMETRY-BASED PROTEOMICS A combination of liquid chromatography (LC) and mass spectrometry (MS) used for large scale proteome analysis became popular by the end of the 90’s, when the term “Shotgun Proteomics” was coined [32]. At that point, shotgun proteomics could be simply referred as mass spectrometry- based proteomics. But considering all the recent developments, both terms are actually referring to “mass spectrometry-based bottom-up proteomics”. This consists primarily of the analysis of a digested proteome, which undergoes a chromatographic separation followed by MS/MS analysis [33,34]. Chromatographic separations must be performed in off-line or in-line modes prior to MS or MS/MS assay. Chromatographic instrumentation and methodologies have undergone remarkable development, combining different stationary phases or the use of new mobile phases. Reversed-phase chromatography (RPC) remains though the most widely used separation technique [35]. Although this is virtually impossible, the aim here is to unveil the whole proteome of a given sample. For that, depending on the sample analyzed, single liquid chromatography could be insufficient to resolve the complexity of biological protein mixtures, requiring a multidimensional chromatography separation. Chromatographic orthogonal separation approaches were introduced in order to reduce sample’s complexity, and to gain the largest possible amount of information in terms of number of identified peptides and proteins. The most widely used orthogonal combination is ion (anion or cation) exchange chromatography before reversed phase separation. This concept has been applied, for instance, since the description of MudPIT (multidimensional protein identification technology) in 2001 [36], and multidimensional chromatography separation has been used in a significant number of proteomic studies since [37,38]. Together with recent advances in peptide separation, the mass spectrometry field has received enormous improvement in terms of instrumentation, data acquisition and data analysis in proteomics.

2.3 MASS SPECTROMETRY-BASED QUANTITATIVE PROTEOMICS In recent years, mass spectrometry-based quantitative proteomics has earned significant space among quantitative techniques for proteins [39]. It is an alternative for antibody-based protein analysis, as virtually any protein can be accurately measured in a large number of samples [40].

2.3.1 STABLE ISOTOPE/ISOBARIC LABELING APPROACHES

37

Quantification of proteins is a key aspect in proteomic studies. Efforts in developing effective methods to increase sensitivity and accuracy led to the development of stable chemical (e.g. ICAT, iTRAQ, ICPL, TMT) and metabolic (SILAC, SILAM and 15N) labeling techniques. Isotope- coded affinity tags (ICAT) was the first application of stable isotope labeling to quantitative proteomics [41]. It relies in heavy and light mass tags containing either eight or no deuterium atoms, respectively, allowing the comparison of two samples in one experiment. Isotope-coded protein label (ICPL) follows the same principle, but up to 4 samples could be labeled at once [42]. Isobaric tags for relative and absolute quantification (iTRAQ) are one the most used in vitro labeling technique in proteomic studies. Quantification consists of different isobaric tags, which label up to eight different samples, and can be used in any biological system [43]. Proteolytic peptides of each sample are labeled with an iTRAQ specific tag, then samples are mixed and further analyzed in LC-MS/MS [43]. iTRAQ tags present three distinct regions: one that reacts with the peptide, a reporter region, and a balance that complements the reporter region mass, making iTRAQ tags isobaric [44]. Once a given labeled peptide is submitted to MS/MS, the balance and reporter break apart, and the masses of the reporters are measured. The intensity of these reporters is linearly correlated to the quantity of the given peptide. In addition, among metabolic labeling techniques, stable isotope labeling by amino acids in cell culture (SILAC) is the most employed, and relies in the incorporation of non-radioactive, stable isotope containing amino acids in newly synthesized proteins. Culture medium is supplemented with “heavy” amino acids instead of natural amino acids to be incorporated into proteins. Then, both light and heavy-treated cells are mixed, and processed together, until analysis by LC-MS/MS, when labeled peptides can be distinguished, and therefore abundance determined by relative signal intensities [45].

2.3.2 LABEL-FREE On the other hand, there is label-free approaches, which are simpler, requires no additional wet- lab experiments, are reproducible and cheaper compared to stable isotope labeling techniques [46]. However, label-free quantification requires hard and specialized in silico analysis, thus turning relative quantification possible [47–49]. Basically, label-free quantitative analyses are based on two main approaches: spectral counting [50,51], and the use of chromatographic peak intensity

38

[52–54]. In spectral counting, the analyses are performed by counting and comparing the number of fragment-ion spectra (MS/MS) acquired for peptides of a given protein. This relative proteomic quantification is possible as the number of tandem mass spectra of a particular peptide increases with the increasing amount of the corresponding protein. Spectral counting method is considered controversial because the quantification relies on a simple counting of acquired spectra rather than other physicochemical properties of peptides. However, is widely used and has undergone improvements over the years. Furthermore, some approaches take into account aspects such as physicochemical properties of peptides as well as the lengths of the corresponding proteins [48,55]. In chromatographic peak intensity, the quantification is performed from precursor MS spectra. Data can be acquired in data-dependent (DDA) or data-independent mode (DIA. For both, the ion intensity of the intact peptides are detected in MS survey scans [56]. Some mass spectrometers are able to acquire in DIA mode employing MSE [57] or SWATH (sequential window acquisition of all theoretical fragment ion spectra) [58]. The extracted ion chromatograms (XIC) are obtained from all detectable precursor ion m/z values, or exclusively from those that were qualitatively identified, using automated software algorithms. The quantification relies on the fact that the intensity of a particular precursor ion linearly correlates with its concentration (or abundance) during the ionization process. Therefore, it is possible to use peak area under the curve or peak height measurement [59] from XICs of the same precursor ion to yield relative quantification information, because physicochemical features of a peptide stay constant through the runs [60]. Reproducibility in liquid chromatography (RP-LC) step prior mass-spectrometric analysis is crucial to a successful quantification. In addition, generated raw LC–MS data have to be post- processed (e.g. feature detection, alignment of retention times, normalization of MS intensities, peak picking, noise reduction) using suitable software for this analysis [61]. Moreover, label-free quantification does not limit the number of samples and conditions to be compared, which is suitable to longitudinal and clinical proteomics [62].

2.3 TARGETED PROTEOMICS 2.3.1 SRM Selected/multiple reaction monitoring (SRM/MRM) is able to detect and perform accurate

39

quantitation of a target protein, or set of proteins, present in complex biological samples [63]. This technique is performed with high efficiency in triple quadrupole mass spectrometers (TQ or QqQ), wherein the first analyzer (Q1) achieves the isolation of a given intact peptide (parent ion); the second analyzer (Q2, which is not a proper quadrupole in current mass spectrometers) works as a collision chamber, generating fragments (daughter ions) that will be measured separately and accurately in the third quadrupole (Q3). The various transitions between the precursor and fragment ion pairs are monitored over time, and when combined with standard chromatogram, peak retention time and intensity, produces a high selectivity for quantification [64–67]. More recently, targeted-MS have been also employed in Q-TOF and Orbitrap mass spectrometers. The latest perform the so-called parallel reaction monitoring (PRM), which measures daughter ions on a HR / AM mass analyzer instead of a quadrupole. This allows the parallel detection of all daughter ions from a given parent ion at once [68,69]. PRM offers alternative ways to conduct targeted proteomics studies with comparable performance as SRM [70]. In a recent study, this type of acquisition was also implemented in an instrument of the type quadrupole time-of-flight (QqTOF). Using complex biological samples, selectivity and reproducibility of PRM compared to SRM were evaluated, showing a satisfactory performance of this instrument using this technique [71]

2.3.2 ANTIBODY-BASED TECHNIQUES Immunoassays have been the basis for protein measurement for over half a century, with a limited range of tests available mainly for diagnosis [72]. Historically, Western blotting is the most common technique for immunodetection of proteins in complex samples. It consists basically in the transference of proteins from a gel to a membrane where the specific protein labeling with the respective antibodies will be performed [73]. Alternatively, commercially available enzyme-linked immunosorbent assay (ELISA) can be more sensitive if compared to Western blot, in addition to better relative quantification using recombinant proteins [74]. Western blot and ELISA are both commonly used in proteomics as validation tools for differences in protein expression. The major drawback is that these techniques depend on specific and well- characterized antibodies, which can be challenging, especially for the study of posttranslational modifications. More recently, an analysis of large-scale antibody-based proteomic technique has

40

emerged. Though using a lower throughput compared to mass spectrometry, this analysis employs multiplexed dye-coded microspheres, coated with antibodies. Those microspheres are used for identification and quantification of hundreds of proteins simultaneously, depending on the antibody composition of the assay, in dozens of individual samples [75]. The amount of sample required is also an advantage compared to other antibody-based techniques, though still depends on the quality of those for greater reproducibility [76–80].

3 BIOCHEMICAL PATHWAYS ASSOCIATED TO NEUROPSYCHIATRIC DISORDERS UNRAVELED BY PROTEOMICS This review analyzes every proteomics study published thus far in several postmortem brain regions of patients with schizophrenia (SCZ), bipolar disorder (BPD) and major depression disorder (MDD). All differentially expressed proteins found in these studies were computed. The survey was conducted in PubMed with the following keywords “proteomic/proteome brain and schizophrenia/bipolar disorder/major depressive disorder”. We found 14 articles on SCZ studies [81–95], 4 on BPD [94,96,97] and 7 on MDD [81,91,98–100], which found up- and downregulated proteins that were compiled and are presented in Supplementary table 1 (SCZ) (anexoII), table 2 (BPD) (anexoIII) and table 3 (MDD) (anexoIV). BPD studies unraveled 731 differentially expressed proteins, while 412 proteins were discovered in SCZ studies and 187 proteins in MDD. Only All these proteins were further analyzed by Ingenuity Pathway Analysis software (IPA, Ingenuity Systems, Qiagen, Redwood, CA, USA; www.ingenuity.com), using curated connectivity information from the literature to determine interactions network among differentially expressed proteins, and determine canonical pathways in which they are involved [101]. Parameters used in the IPA software were: “genes only”, “include direct and indirect relationship” and “do not include endogenous chemicals”. Only molecules and/or relationships in were considered, and all cell types/tissues were taken into account, using prediction mode assigned to experimentally observed OR high.

3.1 SIMILARITIES AMONG DISORDERS We compared the similarities of differentially expressed proteins associated to SCZ, MDD and BPD, and found a small overlap among them (Figure 6). About 26 proteins are common among

41

SCZ, MDD and BPD; additional 28 are common between MDD and BPD, and 24 between MDD and SCZ. On the other hand, comparing SCZ and BPD, a greater similarity is observed, with about 146 proteins in common, which supports genomic studies [102–104]. The low overlap among the main psychiatric disorders might support disease specificity at the proteome level.

Figure 6 - Venn diagram depicting differences between expressed proteins in schizophrenia (SCZ), bipolar disorder (BPD) and major depressive disorder (MDD).

Additionally, analysis on the STRING - Search Tool for the Retrieval of Interacting Genes/Proteins (http://string-db.org/) was performed. This platform consists of a database devoted to protein- protein interaction, which provides a comprehensive view of the interactions between proteins in the dataset (Jensen, 2008). Therefore, 24 proteins found differentially expressed in all three diseases were analyzed, as observed in Figure 7. These proteins have a high degree of connectivity

42

between them, and are directly related to axonal region of neuronal cells (axon, 0.000334 FDR; neuron projection terminus, 0.000919 FDR; axon terminus, 0.000725 FDR; dendrite, 0.00726 FDR). However, the most correlated cellular component to those proteins was myelin sheath (1.45E-12 FDR), which is related to oligodendrocytes and is known to be modified in SCZ, MDD and BPD, as shown by both proteomic studies and neuroimaging [105–107].

Figure 7 - Differentially expressed proteins commonly found in SCZ, MDD and BPD and their functional correlations using STRING database

Myelin is a multilaminar structure surrounding the axons of neurons made by oligodendrocytes in the central nervous system and by Schwann cells in the peripheral nervous system, being an essential structure for the proper functioning of nerve impulse transmission, providing strength

43

and speed [108,109]. Studies of post mortem tissue in SCZ, MDD and BPD patients showed that myelination related genes have a reduction of mRNA transcripts in patients [110–112]. Damage to myelin can cause sensory-motor dysfunction, cognitive impairment, mental retardation and even death [109]. The top network found dysregulated, according IPA (score 28), is related to neurological, psychological and skeletal/muscular disorders, as shown in Figure 8. This network is composed of 31 molecules, among them 12 proteins are altered in diseases, together with 19 partners of these molecules. This network has a central protein, the TP53, which directly or indirectly connects differentially expressed proteins from all three diseases. This protein has anti-proliferation function, play a role in the maintenance of somatic stem cells [113], and regulates the proliferation and differentiation of neural stem cells (NSC) [114]. Therefore, NSCs maintenance/renewal, migration, differentiation and death can thus be disturbed and have a link with various nervous system disorders, including neurodegeneration and psychiatric disorders [115].

Figure 8 – Differentially expressed proteins and predicted proteins as affected by deregulation them in SCZ, MDD and BPD 44

Another molecule, REST (repressor element 1-silencing transcription factor), is also connected to the differentially expressed proteins. This transcription factor is required during differentiation, as induces the expression of neural specific phenotypes. REST-dependent genes encode transcription factors, transmitter release proteins, voltage-dependent receptor channels, and signaling proteins [116]. REST is connected to the differentially expressed Synaptosomal-associated protein of 25 kDa (SNAP25), which also plays a critical role in modulating voltage-gated calcium channels and neurotransmitter release [117]. In addition, REST is connected to Alpha-internexin (INA) and GAP43, proteins related to organization and important function in synapsis and plasticity [118,119]. These similar connections observed in all three disorders, suggest a common synaptic and neurodevelopmental deregulation among them.

3.2 MAIN BIOCHEMICAL PATHWAYS OF EACH DISORDER In addition to those common features presented, several differentially expressed proteins were only observed in patients with SCZ have shown a link with neurological disease (p-value 4.18E-03 - 1.09E-40) with 180 proteins involved, and psychological disorders (p-value 1.29E -03 - 1.09E-40) with 132 proteins. Those observed only in BPD, resulted in greater overlap with neurological disease (p-value 2.88E-03 - 3.15E-31) with 255 proteins involved, and psychological disorders (2.48E-03 - 3.15E-31) with 197 proteins. Similarly, differentially expressed proteins in MDD had 75 proteins involved in neurological disease (p-value 2.39E-02 - 3.66E-13) and 55 proteins in psychological disorders (p-value 1.92E-02 - 3. 66E-13). According to IPA, the canonical pathways to which these disorders are associated are energy metabolism pathways deregulation, mainly related to oxidative phosphorylation mitochondrial dysfunction and gluconeogenesis. Followed by cell signaling pathways, including signaling by Rho GTPases family, semaphorin signaling in neurons, and 14-3-3 mediated signaling. Among the leading networks to which SCZ differentially expressed proteins are involved were molecular transport, survival, cell death, and neurological disease, with 47 connected proteins. For BPD, the main networks were related to neurological disease, psychological disorders, cellular assembly and organization, with 41 proteins included in those networks. While differentially expressed proteins on MDD was mainly related to cellular assembly and organization, cellular function and maintenance, cardiovascular system development and function, and have shown 37 45

proteins connected to those networks. As presented in Figure 9, those proteins have a high connectivity among them, indicating a stronger correlation between pathways, which was recently reinforced by large genome studies with patients of these three disorders [120]. Similarities between those diseases indicate common deregulation basis, yet it is proposed [121] that at some point in development they follow different paths to become distinct disorders.

Figure 9 – Interaction network depicting similar proteins among diseases.

46

3.2.1 SCHIZOPHRENIA Getting an insight into differentially expressed proteins on schizophrenia brains (21.6% - 25 out of 116 differentially expressed proteins) we observe significantly association to 14-3-3-mediated signaling (p= 1.35E-18) (Figure 10). The 14-3-3 proteins are abundantly expressed in the brain, and interact with a wide variety of cellular proteins, including kinases, phosphatases, and transmembrane receptors [122,123]. These proteins regulate intracellular signaling, and differentiation, ion channel function, apoptosis, neurodegeneration and dopamine synthesis [123,124]. Moreover, 14-3-3 proteins have already been implicated in neurological disorders such as Parkinson's, Alzheimer's and Huntington diseases [125], additionally to psychiatric diseases,

47

such as SCZ [126–129]. Figure 10 – 14-3-3-mediated signaling as the main canonical pathway related to differentially expressed proteins in SCZ. Indeed, the 14-3-3ζ-deficient mice have significant deficits in functions such as working memory, sensory gating, and associative learning [130,131], which are related to long-term synaptic plasticity [131], and defects in neuronal migration [130], integrating symptoms associated with SCZ-like behavior. Antipsychotic medications, such as haloperidol and olanzapine, affects the

expression of 14-3-3 proteins [128], endorsing association of this protein family with the disease. Furthermore, proteins 14-3-3 zeta / delta (YWHAZ) have a broader incidence in the studied brain 48

regions, which was found in five regions (corpus callosum (CC), anterior temporal lobe (ATL), anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPC) and mediodorsal thalamus (MDT)). This protein is involved in , recognition of DNA alterations, apoptosis, dynamic changes of cytoskeleton and control of gene expression transcription [132]. Furthermore, new evidence indicates an important role in neurogenesis and [133]. Another protein commonly found altered was glial fibrillary acidic protein (GFAP). The protein was differentially expressed in seven distinct regions (MDT, DLPC, CC, ACC, insular cortex (IC), frontal cortex (FC) and wernicke's area (WA)). GFAP is found in glial cells of the central nervous system, being a classical marker for astrocytes [134]. Previous studies showed both GFAP mRNA and protein are decreased in patients with SCZ and BPD [91,135]. Astrocytes play important roles in brain immune response, synaptic function, debug ions and cellular transmitters, neuronal metabolism and migration [136–138]. Thus GFAP, as the main protein of in astrocytes, is a widely studied protein in diseases related to brain, and is also very important during development [139].

3.2.2 BIPOLAR DISORDER Several diseases, such as SCZ, BPD, Alzheimer's and Parkinson's have some pathophysiological mechanisms in common, including the production of reactive species of oxygen (ROS) and the accumulation of mitochondrial DNA damage (mtDNA), which together result in mitochondrial dysfunction [140]. Recent studies with BPD patients have revealed differentially expressed proteins and mRNA related to mitochondrial dysfunction [141,142], particularly oxidative phosphorylation [143]. Mitochondrial dysfunction had higher correlation with BPD, with p-value of 9.86E-23 and 24.2% (40/165), as observed in Figure 11. In addition, BPD is also associated with mitochondrial DNA (mtDNA) mutations and polymorphisms [144,145]. These mutations cause an imbalance of mitochondrial enzymes, which can affect energy metabolism. This imbalance can lead to prejudices in major mitochondrial functions, as to synaptogenesis and neuronal plasticity, shown altered in BPD [146,147].

49

Figur

e e

11

Mitochondrial dysfunction as the main canonical pathway related to differentially expressed proteins in BPD. proteins differentially to expressed pathway related maincanonical dysfunctionthe as Mitochondrial

50

Furthermore, the proteins superoxide dismutase [Cu-Zn] (SOD1), GFAP and stathmin (STMN1) have been identified differentially expressed in several brain regions of patients with BPD. SOD1 is the major intracellular form of the SOD enzyme family, which catalyze the removal of superoxide free radicals within the cells, and are increasingly recognized for their key role in re- sponse to oxidative stress [148]. This protein is also associated with replication of stress response genes, DNA damage response, stress response and general Cu / Fe homeostasis [149]. SOD1 is widely associated to psychiatric illnesses on proteomic studies, such as BPD and SCZ, on both blood and brain samples [150–155]. Stathmin, on the other hand, have an important function in mitosis. Moreover, plays several roles in cellular processes such as the regulation of cell-cycle progression, dynamics, intracellular transport, cell motility, cell polarity and maintenance of cell shape [156]. Stathmin expression has been reported increased during neuronal differentiation, plasticity and regeneration, key functions for proper brain functioning. Thus, explaining its possible alteration in many neurodegenerative diseases [157].

3.2.3 MAJOR DEPRESSIVE DISORDER The leading canonical pathway correlated to MDD was the oxidative phosphorylation (OXPHOS), with p-value of 3.48E-15, and overlap of 15.4% of molecules from the pathway (16/104). This pathway, as shown in Figure 12, is directly related to the mitochondrial dysfunction shown in BPD results. Disorder of the mitochondrial OXPHOS causes biochemical imbalance of the primary route of ATP production, as this pathway is responsible for coordinating the transport of protons and electrons, which leads to energy production [158]. As OXPHOS is a complex pathway, with about 85 proteins, there are a variety of phenotypes related to this route [159]. Disturbances in this pathway frequently occur in psychiatric diseases like SCZ, BPD and MDD [160–163]. Recent studies, using a mutant MDD mouse model, have observed dysregulated OXPHOS pathway gene expression on the hippocampus, which may play an important role in the disease [164].

51

Fi

gure gure

12

Oxidative phosphorylation as the main canonical pathways related to differentially expressed proteins in MDD. proteins differentially to expressed related pathways maincanonical the as Oxidativephosphorylation

52

The main differentially expressed protein in MDD was dihydropyrimidinase-related protein 2 (DPYSL2). This protein participates in regulation of hippocampal neuronal axon formation and establishes neuronal polarization [165,166]. Recently, the protein interactome of DPYSL2 was described. Among DPLYSL2 interacting proteins are those involved in axon guidance, along with semaphorin interactions and WNT5A signaling [167]. The protein gene is located on 8, and is widely associated to neuropsychiatric diseases, such as SCZ, BPD and MDD, and neurodegenerative diseases, such as Parkinson's and Alzheimer [168]. This protein was found at significantly lower levels in the frontal cortex of patients with MDD [91,99], in addition to the anterior cingulate cortex [81], which may cause abnormalities in neurodevelopment.

4 CONCLUDING REMARKS Mental disorders are common worldwide, affecting 1 out of 5 people [169], and psychiatric disorders contribute significantly to this group. Since they are in general diseases of early ages-of- onset, these disorders often cause severe damage on patients' lives, such as low level of education, marital instability, occupational status and financial downgrade, as well as high social costs [170– 172]. Normally, SCZ, MDD and BPD are only diagnosed when symptoms appear, hence at this point the disease is already established. As a consequence, disease severity is much higher, proportionally to less effective treatments. Therefore, greater efforts are needed to understand these diseases, aiming for an efficient treatment, thus preventing such damage. Studies in neuroscience have reached enormous progress in understanding the cellular and molecular processes involved in psychiatric diseases [173], but the pathophysiology of these disorders remains undefined [174]. Proteomics holds great promise in the understanding of psychiatric disorders [174], mainly through identification of protein changes in post-mortem brains of patients [173], and towards the large- scale analysis of post-translational modifications [175,176]. By compiling data from SCZ, MDD and BPD patient research, we have uncovered some similarities referring to signaling pathways altered, which are mainly related to energy metabolism and signaling. Nevertheless, each of these diseases has molecular particularities, including most frequent differentially expressed proteins, and deregulation of several canonical pathways, which are unveiled by proteomics. However, currently available data are still inconclusive, and several efforts are in course for better comprehension of biological mechanisms of these diseases.

53

REFERENCES [1] I. Chou, T. Chouard, Neuropsychiatric disease., Nature. 455 (2008) 889. doi:10.1038/455889a. [2] D. Gillies, P. Buykx, P. Ag, H. Se, Consultation liaison in primary care for people with mental disorders, Cochrane Libr. (2015) 1–28. doi:10.1002/14651858.CD007193.pub2. [3] N. World Health Organization, The Global Burden of Disease: 2004 update, Update. 2010 (2008) 146. doi:10.1038/npp.2011.85. [4] C. Van Heeringen, A. Marušič, Understanding the suicidal brain, Br. J. Psychiatry. 183 (2003) 282–284. doi:10.1192/bjp.183.4.282. [5] M.K. Nock, I. Hwang, N.A. Sampson, R.C. Kessler, Mental disorders, comorbidity and suicidal behavior: Results from the National Comorbidity Survey Replication, Mol. Psychiatry. 15 (2010) 868–876. doi:10.1038/mp.2009.29. [6] R. Kessler, W. Chiu, Prevalence, Severity, and Comorbidity of Twelve-month DSM-IV Disorders in the National Comorbidity Survey Replication (NCS- R), Arch. Gen. …. 62 (2005) 617–627. doi:10.1001/archpsyc.62.6.617.Prevalence. [7] R.C. Kessler, M. Petukhova, N.A. Sampson, A.M. Zaslavsky, H.-U. Wittchen, Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States., Int. J. Methods Psychiatr. Res. 21 (2012) 169–84. doi:10.1002/mpr.1359. [8] S.. To, R.. Zepf, A.G. Woods, The symptoms, neurobiology, and current pharmacological treatment of depression, J Neurosci Nurs. 32 (2005) 102–7. [9] American Psychiatric Association, Diagnostic and statistical manual of mental disorders (DSM-5®), 2013. doi:10.1176/appi.books .9780890425596.744053. [10] A. Rush, Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report, Am. J. Psychiatry. 163 (2006) 1905. doi:10.1176/appi.ajp.163.11.1905. [11] M.H. Trivedi, A.J. Rush, S.R. Wisniewski, D. Warden, W. McKinney, M. Downing, et al., Factors associated with health-related quality of life among outpatients with major depressive disorder: a STAR* D report, J. Clin. Psychiatry. 67 (2006) 185–195. [12] D.J. Kupfer, E. Frank, M.L. Phillips, Major depressive disorder: new clinical, neurobiological, and treatment perspectives, Lancet. 379 (2012) 1045–1055. doi:10.1016/S0140-6736(11)60602-8.Major. [13] R.H. Belmaker, G. Agam, Major depressive disorder., N. Engl. J. Med. 358 (2008) 55–68. doi:10.1056/NEJMra073096. [14] V. Krishnan, E.J. Nestler, The molecular neurobiology of depression, 455 (2009) 894–902. doi:10.1038/nature07455.The. [15] R. Freedman, Schizophrenia, N. Engl. J. Med. 349 (2003) 1738–1749. doi:10.3760/cma.j.issn.0366- 6999.20122551. 54

[16] P.F. Sullivan, K.S. Kendler, M.C. Neale, Schizophrenia as a Complex Trait, Arch. Gen. Psychiatry. 60 (2003) 1187–1192. doi:10.1001/archpsyc.60.12.1187. [17] J.D. Hegarty, R.J. Baldessarini, G. Oepen, One hundred years of schizophrenia, Am. J. Psychiatry. 151 (1994) 1409–1416. [18] T.W. Weickert, T.E. Goldberg, J.M. Gold, L.B. Bigelow, M.F. Egan, D.R. Weinberger, Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect., Arch. Gen. Psychiatry. 57 (2000) 907–913. doi:10.1001/archpsyc.57.9.907. [19] J. Rapoport, Neurodevelopmental model of schizophrenia: update 2012, Mol Psychiatry. 17 (2012) 1228– 1238. doi:10.1038/mp.2012.23.Neurodevelopmental. [20] T.. Keller, Diagnostic features, prevalence, and impact of bipolar disorder, J Clin Psychiatry. 71 (2010). doi:10.4088/JCP.8125tx11c. [21] A. Sussulini, Proteomics and Metabolomics of Bipolar Disorder, 29 (2014) 116–116. doi:10.1159/000358037. [22] F. Marmol, Lithium: Bipolar disorder and neurodegenerative diseases Possible cellular mechanisms of the therapeutic effects of lithium, Prog. Neuro-Psychopharmacology Biol. Psychiatry. 32 (2008) 1761–1771. doi:10.1016/j.pnpbp.2008.08.012. [23] M. Maj, The effect of lithium in bipolar disorder: a review of recent research evidence, Bipolar Disord. 5 (2003) 180–188. [24] A. Fornito, B.J. Harrison, Brain Connectivity and Mental Illness, Front. Psychiatry. 3 (2012) 1–2. doi:10.3389/fpsyt.2012.00072. [25] P.H. O’Farrell, High resolution two-dimensional electrophoresis of proteins., J. Biol. Chem. 250 (1975) 4007–21. doi:10.1016/j.bbi.2008.05.010. [26] B.M. Oliveira, J.R. Coorssen, D. Martins-de-Souza, 2DE: The Phoenix of Proteomics, J. Proteomics. 104 (2014) 140–150. doi:10.1016/j.jprot.2014.03.035. [27] M. Unlü, M.E. Morgan, J.S. Minden, Difference gel electrophoresis: a single gel method for detecting changes in protein extracts., Electrophoresis. 18 (1997) 2071–2077. doi:10.1002/elps.1150181133. [28] R. Cramer, Difference Gel Electrophoresis (DIGE), 2009. doi:10.1007/978-1-62703-239-1_1. [29] T.H. Steinberg, B.J. Agnew, K.R. Gee, W.Y. Leung, T. Goodman, B. Schulenberg, et al., Global quantitative phosphoprotein analysis using multiplexed proteomics technology, Proteomics. 3 (2003) 1128–1144. doi:10.1002/pmic.200300434. [30] Y.H. Chiang, Y.J. Wu, Y.T. Lu, K.H. Chen, T.C. Lin, Y.K.H. Chen, et al., Simple and specific dual- wavelength excitable dye staining for glycoprotein detection in polyacrylamide gels and its application in glycoproteomics, J. Biomed. Biotechnol. 2011 (2011). doi:10.1155/2011/780108. [31] J. Klose, U. Kobalz, Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome, Eletrophoresis. 16 (1995) 1034–59. [32] a J. Link, J. Eng, D.M. Schieltz, E. Carmack, G.J. Mize, D.R. Morris, et al., Direct analysis of protein complexes using mass spectrometry., Nat. Biotechnol. 17 (1999) 676–682. doi:10.1038/10890. 55

[33] R. Aebersold, M. Mann, Mass spectrometry-based proteomics., Nature. 422 (2003) 198–207. doi:10.1038/nature01511. [34] T. Kislinger, A. Emili, Going global: protein expression profiling using shotgun mass spectrometry, Curr. Opin. Mol. Ther. 5 (2003) 285–293. [35] S. Di Palma, M.L. Hennrich, A.J.R. Heck, S. Mohammed, Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis, J. Proteomics. 75 (2012) 3791–3813. doi:10.1016/j.jprot.2012.04.033. [36] D. a. Wolters, M.P. Washburn, J.R. Yates, An automated multidimensional protein identification technology for shotgun proteomics, Anal. Chem. 73 (2001) 5683–5690. doi:10.1021/ac010617e. [37] P. Taylor, P. a. Nielsen, M.B. Trelle, O.B. Horning, M.B. Andersen, O. Vorm, et al., Automated 2D peptide separation on a 1D nano-LC-MS system, J. Proteome Res. 8 (2009) 1610–1616. doi:10.1021/pr800986c. [38] A. Rinas, L.M. Jones, Fast Photochemical Oxidation of Proteins Coupled to Multidimensional Protein Identification Technology (MudPIT): Expanding Footprinting Strategies to Complex Systems, J. Am. Soc. Mass Spectrom. 26 (2014) 540–546. doi:10.1007/s13361-014-1017-6. [39] B. MacLean, D.M. Tomazela, N. Shulman, M. Chambers, G.L. Finney, B. Frewen, et al., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments, . 26 (2010) 966–968. doi:10.1093/bioinformatics/btq054. [40] V. Pernikářová, P. Bouchal, Targeted proteomics of solid : from quantification of known biomarkers towards reading the digital proteome maps, Expert Rev. Proteomics. 9450 (2015) 1–17. doi:10.1586/14789450.2015.1094381. [41] S.P. Gygi, B. Rist, S. a Gerber, F. Turecek, M.H. Gelb, R. Aebersold, Quantitative analysis of complex protein mixtures using isotope-coded affinity tags., Nat. Biotechnol. 17 (1999) 994–999. doi:10.1038/13690. [42] A. Schmidt, J. Kellermann, F. Lottspeich, A novel strategy for quantitative proteomics using isotope-coded protein labels, Proteomics. 5 (2005) 4–15. doi:10.1002/pmic.200400873. [43] P.L. Ross, Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents, Mol. Cell. Proteomics. 3 (2004) 1154–1169. doi:10.1074/mcp.M400129-MCP200. [44] P.R. Gafken, P.D. Lampe, Methodologies for Characterizing Phosphoproteins by Mass Spectrometry, Cell Commun. Adhes. 13 (2006) 249–262. doi:10.1080/15419060601077917. [45] S. Ong, M. Mann, PROTOCOL A practical recipe for stable isotope labeling by amino acids in cell culture ( SILAC ), (2007). doi:10.1038/nprot.2006.427. [46] A. Latosinska, K. Vougas, M. Makridakis, J. Klein, W. Mullen, M. Abbas, et al., Comparative Analysis of Label-Free and 8-Plex iTRAQ Approach for Quantitative Tissue Proteomic Analysis, PLoS One. 10 (2015) e0137048. doi:10.1371/journal.pone.0137048. [47] J.W.H. Wong, G. Cagney, An Overview of Label-Free Quantitation Methods in Proteomics by Mass Spectrometry, Proteome Bioinforma. 604 (2010) 273–283. doi:10.1007/978-1-60761-444-9. [48] P. Lu, C. Vogel, R. Wang, X. Yao, E.M. Marcotte, Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation, Nat. Biotechnol. 25 (2007) 117–124. 56

doi:10.1038/nbt1270. [49] P. Mallick, M. Schirle, S.S. Chen, M.R. Flory, H. Lee, D. Martin, et al., Computational prediction of proteotypic peptides for quantitative proteomics, Nat. Biotechnol. 25 (2007) 125–131. doi:10.1038/nbt1275. [50] B. Cooper, J. Feng, W.M. Garrett, Relative, label-free protein quantitation: Spectral counting error statistics from nine replicate MudPIT samples, J. Am. Soc. Mass Spectrom. 21 (2010) 1534–1546. doi:10.1016/j.jasms.2010.05.001. [51] H. Liu, R.G. Sadygov, J.R. Yates, A model for random sampling and estimation of relative protein abundance in shotgun proteomics, Anal. Chem. 76 (2004) 4193–4201. doi:10.1021/ac0498563. [52] P. V. Bondarenko, D. Chelius, T.A. Shale, Identification and Relative Quantitation of Protein Mixtures by Enzymatic Digestion Followed by Two-dimensional Liquid Chromatography – Tandem Mass Spectrometry, 74 (2002) 4741–4749. [53] D. Chelius, P.. Bondarenko, Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry., J Proteome Res. 1 (2002) 317–23. [54] J. Listgarten, A. Emili, Statistical and Computational Methods for Comparative Proteomic Profiling Using Liquid Chromatography-Tandem Mass Spectrometry, Mol. Cell. Proteomics. 4 (2005) 419–434. doi:10.1074/mcp.R500005-MCP2005. [55] N.M. Griffin, J. Yu, F. Long, P. Oh, S. Shore, Y. Li, et al., Label-free, normalized quantification of complex mass spectrometry data for proteomics analysis, 28 (2010) 83–89. doi:10.1038/nbt.1592.Label-free. [56] Y. Levin, S. Bahn, Quantification of proteins by label-free LC-MS/MS, Methods Mol Biol. 658 (2010). doi:10.1007/978-1-60761-780-8_13. [57] G.-Z. Li, J.P.C. Vissers, J.C. Silva, D. Golick, M. V Gorenstein, S.J. Geromanos, Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures., Proteomics. 9 (2009) 1696–1719. doi:10.1002/pmic.200800564. [58] L.C. Gillet, P. Navarro, S. Tate, H. Rost, N. Selevsek, L. Reiter, et al., Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis, Mol. Cell. Proteomics. 11 (2012) O111.016717–O111.016717. doi:10.1074/mcp.O111.016717. [59] R.D. Voyksner, H. Lee, Investigating the use of an octupole ion guide for ion storage and high-pass mass filtering to improve the quantitative performance of electrospray ion trap mass spectrometry, Rapid Commun. Mass Spectrom. 13 (1999) 1427–1437. doi:10.1002/(SICI)1097- 0231(19990730)13:14<1427::AID-RCM662>3.0.CO;2-5. [60] P. V. Bondarenko, D. Chelius, T.A. Shaler, Identification and Relative Quantitation of Protein Mixtures by Enzymatic Digestion Followed by Capillary Reversed-Phase Liquid Chromatography−Tandem Mass Spectrometry, Anal. Chem. 74 (2002) 4741–4749. doi:10.1021/ac0256991. [61] J. Kuharev, P. Navarro, U. Distler, O. Jahn, S. Tenzer, In-depth evaluation of software tools for data- independent acquisition-based label- free quantification, (2013) 1–41. doi:10.1002/pmic.201200018. [62] D. Martins-de-Souza, P.C. Guest, N. Vanattou-Saifoudine, L.W. Harris, S. Bahn, Proteomic Technologies for 57

Biomarker Studies in Psychiatry: Advances and needs, Elsevier Inc., 2011. doi:10.1016/B978-0-12-387718- 5.00004-3. [63] P. Picotti, R. Aebersold, Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions, Nat. Methods. 9 (2012) 555–566. doi:10.1038/nmeth.2015. [64] V. Lange, P. Picotti, B. Domon, R. Aebersold, Selected reaction monitoring for quantitative proteomics: a tutorial., Mol. Syst. Biol. 4 (2008) 222. doi:10.1038/msb.2008.61. [65] M.W. Burgess, H. Keshishian, D.R. Mani, M. a Gillette, S. a Carr, Simplified and Efficient Quantification of Low-abundance Proteins at Very High Multiplex via Targeted Mass Spectrometry., Mol. Cell. Proteomics. 13 (2014) 1137–49. doi:10.1074/mcp.M113.034660. [66] H. Keshishian, T. Addona, M. Burgess, E. Kuhn, S. a Carr, Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution., Mol. Cell. Proteomics. 6 (2007) 2212–2229. doi:10.1074/mcp.M700354-MCP200. [67] L. Anderson, C.L. Hunter, Quantitative Mass Spectrometric Multiple Reaction Monitoring Assays for Major Plasma Proteins, Mol. Cell. Proteomics. 5 (2006) 573–588. doi:10.1074/mcp.M500331-MCP200. [68] A.C. Peterson, PARALLEL REACTION MONITORING FOR HIGH RESOLUTION AND HIGH MASS ACCURACY QUANTITATIVE, TARGETED PROTEOMICS, Mol. Cell. Proteomics. (2012) 1–40. [69] L. Tong, X.Y. Zhou, A. Jylha, U. Aapola, D.N. Liu, S.K. Koh, et al., Quantitation of 47 human tear proteins using high resolution multiple reaction monitoring (HR-MRM) based-mass spectrometry, J. Proteomics. 115 (2015) 36–48. doi:10.1016/j.jprot.2014.12.002. [70] B. Domon, S. Gallien, Recent advances in targeted proteomics for clinical applications, (2015) 423–431. doi:10.1002/prca.201400136. [71] B. Schilling, B. MacLean, J.M. Held, A.K. Sahu, M.J. Rardin, D.J. Sorensen, et al., Multiplexed, Scheduled, High-Resolution Parallel Reaction Monitoring on a Full Scan QqTOF Instrument with Integrated Data- Dependent and Targeted Mass Spectrometric Workflows, Anal. Chem. 87 (2015) 10222–10229. doi:10.1021/acs.analchem.5b02983. [72] A. a Ellington, I.J. Kullo, K.R. Bailey, G.G. Klee, Antibody-Based Protein Multiplex Platforms: Technical and Operational Challenges, 56 (2010) 186–193. doi:10.1373/clinchem.2009.127514.Antibody-Based. [73] B.T. Kurien, R.H. Scofield, Western Blotting Methods and Protocols, Springer Protocols, 2015. doi:10.1007/978-1-4939-2694-7. [74] N.A. Lisitsyn, A.A. Chernyi, I.G. Nikitina, V.L. Karpov, S.F. Beresten, Methods of protein immunoanalysis, Mol. Biol. 48 (2014) 624–633. doi:10.1134/S0026893314050094. [75] H.E. Lynch, A.M. Sancheza, M.P. D’Souza, Development and Implementation of a Proficiency Testing Program for Luminex Bead-Based Cytokine Assays, J Immunol Methods. (2015) 62–71. doi:10.1016/j.jim.2014.04.011.Development. [76] S.S. Khan, M.S. Smith, D. Reda, A.F. Suffredini, J.P. Mccoy, Multiplex Bead Array Assays for Detection of Soluble Cytokines : Comparisons of Sensitivity and Quantitative Values Among Kits From Multiple Manufacturers, 39 (2004) 35–39. doi:10.1002/cyto.b.20021. 58

[77] J.F. Djoba Siawaya, D. Siawaya, T. Roberts, C. Babb, G. Black, H.J. Golakai, et al., An Evaluation of Commercial Fluorescent Bead-Based Luminex Cytokine Assays, PLoS One. 3 (2008) 1–12. doi:10.1371/journal.pone.0002535. [78] A. Nechansky, S. Grunt, I.M. Roitt, R. Kircheis, Comparison of the Calibration Standards of Three Commercially Available Multiplex Kits for Human Cytokine Measurement to WHO Standards Reveals Striking Differences, 43 (2008) 227–235. [79] L.H. Butterfield, D.M. Potter, J.M. Kirkwood, Multiplex serum biomarker assessments : technical and biostatistical issues, J. Transl. Med. 9 (2011) 173. doi:10.1186/1479-5876-9-173. [80] M.E. Scott, S.S. Wilson, L.A. Cosentino, Interlaboratory Reproducibility of Female Genital Tract Cytokine Measurements by Luminex: Implications for Microbicide Safety Studies, Cytokine. 56 (2012) 430–434. doi:10.1016/j.cyto.2011.06.011.Interlaboratory. [81] C.L. Beasley, K. Pennington, A. Behan, R. Wait, M.J. Dunn, D. Cotter, Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes, Proteomics. 6 (2006) 3414–3425. doi:10.1002/pmic.200500069. [82] J. a. English, P. Dicker, M. Föcking, M.J. Dunn, D.R. Cotter, 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease, Proteomics. 9 (2009) 3368–3382. doi:10.1002/pmic.200900015. [83] S. Sivagnanasundaram, B. Crossett, I. Dedova, S. Cordwell, I. Matsumoto, Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: A proteome study, Proteomics - Clin. Appl. 1 (2007) 1291–1305. doi:10.1002/prca.200700230. [84] D. Martins-De-Souza, W.F. Gattaz, A. Schmitt, C. Rewerts, G. Maccarrone, E. Dias-Neto, et al., Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia, Eur. Arch. Psychiatry Clin. Neurosci. 259 (2009) 151–163. doi:10.1007/s00406-008-0847-2. [85] V.M. Saia-Cereda, J.S. Cassoli, A. Schmitt, P. Falkai, J.M. Nascimento, D. Martins-de-Souza, Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains, Eur. Arch. Psychiatry Clin. Neurosci. 265 (2015) 601–612. doi:10.1007/s00406-015- 0621-1. [86] D. Martins-De-Souza, W.F. Gattaz, A. Schmitt, C. Rewerts, S. Marangoni, J.C. Novello, et al., Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis, J. Neural Transm. 116 (2009) 275–289. doi:10.1007/s00702-008-0156-y. [87] D. Martins-de-Souza, W.F. Gattaz, A. Schmitt, G. Maccarrone, E. Hunyadi-Gulyás, M.N. Eberlin, et al., Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia, J. Psychiatr. Res. 43 (2009) 978–986. doi:10.1016/j.jpsychires.2008.11.006. [88] D. Martins-de-Souza, A. Schmitt, R. Röder, M. Lebar, T. Schneider-Axmann, P. Falkai, et al., Sex-specific proteome differences in the anterior cingulate cortex of schizophrenia, J. Psychiatr. Res. 44 (2010) 989–991. doi:10.1016/j.jpsychires.2010.03.003. 59

[89] D. Martins-de-Souza, G. Maccarrone, T. Wobrock, I. Zerr, P. Gormanns, S. Reckow, et al., Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia, J. Psychiatr. Res. 44 (2010) 1176–1189. doi:10.1016/j.jpsychires.2010.04.014. [90] M. Föcking, L.M. Lopez, J. a English, P. Dicker, a Wolff, E. Brindley, et al., Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia., Mol. Psychiatry. (2014) 1–9. doi:10.1038/mp.2014.63. [91] N.L. Johnston-Wilson, C.D. Sims, J.P. Hofmann, L. Anderson, a D. Shore, E.F. Torrey, et al., Disease- specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium., Mol. Psychiatry. 5 (2000) 142–149. doi:10.1038/sj.mp.4000696. [92] S. Prabakaran, J.E. Swatton, M.M. Ryan, S.J. Huffaker, J.T.-J. Huang, J.L. Griffin, et al., Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress., Mol. Psychiatry. 9 (2004) 684–697, 643. doi:10.1038/sj.mp.4001532. [93] D. Clark, I. Dedova, S. Cordwell, I. Matsumoto, A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia., Mol. Psychiatry. 11 (2006) 459–470, 423. doi:10.1038/sj.mp.4001806. [94] K. Pennington, C.L. Beasley, P. Dicker, a Fagan, J. English, C.M. Pariante, et al., Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder., Mol. Psychiatry. 13 (2008) 1102–1117. doi:10.1038/sj.mp.4002098. [95] D. Martins-de-Souza, W.F. Gattaz, A. Schmitt, J.C. Novello, S. Marangoni, C.W. Turck, et al., Proteome analysis of schizophrenia patients Wernicke’s area reveals an energy metabolism dysregulation., BMC Psychiatry. 9 (2009) 17. doi:10.1186/1471-244X-9-17. [96] H. Wesseling, M.G. Gottschalk, S. Bahn, Targeted Multiplexed Selected Reaction Monitoring Analysis Evaluates Protein Expression Changes of Molecular Risk Factors for Major Psychiatric Disorders, Int. J. Neuropsychopharmacol. 18 (2014) pyu015–pyu015. doi:10.1093/ijnp/pyu015. [97] M. Föcking, P. Dicker, J. a English, K.O. Schubert, M.J. Dunn, D.R. Cotter, Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3., Arch. Gen. Psychiatry. 68 (2011) 477–488. doi:10.1001/archgenpsychiatry.2011.43. [98] M.G. Gottschalk, H. Wesseling, P.C. Guest, S. Bahn, Proteomic Enrichment Analysis of Psychotic and Affective Disorders Reveals Common Signatures in Presynaptic Glutamatergic Signaling and Energy Metabolism, (2015) 1–11. doi:10.1093/ijnp/pyu019. [99] D. Martins-de-Souza, P.C. Guest, L.W. Harris, N. Vanattou-Saifoudine, M.J. Webster, H. Rahmoune, et al., Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients, Transl. Psychiatry. 2 (2012) e87. doi:10.1038/tp.2012.13. [100] V. Stelzhammer, M. Alsaif, M.K. Chan, H. Rahmoune, H. Steeb, P.C. Guest, et al., Distinct proteomic pro fi les in post-mortem pituitary glands from bipolar disorder and major depressive disorder patients, J. Psychiatr. Res. 60 (2015) 40–48. doi:10.1016/j.jpsychires.2014.09.022. 60

[101] S.E. Calvano, W. Xiao, D.R. Richards, R.M. Felciano, H. V Baker, R.J. Cho, et al., A network-based analysis of systemic inflammation in humans., Nature. 437 (2005) 1032–1037. doi:10.1038/nature04362. [102] H.J. Möller, Bipolar disorder and schizophrenia: Distinct illnesses or a continuum?, J. Clin. Psychiatry. 64 (2003) 23–27. [103] N. Craddock, Genes for Schizophrenia and Bipolar Disorder? Implications for Psychiatric Nosology, Schizophr. Bull. 32 (2005) 9–16. doi:10.1093/schbul/sbj033. [104] W.H. Berrettini, Are Schizophrenic and Bipolar Disorders Related ? A Review of Family and Molecular Studies, (2000). [105] K.L. Davis, D.G. Stewart, J.I. Friedman, M. Buchsbaum, White Matter Changes in Schizophrenia, 60 (2013) 443–456. [106] F. Du, A.J. Cooper, T. Thida, A.K. Shinn, B.M. Cohen, O. Dost, Myelin and Axon Abnormalities in Schizophrenia, 74 (2013) 451–457. doi:10.1016/j.biopsych.2013.03.003. [107] S.W. Flynn, D.J. Lang, A.L. MacKay, V. Goghari, I.M. Vavasour, K.P. Whittall, et al., Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins., Mol. Psychiatry. 8 (2003) 811–820. doi:10.1038/sj.mp.4001337. [108] C. Taveggia, Schwann cells–axon interaction in myelination, Curr. Opin. Neurobiol. 39 (2016) 24–29. doi:10.1016/j.conb.2016.03.006. [109] R.D. Fields, White matter in learning, cognition and psychiatric disorders, 31 (2008) 361–370. doi:10.1038/nature13314.A. [110] D. Tkachev, M.L. Mimmack, M.M. Ryan, M. Wayland, T. Freeman, P.B. Jones, et al., Oligodendrocyte dysfunction in schizophrenia and bipolar disorder, Lancet. 362 (2003) 798–805. [111] L. Georgieva, V. Moskvina, T. Peirce, N. Norton, N.J. Bray, L. Jones, et al., Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia., Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 12469–74. doi:10.1073/pnas.0603029103. [112] C. Aston, L. Jiang, B.P. Sokolov, Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder., Mol. Psychiatry. 10 (2005) 309–322. doi:10.1038/sj.mp.4001565. [113] S. Aparicio, C.. Eaves, : a new kingpin in the stem cell arena, Cell. 138 (2009) 1060–1062. [114] H. Liu, D. Jia, A. Li, J. Chau, D. He, X. Ruan, et al., p53 regulates neural stem cell proliferation and differentiation via BMP-Smad1 signaling and Id1., Stem Cells Dev. 22 (2013) 913–27. doi:10.1089/scd.2012.0370. [115] A.J. Eisch, H.A. Cameron, J.M. Encinas, L.A. Meltzer, L.S. Overstreet-wadiche, Adult Neurogenesis, Mental Health, and Mental Illness: Hope or Hype?, J Neurosci. 28 (2009) 11785–11791. doi:10.1523/JNEUROSCI.3798-08.2008.Adult. [116] P. Baldelli, J. Meldolesi, The Transcription Repressor REST in Adult Neurons: Physiology, Pathology, and Diseases(1,2,3)., eNeuro. 2 (2015). doi:10.1523/ENEURO.0010-15.2015. [117] Q. Wang, Y. Wang, W. Ji, Z. G, H. K, L. Z, et al., SNAP25 is associated with schizophrenia and major 61

depressive disorder in the Han Chinese population, J. Clin. Psychiatry. 76 (2015) 76–82. doi:10.4088/JCP.13m08962. [118] J.E. Biewenga, L.H. Schrama, W.H. Gispen, Presynaptic phosphoprotein B-50/GAP-43 in neuronal and synaptic plasticity, Acta Biochim Pol. 43 (1996) 327–338. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8862 178. [119] T. Suzuki, S. Mitake, K. Okumura-Noji, H. Shimizu, T. Tada, T. Fujii, Excitable membranes and synaptic transmission: postsynaptic mechanisms. Localization of alpha-internexin in the postsynaptic density of the rat brain., Brain Res. 765 (1997) 74–80. doi:S0006-8993(97)00492-7 [pii]. [120] C. O’Dushlaine, L. Rossin, P.H. Lee, L. Duncan, N.N. Parikshak, S. Newhouse, et al., Psychiatric genome- wide association study analyses implicate neuronal, immune and histone pathways, Nat. Neurosci. 18 (2015) 199–209. doi:10.1038/nn.3922. [121] S.H. Lee, Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs, Nat. Genet. 45 (2013). doi:10.1038/ng.2711. [122] M. Foote, Y. Zhou, 14-3-3 Proteins in Neurological Disorders, Int. J. Biochem. Mol. Biol. 3 (2012) 152–164. [123] G. Tzivion, J. Avruch, 14-3-3 Proteins: Active Cofactors in Cellular Regulation by Serine/Threonine Phosphorylation, J. Biol. Chem. 277 (2002) 3061–3064. doi:10.1074/jbc.R100059200. [124] D. Berg, C. Holzmann, O. Riess, 14-3-3 Proteins in the Nervous System., Nat. Rev. Neurosci. 4 (2003) 752– 762. doi:10.1038/nrn1197. [125] P. Steinacker, A. Aitken, M. Otto, 14-3-3 Proteins in Neurodegeneration, Semin. Cell Dev. Biol. 22 (2011) 696–704. doi:10.1016/j.semcdb.2011.08.005. [126] R. Bell, J. Munro, C. Russ, J.F. Powell, a Bruinvels, R.W. Kerwin, et al., Systematic screening of the 14-3-3 eta (eta) chain gene for polymorphic variants and case-control analysis in schizophrenia., Am. J. Med. Genet. 96 (2000) 736–743. [127] M. Foote, H. Qiao, K. Graham, Y. Wu, Y. Zhou, Inhibition of 14-3-3 Proteins Leads to Schizophrenia- Related Behavioral Phenotypes and Synaptic Defects in Mice, Biol. Psychiatry. 78 (2015) 386–395. doi:10.1016/j.biopsych.2015.02.015. [128] K.O. Schubert, M. Föcking, D.R. Cotter, Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: Potential roles in GABAergic interneuron pathology, Schizophr. Res. (2015). doi:10.1016/j.schres.2015.02.002. [129] A.H.C. Wong, O. Likhodi, J. Trakalo, M. Yusuf, A. Sinha, C.N. Pato, et al., Genetic and post-mortem mRNA analysis of the 14-3-3 genes that encode phosphoserine/threonine-binding regulatory proteins in schizophrenia and bipolar disorder, Schizophr. Res. 78 (2005) 137–146. doi:10.1016/j.schres.2005.06.009. [130] P.-S. Cheah, H.S. Ramshaw, P.Q. Thomas, K. Toyo-oka, X. Xu, S. Martin, et al., Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3ζ deficiency, Mol. Psychiatry. 17 (2012) 451–466. doi:10.1038/mp.2011.158. 62

[131] H. Qiao, M. Foote, K. Graham, Y. Wu, Y. Zhou, 14-3-3 Proteins Are Required for Hippocampal Long-Term Potentiation and Associative Learning and Memory, J. Neurosci. 34 (2014) 4801–4808. doi:10.1523/JNEUROSCI.4393-13.2014. [132] M.I.C. Ruce, I.O.N. V Asile, M.A. V Asile, A.L.M.A. V Îlcea, c-abl and YWHAZ gene expression in gastric , 56 (2015) 717–723. [133] K. Toyo-oka, T. Wachi, R.F. Hunt, S.C. Baraban, S. Taya, H. Ramshaw, et al., 14-3-3Ε and Ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain., J. Neurosci. 34 (2014) 12168–81. doi:10.1523/JNEUROSCI.2513-13.2014. [134] H. Deka, R. Sarmah, A. Sharma, S. Biswas, Modelling and Characterization of Glial Fibrillary Acidic Protein, 11 (2015). [135] M.J. Webster, J. O’Grady, J.E. Kleinman, C.S. Weickert, Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia, Neuroscience. 133 (2005) 453–461. doi:10.1016/j.neuroscience.2005.02.037. [136] J.T. Coyle, R. Schwarcz, Mind Glue, Arch Gen Psychiatry. 57 (2013) 90–93. [137] P.J. Magistretti, L. Pellerin, Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging., Philos Trans R Soc L. B Biol Sci. 354 (1999) 1155–1163. doi:10.1098/rstb.1999.0471. [138] A. Araque, R.P. Sanzgiri, V. Parpura, P.G. Haydon, Astrocyte-induced modulation of synaptic transmission., Can. J. Physiol. Pharmacol. 77 (1999) 7. doi:10.1139/cjpp-77-9-699. [139] J. Middeldorp, E.M. Hol, GFAP in health and disease, Prog. Neurobiol. 93 (2011) 421–443. doi:10.1016/j.pneurobio.2011.01.005. [140] S.R. Pieczenik, J. Neustadt, Mitochondrial dysfunction and molecular pathways of disease, Exp. Mol. Pathol. 83 (2007) 84–92. doi:10.1016/j.yexmp.2006.09.008. [141] S. Akarsu, D. Torun, M. Erdem, S. Kozan, H. Akar, O. Uzun, Mitochondrial complex I and III mRNA levels in bipolar disorder., J. Affect. Disord. 184 (2015) 160–3. doi:10.1016/j.jad.2015.05.060. [142] D. Kim, Methods of integrating data to uncover genotype – phenotype interactions, Nat. Publ. Gr. (2015). doi:10.1038/nrg3868. [143] C. Konradi, M. Eaton, M.L. MacDonald, J. Walsh, F.M. Benes, S. Heckers, Molecular evidence for mitochondrial dysfunction in bipolar disorder., Arch. Gen. Psychiatry. 61 (2004) 300–308. doi:10.1001/archpsyc.61.3.300. [144] J. a Quiroz, N. a Gray, T. Kato, H.K. Manji, Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder., Neuropsychopharmacology. 33 (2008) 2551–2565. doi:10.1038/sj.npp.1301671. [145] B. Rollins, M. V. Martin, P.A. Sequeira, E.A. Moon, L.Z. Morgan, S.J. Watson, et al., Mitochondrial Variants in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder, PLoS One. 4 (2009) e4913. doi:10.1371/journal.pone.0004913. [146] Y. Ohgi, T. Futamura, K. Hashimoto, Glutamate Signaling in Synaptogenesis and NMDA Receptors as 63

Potential Therapeutic Targets for Psychiatric Disorders, Curr. Mol. Med. 15 (2015) 206–221. doi:10.2174/1566524015666150330143008#sthash.K0d80Sgj.dpuf. [147] J. Du, R. Machado-Vieira, R. Khairova, Synaptic Plasticity in the Pathophysiology and Treatment of Bipolar Disorder, Curr. Top. Behav. Neurosci. (2011) 167–185. doi:10.1007/7854. [148] M. Che, R. Wang, H. Wang, X.F.S. Zheng, Expanding roles of superoxide dismutases in cell regulation and cancer, 00 (2015) 1–7. [149] C.K. Tsang, Y. Liu, J. Thomas, Y. Zhang, X.F.S. Zheng, Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance, Nat. Commun. 5 (2014) 1–11. doi:10.1038/ncomms4446. [150] J.M. Coughlin, K. Ishizuka, S.I. Kano, J.A. Edwards, F.T. Seifuddin, M.A. Shimano, et al., Marked reduction of soluble superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia., Mol. Psychiatry. 18 (2013) 10–1. doi:10.1038/mp.2012.6. [151] a. D. Gigante, a. C. Andreazza, B. Lafer, L.N. Yatham, C.L. Beasley, L.T. Young, Decreased mRNA expression of uncoupling protein 2, a mitochondrial proton transporter, in post-mortem prefrontal cortex from patients with bipolar disorder and schizophrenia, Neurosci. Lett. 505 (2011) 47–51. doi:10.1016/j.neulet.2011.09.064. [152] R. Reddy, M.P. Sahebarao, S. Mukherjee, J.N. Murthy, Enzymes of the antioxidant defense system in chronic schizophrenic patients, Biol. Psychiatry. 30 (1991) 409–412. doi:10.1016/0006-3223(91)90298-Z. [153] M.-C. Tsai, T.-L. Huang, Thiobarbituric acid reactive substances (TBARS) is a state biomarker of oxidative stress in bipolar patients in a manic phase., J. Affect. Disord. 173 (2015) 22–6. doi:10.1016/j.jad.2014.10.045. [154] Ö.K. Tunçel, G. Sarısoy, B. Bilgici, O. Pazvantoglu, E. Çetin, E. Ünverdi, et al., Oxidative stress in bipolar and schizophrenia patients, Psychiatry Res. 228 (2015) 688–694. doi:10.1016/j.psychres.2015.04.046. [155] J.K. Yao, R.D. Reddy, D.P. van Kammen, Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications., CNS Drugs. 15 (2001) 287–310. doi:10.2165/00023210-200115040-00004. [156] C.I. Rubin, G.F. Atweh, The role of stathmin in the regulation of the cell cycle, J. Cell. Biochem. 93 (2004) 242–250. doi:10.1002/jcb.20187. [157] S. Chauvin, A. Sobel, Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration, Prog. Neurobiol. 126 (2014) 1–18. doi:10.1016/j.pneurobio.2014.09.002. [158] J. Smeitink, L. van den Heuvel, S. DiMauro, The genetics and pathology of oxidative phosphorylation., Nat. Rev. Genet. 2 (2001) 342–352. doi:10.1038/35072063. [159] A.-R. Moslemi, N. Darin, Molecular genetic and clinical aspects of mitochondrial disorders in childhood., . 7 (2007) 241–252. doi:10.1016/j.mito.2007.02.002. [160] D. Martins-de-Souza, Proteomics, metabolomics, and protein interactomics in the characterization of the molecular features of major depressive disorder., Dialogues Clin. Neurosci. 16 (2014) 63–73. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3984892&tool=pmcentrez&rendertype=abstract. 64

[161] M.W. Rice, K.L. Smith, R.C. Roberts, E. Perez-Costas, M. Melendez-Ferro, Assessment of cytochrome C oxidase dysfunction in the substantia nigra/ventral tegmental area in schizophrenia., PLoS One. 9 (2014) e100054. doi:10.1371/journal.pone.0100054. [162] H. Sawai, T. Takai-igarashi, H. Tanaka, Identification of collaborative activities with oxidative phosphorylation in bipolar disorder, 11 (2015). [163] H. Wesseling, M.K. Chan, T.M. Tsang, A. Ernst, F. Peters, P.C. Guest, et al., A combined metabonomic and proteomic approach identifies frontal cortex changes in a chronic phencyclidine rat model in relation to human schizophrenia brain pathology., Neuropsychopharmacology. 38 (2013) 2532–44. doi:10.1038/npp.2013.160. [164] G.S. Zubenko, H.B. Hughes, R.M. Jordan, J. Lyons-Weiler, B.M. Cohen, Differential hippocampal gene expression and pathway analysis in an etiology-based mouse model of major depressive disorder., Am. J. Med. Genet. B. Neuropsychiatr. Genet. 165B (2014) 457–66. doi:10.1002/ajmg.b.32257. [165] C. Conde, A. Cáceres, Microtubule assembly, organization and dynamics in axons and dendrites., Nat. Rev. Neurosci. 10 (2009) 319–332. doi:10.1038/nrn2631. [166] N. Inagaki, K. Chihara, N. Arimura, C. Ménager, Y. Kawano, N. Matsuo, et al., CRMP-2 induces axons in cultured hippocampal neurons., Nat. Neurosci. 4 (2001) 781–782. doi:10.1038/90476. [167] D. Martins-de-souza, J.S. Cassoli, J.M. Nascimento, The protein interactome of collapsing response mediator protein-2 ( CRMP2 / DPYSL2 ) reveals novel partner proteins in brain tissue Clinical Relevance :, 2 (2015) 1–25. doi:10.1002/prca.201500004.This. [168] T. Koide, B. Aleksic, Y. Ito, H. Usui, A. Yoshimi, T. Inada, et al., SHORT COMMUNICATION A two-stage case – control association study of with schizophrenia in Japanese subjects, J. Hum. Genet. 55 (2010) 469– 472. doi:10.1038/jhg.2010.38. [169] R.C. Kessler, S. Aguilar-Gaxiola, J. Alonso, S. Chatterji, S. Lee, J. Ormel, et al., The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys., Epidemiol. Psichiatr. Soc. 18 (2011) 23–33. doi:10.1017/S1121189X00001421. [170] R.C. Kessler, P. a Berglund, C.L. Foster, W.B. Saunders, P.E. Stang, E.E. Walters, Social consequences of psychiatric disorders .2. Teenage parenthood, Am. J. Psychiatry. 154 (1997) 1405–1411. doi:10.1176/ajp.154.10.1405. [171] R.C. Kessler, E.E. Walters, M.S. Forthofer, The social consequences of psychiatric disorders, III: Probability of marital stability, Am. J. Psychiatry. 155 (1998) 1092–1096. doi:NEED. [172] R. Kessler, C. Foster, W. Saunders, P. Stang, Social consequences of psychiatric disorders, I: Educational attainment., Am. J. Psychiatry. 152 (1995) 1026–1032. [173] K. Pennington, D. Cotter, M.J. Dunn, The role of proteomics in investigating psychiatric disorders, Br. J. Psychiatry. 187 (2005) 4–6. doi:10.1192/bjp.187.1.4. [174] M.D. Filiou, C.W. Turck, D. Martins-De-Souza, Quantitative proteomics for investigating psychiatric disorders, Proteomics - Clin. Appl. 5 (2011) 38–49. doi:10.1002/prca.201000060. [175] D. Martins-de-Souza, P.C. Guest, N. Vanattou-Saifoudine, H. Wesseling, H. Rahmoune, S. Bahn, The need 65

for phosphoproteomic approaches in psychiatric research, J. Psychiatr. Res. 45 (2011) 1404–1406. doi:10.1016/j.jpsychires.2011.04.007. [176] D. Martins-de-Souza, P.C. Guest, N. Vanattou-Saifoudine, H. Rahmoune, S. Bahn, Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function., Eur. Arch. Psychiatry Clin. Neurosci. 262 (2012) 657–66. doi:10.1007/s00406-012-0301-3.

66

4. CAPITULO 2

Artigo publicado no European Archives of Psychiatry and Clinical Neuroscience (2015; 265(7):601-612).

PROTEOMICS OF THE CORPUS CALLOSUM UNRAVEL PIVOTAL PLAYERS IN THE DYSFUNCTION OF CELL SIGNALING, STRUCTURE, AND MYELINATION IN SCHIZOPHRENIA BRAINS

Verônica M. Saia-Cereda1, Juliana S. Cassoli1, Andrea Schmitt2,3, Peter Falkai3, Juliana M. Nascimento1,4,

Daniel Martins-de-Souza1,2,5,*.

1- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas

(UNICAMP), Campinas, SP, Brazil.

2- Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil.

3- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany.

4- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil

5- UNICAMP’s Neurobiology Center, Campinas, Brazil.

Abstract

Schizophrenia is an incurable and debilitating mental disorder that may affect up to 1% of the world population. Morphological, electrophysiological and neurophysiological studies suggest that the corpus callosum (CC), which is the largest portion of white matter in the human brain and responsible for inter-hemispheric communication, is altered in schizophrenia patients. Here, we employed mass spectrometry-based proteomics to investigate the molecular underpinnings of schizophrenia. Brain tissue samples were collected postmortem from 9 schizophrenia patients and 7 controls at the University of Heidelberg, Germany. Because the CC has a signaling role, we collected cytoplasmic (soluble) proteins and submitted them to nano-liquid chromatography-mass spectrometry (nano LC-MS/MS). Proteomes were quantified by label-free spectral counting. We identified 5678 unique peptides that corresponded to 1636 proteins belonging to 1512 protein families. Of those proteins, 65 differed significantly in expression: 28 were upregulated and 37 downregulated. Our data increase significantly the knowledge derived from an earlier proteomic

67

study of the CC. Among the differentially expressed proteins are those associated with cell growth and maintenance, such as neurofilaments and ; cell communication and signaling, such as 14-3-3 proteins; and oligodendrocyte function, such as myelin basic protein (MBP) and myelin- oligodendrocyte glycoprotein (MOG). Additionally, 30 of the differentially expressed proteins were found previously in other proteomic studies in postmortem brains; this overlap in findings validates the present study and indicates that these proteins may be markers consistently associated with schizophrenia. Our findings increase the understanding of schizophrenia pathophysiology and may serve as a foundation for further treatment strategies. Keywords: proteome, mass spectrometry, proteomics, schizophrenia, corpus callosum, postmortem brain.

68

Introduction Schizophrenia is a chronic mental disorder that usually appears at the end of adolescence or the beginning of adulthood and develops slowly for months or even years [1]. About 1% of the world population has this condition, which presents a heritability of 80%-85% [2] and may reduce life expectancy by almost 20 years [3]. The many symptoms of schizophrenia are classified into positive symptoms, such as hallucinations, and thought disorders, and negative symptoms, such as lack of interest in social interaction, lack of motivation, and anhedonia. Cognitive deficiencies, such as the reduction of executive functions, selective attention, working memory, and mental flexibility, may also be present [4]. As a multifactorial disease, schizophrenia involves exogenous and endogenous factors as early as the beginning of neurodevelopment. Some molecular aspects of the pathology are still to be unraveled, and knowledge about the connections between the known aspects has to be improved for a more integrated understanding of schizophrenia physiopathology. The corpus callosum (CC) is the largest portion of white matter in the human brain; it is located at its center between the right and left hemispheres and is responsible mainly for inter- hemispheric communication [5]. Morphological, electrophysiological and neurophysiological studies have suggested alterations in the CC of schizophrenia patients [6, 7, 8]. These findings indicate the pivotal importance of the CC in establishing and maintaining schizophrenia, claiming for the understanding of its molecular features. Proteomics is a suitable tool for this purpose, since it can contribute to understanding biological and molecular processes through the integrated identification of unregulated biochemical pathways [9].

Our research group and others have contributed to this issue by analyzing the transcriptome and proteome of postmortem brain tissues and providing evidence on the potential role of oligodendrocytes and myelination in schizophrenia [10, 11]. These studies have also identified a large number of differentially expressed proteins associated with energy metabolism, the cytoskeleton, and cell signaling [12]. Since these pathways are mainly in the cytoplasm, the present study used an enrichment method to obtain only the soluble fraction of the CC proteome and pinpoint exactly differences in the expression of glial proteins, because the CC is predominantly a white matter region. The method used here is suitable for studies when one needs to obtain a detailed coverage of the proteome of interest [13]. In this paper, we describe our efforts in deciphering the cytoplasmic proteome of the CC in 69

schizophrenia and mentally healthy controls. We chose the CC because of its importance in schizophrenia and also because of evidence on the role of glia cells in the disease. Although this brain region has been previously studied [14], the methodology used here is the state of the art in the field [15]; in contrast, in their study in 2007 Sivagnanasundaram et al. employed two- dimensional gel electrophoresis (2DE), which has intrinsic limitations for large-scale proteome analysis [16]. We cross-validated our results by comparing them with those obtained in other brain regions.

Material and Methods Human samples The corpus callosum (CC) samples were collected postmortem from 9 chronic schizophrenia patients with residual symptoms (diagnosed ante mortem by an experienced psychiatrist according to the DSM-IV criteria) and 7 controls (Table 1). Patients’ samples came from the State Mental Hospital, Wiesloch, Germany, whilst control samples came from the Institute of Neuropathology, Heidelberg University, Heidelberg, Germany. The controls had not had any kind of brain disorder or somatic disease and had not taken any antidepressant or antipsychotic medications. Each schizophrenia patient had a record of antipsychotic treatment, so we calculated chlorpromazine equivalents (CPE). The CPE for typical neuroleptics and clozapine were calculated with Jahn and Mussgay’s algorithm [17], while the CPE for olanzapine was calculated according to Meltzer and Fatemi [18]. Patients and controls were German Caucasians with no history of alcohol or drug abuse. Brains were submitted to neuropathological characterization to rule out any associated brain disorder; Braak staging was below 2 for all brains. All assessments, postmortem evaluations, and procedures were approved by the ethics committee of the Faculty of Medicine, Heidelberg University, Heidelberg, Germany.

70

Table 1 - Clinical data of patients and controls

of

Last

Case ECT

Hosp

years

(years)

Gender

atyptyp Alcohol

DSM IV

pH pH values

Cigarettes

Medication Medication

Age (years)

Duration of Duration

PMI (hours)

CPE last ten

Age at Onset

CPE last dose

Disease (years)Disease

Cause of Death

heart Perphenazine 32 mg, SCZ 73 M 20 6.6 43 40 1 507.4 1.7 295.6 30 30/day no 33 no infarction Promethazine 150 mg Zuclopethixol 40 mg, heart SCZ 43 M 18 6.9 22 20 2 464 2.6 295.6 20 Valproate 1200 mg, 0 no 13 no infarction Tiapride 300 mg heart SCZ 63 F 31 6.8 40 30 3 75 1.8 295.6 24 Olanzapine 15 mg 30/day no 30 yes infarction heart Haloperidol 32 mg, SCZ 71 M 28 6.4 40 35 1 782.4 10 295.6 30 40/day no 12 no infarction Pipamperone 40 mg heart Haloperidol 40 mg, SCZ 81 M 4 6.7 62 50 1 92.8 1.4 295.6 19 20 no 48 no insufficiency Prothypendyl 80 mg heart Control 41 M 7 6.5 0 no infarction heart Control 57 M 24 6.9 0 no infarction heart Control 53 M 18 7 0 no infarction heart Control 66 M 16 6.8 0 no infarction heart Control 79 M 24 6.4 0 no infarction atyptyp: relation between duration of atypical treatment and duration of treatment with typical neuroleptics during lifetime; CPE: medication calculated in chlorpromazine equivalents(mg); CPE last 10 years: the sum of medications during the last 10 years in kg; Hosp: hospitalization time in years; ECT: electro- convulsive therapy; PMI: postmortem interval

71

Sample preparation Cytosolic proteins were obtained from the brain tissues according to the protocol developed by Cox and Emili [19]. Twenty milligrams of each CC sample was homogenized in 10 volumes of 0.32 M sucrose (Sigma-Aldrich, St. Louis, MO, USA) and 4 mM HEPES (Sigma-Aldrich) buffer (pH=7.4), and 1 tablet of protease cocktail inhibitor was added (Roche Diagnostics, Indianapolis, IN, USA) per 25 ml of buffer. The homogenate was centrifuged at 1000xg for 10 min at 4°C. Pellets were dissolved in ammonium bicarbonate 50 mM prior to protein digestion.

Nano-liquid chromatography-mass spectrometry (nano LC-MS/MS) analyses Each sample was digested overnight in a solution with a 1:80 trypsin:total protein ratio. Next, the resulting peptides were lyophilized and frozen prior to mass spectrometric analyses. Just before analysis, peptides were dissolved in 0.1% formic acid aqueous solution and injected into a nano-LC system comprising an autosampler and 2D-nano high-performance liquid chromatography (HPLC; Eksigent, Dublin, CA, USA), coupled online to an LTQ-Orbitrap XL mass spectrometer (Thermo Scientific, Bremen, Germany). The full detailed description of the nano LC-MS/MS and data analyses can be found in Maccarrone, 2013 [20].

Proteome quantification CC cytosolic proteomes were quantified by the label-free spectral counting approach avail- able as part of Mascot Distiller (Matrix Sciences, London, UK). Mascot Distiller aligned the mass spectrometric data from each CC cytosolic sample by using mass and elution time. The quantifi- cation was based on the relative intensities of extracted ion chromatograms (XICs).

Results and Discussion We identified a total of 5678 unique peptides that corresponded to 1636 proteins belonging to 1512 protein families on the CC cytosolic proteome. Of these proteins, 65 were differentially expressed in patients with schizophrenia compared with mentally healthy controls: 28 were upregulated and 37 downregulated (Table 2).

72

Table 2 - Proteins differentially expressed in schizophrenia corpus callosum, classified according

to their biological and molecular functions.

Table 2. Differentially expressed proteins at corpus callosum cytoplasm in schizophrenia brains compared with mentally healthy controls. controls. healthy mentally with compared brains schizophrenia in cytoplasm callosum corpus at proteins expressed Differentially 2. Table

SCZ/CTRL

-10.00

-10.00

-10.00

-10.00

10.00

10.00

10.00

-6.41

-5.65

-2.89

-1.73

-3.06

-2.07

-1.63

-1.71

-1.71

-1.71

-2.39

-1.63

-2.13

-1.93

-1.77

-2.29

-3.24

-4.40

-1.99

-2.02

-4.50

-1.56

-1.52

-2.23

-4.10

-3.37

-2.46

-1.52

-1.91

-1.55

-1.52

5.47

2.17

2.70

3.63

3.37

1.99

1.67

5.68

2.40

2.47

2.66

1.66

2.53

5.08

1.60

1.79

5.05

2.95

2.32

2.78

2.32

6.39

4.59

1.51

2.36

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Down

Reg

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

Up

N°Pept

63

13

12

10

14

10

12

11

23

14

37

63

11

34

18

15

28

47

42

71

23

10

16

2

2

3

6

4

3

3

3

2

7

3

3

2

5

2

4

5

6

8

2

4

2

3

9

3

9

2

2

6

3

3

7

4

9

2

3

7

3

6

3

SH3 glutamic domain-binding acid-rich-like 3 protein

Histone H3.3CHistone

Protein phosphatase 1 regulatory subunit 7 subunit 1 regulatory phosphatase Protein

Histone H4 Histone

Myelin-oligodendrocyte glycoprotein Myelin-oligodendrocyte

Myelin basic protein basic Myelin

V-type proton ATPase subunit B, brain isoform subunit ATPase V-type proton

Ferritin light chain

Ubiquitin-conjugating enzyme E2Ubiquitin-conjugating N

40S S4, ribosomal protein X isoform

Heat shock 70 kDa6 shock Heat protein

Alpha-crystallin B chain Alpha-crystallin

14-3-3 beta/alpha protein

Calmodulin

Ras-related protein Rab-11B protein Ras-related

Phosphatidylethanolamine-binding protein 1 protein Phosphatidylethanolamine-binding

Protein kinase C and casein kinase substrate in neurons protein 1 protein in neurons substrate kinase casein C kinase Protein and

Macrophage migration factor inhibitory Macrophage

Histidine triad nucleotide-binding protein 1 protein triad Histidine nucleotide-binding

Guanine nucleotide-binding protein G(I)/G(S)/G(T) protein Guanine nucleotide-binding beta-1 subunit

A-kinase anchor protein 10, protein mitochondrial anchor A-kinase

14-3-3 gamma protein

14-3-3 eta protein

14-3-3 epsilon protein

14-3-3 zeta/delta protein

Triosephosphate isomerase Triosephosphate

Serine--tRNA cytoplasmic ligase,

Superoxide dismutase [Cu-Zn] Superoxide dismutase

Glycogen phosphorylase, muscle form phosphorylase, Glycogen

Glycogen phosphorylase, brain form phosphorylase, Glycogen

Peroxiredoxin-1

Malate dehydrogenase, cytoplasmic dehydrogenase, Malate

Glyceraldehyde-3-phosphate dehydrogenase Glyceraldehyde-3-phosphate

Ectonucleotide pyrophosphatase/phosphodiesterase family member 6 pyrophosphatase/phosphodiesterase Ectonucleotide

Gamma-enolase

Alpha-enolase

Glutamate dehydrogenase 1, mitochondrial Glutamate dehydrogenase

Lambda-crystallin homolog

2',3'-cyclic-nucleotide 3'-phosphodiesterase

ATP synthase subunit alpha, mitochondrial alpha, subunit synthase ATP

Fructose-bisphosphate aldolase A aldolase Fructose-bisphosphate

Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial Delta-1-pyrroline-5-carboxylate dehydrogenase,

Pyruvate kinase PKM kinase Pyruvate

Vimentin

Tropomyosin alpha-4 chain

Tubulin beta-6 chain beta-6

Tubulin beta chain beta Tubulin

Tubulin beta-3 chain beta-3 Tubulin

Tubulin beta-4B chain Tubulin

Tubulin beta-2B chain Tubulin

Tubulin alpha chain-like alpha Tubulin 3

Tubulin alpha-4A chain alpha-4A Tubulin

Tubulin alpha-1A chain alpha-1A Tubulin

Stathmin

Neurofilament medium polypeptide

Neurofilament light polypeptide

Neurofilament heavy polypeptide Neurofilament heavy

Hyaluronan and proteoglycan link 2 protein proteoglycan and Hyaluronan

Gelsolin

Fascin

Versican core Versicanprotein core

Clathrin heavy chain 1 chain Clathrin heavy

Alpha-internexin

Protein Name Protein

SH3BGRL3

HIST1H4A

ATP6V1B2

Gene name

ALDH4A1

PACSIN1

TUBA4A

TUBA1A

YWHAH

YWHAB

AKAP10

YWHAG

YWHAE

YWHAZ

ATP5A1 ATP5A1

TUBB4B

TUBB2B

TUBAL3

HAPLN2

RAB11B

ALDOA

CALM1

GAPDH

PPP1R7

CRYAB

STMN1

UBE2N

HSPA6

PRDX1

GLUD1

TUBB6

TUBB3

RPS4X

CRYL1

FSCN1

H3F3C

PEBP1

HINT1

PYGM

MDH1

ENPP6

NEFM

VCAN

TPM4

TUBB

GNB1

SARS

SOD1

PYGB

ENO2

ENO1

NEFH

CLTC

MOG

NEFL

MBP

PKM

TPI1

MIF

CNP

VIM

GSN

INA

FTL

Unknown

Unknown

Reg.nucleic acid Reg.nucleic metabolism acid

Reg.nucleic acid Reg.nucleic metabolism acid

Immune response

Immune response

Transport

Transport

Protein metabolism Protein

Protein metabolism Protein

Protein metabolism Protein

Protein metabolism Protein

Cell communication & signaling

Cell communication & signaling

Cell communication & signaling

Cell communication & signaling

Cell communication & signaling

Cell communication & signaling

Cell communication & signaling

Cell communication & signaling

Cell communication & signaling

Cell communication & signaling

Cell communication & signaling

Cell communication & signaling

Cell communication & signaling

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Energy Metabolism Energy

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Cell & maintenance growth

Biological Process Biological

Unclassified

Unclassified

Serine/threonine phosphatase Serine/threonine

DNA binding protein protein DNA binding

Immunoglobulin

Structural protein Structural

Transport/cargo protein Transport/cargo

Storage protein Storage

Ubiquitin proteasome system protein system Ubiquitin proteasome

Ribosomal subunit

Heat shock protein shock Heat

Heat shock protein shock Heat

Adapter molecule Adapter

Calcium protein binding

GTPase activating protein GTPase activating

Protease inhibitor Protease

Adapter molecule Adapter

Cytokine

ATPase

G protein

Anchor protein Anchor

Adapter molecule Adapter

Adapter molecule Adapter

Adapter molecule Adapter

Adapter molecule Adapter

Enzyme: Isomerase

Enzyme: Ligase

Enzyme: Superoxide dismutase

Enzyme: Phosphorylase

Enzyme: Phosphorylase

Enzyme: Peroxidase

Enzyme: Dehydrogenase

Enzyme: Dehydrogenase

Enzyme: Hydrolase

Enzyme: Hydratase

Enzyme: Hydratase

Enzyme: Dehydrogenase

Enzyme: Oxidoreductase

Enzyme: Phosphodiesterase

Transport/cargo protein Transport/cargo

Enzyme: Lyase

Enzyme: Dehydrogenase

Enzyme: Phosphotransferase

Cytoskeletal protein Cytoskeletal

Cytoskeletal protein Cytoskeletal

Cytoskeletal protein Cytoskeletal

Cytoskeletal protein Cytoskeletal

Structural protein Structural

Structural protein Structural

Cytoskeletal protein Cytoskeletal

Structural protein Structural

Cytoskeletal protein Cytoskeletal

Cytoskeletal protein Cytoskeletal

Structural protein Structural

Structural protein Structural

Structural protein Structural

Structural protein Structural

Extracellular matrix protein

Cytoskeletal protein Cytoskeletal

Structural protein Structural

Extracellular matrix protein

Structural protein Structural

Cytoskeletal protein Cytoskeletal

Molecular Class Molecular

Molecular function unknown function Molecular

Molecular function unknown function Molecular

Protein serine/threonine phosphatase activity phosphatase serine/threonine Protein

DNA binding

Antigen binding Antigen

Structural constituent of myelin sheath constituent Structural

Transporter activity Transporter

Storage protein Storage

Ubiquitin-specific protease activity protease Ubiquitin-specific

Structural constituent of ribosome constituent Structural

Heat shock protein activity protein shock Heat

Heat shock protein activity protein shock Heat

Receptor signaling complex signaling activity Receptor scaffold

Calcium binding ion

GTPase activator activity GTPase activator

Protease inhibitor activity Protease

Receptor signaling complex signaling activity Receptor scaffold

Cytokine activity Cytokine

ATPase activity ATPase

GTPase activity

Cytoskeletal anchoring activity anchoring Cytoskeletal

Receptor signaling complex signaling activity Receptor scaffold

Receptor signaling complex signaling activity Receptor scaffold

Receptor signaling complex signaling activity Receptor scaffold

Receptor signaling complex signaling activity Receptor scaffold

Isomerase activity Isomerase

Ligase activity Ligase

Superoxide dismutase activity Superoxide dismutase

Phosphorylase activity Phosphorylase

Phosphorylase activity Phosphorylase

Peroxidase activity

Catalytic activity

Catalytic activity

Hydrolase activity Hydrolase

Catalytic activity

Catalytic activity

Catalytic activity

Oxidoreductase activity Oxidoreductase

Phosphoric diester hydrolase activity hydrolase diester Phosphoric

Transporter activity Transporter

Lyase activity Lyase

Catalytic activity

Kinase activity Kinase

Structural constituent of cytoskeleton constituent Structural

Structural constituent of cytoskeleton constituent Structural

Structural constituent of cytoskeleton constituent Structural

Structural constituent of cytoskeleton constituent Structural

Structural moleculeStructural activity

Structural moleculeStructural activity

Structural constituent of cytoskeleton constituent Structural

Structural moleculeStructural activity

Structural constituent of cytoskeleton constituent Structural

Structural constituent of cytoskeleton constituent Structural

Signal transducer activity Signal transducer

Structural moleculeStructural activity

Structural moleculeStructural activity

Structural moleculeStructural activity

Extracellular matrix constituent structural

Structural constituent of cytoskeleton constituent Structural

Structural moleculeStructural activity

Extracellular matrix constituent structural

Structural moleculeStructural activity

Structural constituent of cytoskeleton constituent Structural Molecular Function Molecular

Of the proteins differentially expressed in schizophrenia patients, 31% are related to cell growth and maintenance, 28% to energy metabolism, and 20% to cell communication and signaling. Among the proteins related to cell growth and maintenance, 9 are structural, 9 are cytoskeletal, and 2 are from the extracellular matrix; among those related to energy metabolism, 17 are metabolic enzymes; and among those related to cell communication and signaling, 6 are

73

adapter molecules (Table 2), which are essential for the pathways in which they are involved. The enzymes altered in energy metabolism are key molecules to regulate the energy metabolism pathway [21, 22], and the structural and cytoskeleton proteins are indispensable to maintain cellular shape [23, 24, 25, 26], in addition to playing a role in information transmission from dendrites to axons [27], a requirement for the cell to properly exercise its function. The receptor molecules at the membranes are related to cell communication, and, in the case of neurons, they are essential for a proper synaptic function [28, 29]. As can be seen in Figure 13, Ingenuity Pathway Analysis (IPA, Ingenuity Systems, Qiagen, Redwood, CA, USA; www.ingenuity.com) also showed that these proteins clustered within those pathways. IPA is based on an algorithm that uses curated connectivity information from the literature to determine the network of interactions among the differentially expressed proteins and canonical pathways in which they are involved [30]. As shown in Figure 13, 3 predominant pathways have differentially expressed proteins in schizophrenia: Energy metabolism, cell communication and signaling, and cell growth and maintenance. These pathways have already been found to be dysregulated in patients with schizophrenia [14, 23, 31]. This protein network also evidences connections among differentially expressed proteins within their biological processes and between different processes, suggesting dysfunctional networks of proteins, as is known to be the case in schizophrenia [32].

74

Figure 13 - Network of interactions among differentially expressed proteins according to an analysis of biological systems by Ingenuity Pathway Analysis

In addition, information provided about altered canonical pathways in schizophrenia samples shows that differently expressed proteins are related to each other as part of common pathways, such as cell metabolism and cell signaling, as shown in Figure 14, further reinforcing those pathways’ dysregulation, as shown in Figure 13. All pathways were significantly altered in the schizophrenia samples compared to the control samples (p < 0.05). The information also indicates that canonical pathways are related to oxidative stress—such as superoxide radical degradation, which has ~18% dysregulated proteins among a total of 6—and NRF2-mediated oxidative stress responsive—which has ~3% of dysregulated proteins among a total of 177.

75

Analysis

Figure

14

-

Canonical pathwaysCanonical differentially with associated expressed proteins Pathway Ingenuity by

76

We compared our results with those obtained by Sivagnanasundaram and coworkers [25]. Using the combination of 2DE and mass spectrometry (2DE-MS), they identified 34 differentially expressed proteins in the CC in schizophrenia, 9 of which overlap with the data we present here. To validate our findings and also to highlight proteins consistently different in expression in schizophrenia patients’ brains, we compared our results to 16 other brain tissue studies of the proteome of schizophrenia. Thirty of the proteins differentially expressed in our study overlap with these studies (Table 3).

Table 3 - Proteins consistently differentially expressed across different brain regions as referenced below.

77

Several studies consistently found differential expression of proteins associated with 14-3- 3–mediated signaling, the pathway in which we found the main disruption in the CC of schizophrenia patients (Figure 14). 14-3-3 protein zeta/delta (YWHAZ), 14-3-3 protein epsilon (YWHAE) and 14-3-3 protein gamma (YWHAG) are associated with cell communication and signaling, as binding proteins to several protein kinases and phosphatases, and also are involved in actin dynamics. They were found dysregulated also in other reports on the schizophrenia proteome [32]. The 14-3-3 protein family is highly associated with neurotransmitting processes [28], with some isoforms particularly enriched in synapses, and the YWHAZ and YWHAE genes were previously associated with schizophrenia [33, 34, 35]. For instance, broad 14-3-3 functional knockout mice, in addition to showing schizophrenia-like behavior, have high dopamine levels and a decrease in dendritic complexity and spine density, defects linked to schizophrenia [36]. As the main white matter region in the brain, the CC is composed mostly of glia cells and neuronal axons. Because these axons are responsible for the connection between the 2 brain hemispheres, the dysregulation of proteins involved in cell communication and neurotransmission may be pivotal to impairments in brain connectivity, as previously suggested [6, 7, 8]. Genome-wide association studies (GWAS) found that the gene for the protein clathrin heavy chain 1 (CLTC) is associated with schizophrenia. The protein, that has been found down regulated in our results (table 2), has the function of a vesicle coat and plays a role in clathrin- mediated endocytosis and thus is involved in cell signaling [37]. According to Schubert el al. [38], clathrin influences processes such as synaptic dysfunction, white matter changes, and aberrant neurodevelopment and consequently may be related to schizophrenia pathology. We found differential expression of the light and medium neurofilaments (NEFL and NEFM), as did Sivagnanasundaram and coworkers [25]. Differential expression of NEFM was found also by 5 other studies and differential expression of NEFL by 2, highlighting their importance in schizophrenia. These proteins, which are coded by gene regions that are usually altered in schizophrenia patients [23, 26], are associated with cell growth and maintenance, reinforcing the role of this pathway in schizophrenia [23, 25 39]. Neurofilaments play also important roles in the function of oligodendrocytes, cells enriched in brain white matter. Along these lines, we observed also the downregulation of myelin basic protein (MBP) and myelin-

78

oligodendrocyte glycoprotein (MOG), the main constituents of myelin sheaths. These proteins were previously found differentially expressed in other schizophrenia brain regions [10, 32, 39], a finding that is in line with evidence at the transcriptome [40, 41] and morphological levels [42, 43]. The differential expression of MBP and MOG supports the idea that a degenerative process might be occurring in schizophrenia brains [10, 44, 45, 46]. Also, MBP and MOG might be biomarker candidates to be further investigated in combination with other potential biomarkers, since they were found in different concentrations in the cerebrospinal fluid (CSF) of living schizophrenia patients [23]. The family of tubulin proteins also was associated with the cell cytoskeleton. The isoform TUBB was found in our study and another 10 studies (Table 3), which reinforces its role in schizophrenia pathobiology. According to Moehle et al. [47], tubulin proteins are the major protein components in axons, dendrites, and dendritic spines, and knockdown studies indicate that the different isoforms have distinct roles in neurodevelopment. Studies with mice knocked out for the STOP gene (stable tubulin-only polypeptide) have associated the family of tubulin proteins with synaptic dysfunctions probably caused by glutamatergic transmission dysregulation [14, 48]. The protein gelsolin (GSN) belongs to a superfamily of actin-binding proteins (ABPs) [48] and is related to actin remodeling on cell growth and apoptosis [50]. Our studies and that of Prabakaran and coworkers [51] found this protein to be downregulated, and transcriptome studies found its gene to be altered [10]. Considering that this protein is related also to myelin sheath generation and maintenance [44], it may be involved in myelination dysfunction in schizophrenia patients.

Another protein found up regulated here and dysregulated in another 4 schizophrenia proteome analyses was gamma enolase (ENO2). This enzyme participates in the glycolytic pathway, a pathway found to be the second most affected in this study (Figure 14) and also by others [22]. ENO2 interconverts 2-phosphoglycerate to phosphoenolpyruvate [21]. Since glia cells are responsible for supplying energy to neuronal axons [52], this glycolysis dysregulation may affect negatively synaptic activity and neuronal plasticity [25, 39, 53]. Another 3 glycolytic enzymes were differentially expressed in our study but not in the study by Sivagnanasundaram and coworkers [25]. These 3 are pyruvate kinase (PKM), fructose-bisphosphate aldolase A (ALDOA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), confirming the dysregulation in 79

schizophrenia of glycolysis, a pivotal energy pathway [22].

In agreement with Sivagnanasundaram and coworkers [25] and another 2 studies (Table 3), we found differential expression of superoxide dismutase [Cu-Zn] (SOD1), which has been observed consistently to be dysregulated in the brain and liver of patients with schizophrenia [22, 54, 55, 56, 57]. Our study and another 2 studies (Table 3) also found another protein related to oxidative stress, peroxiredoxin-1 (PRDX1), to be downregulated, reinforcing the concept of a reduced response to oxidative stress [58, 59]. Conclusions Given the central role of the corpus callosum, our data revisited proteome alterations of this brain region with a more powerful proteomic methodology. To provide further evidence for the dysregulation of signaling and structural proteins, we investigated the cytosolic fraction of the CC proteome. We found not only these pathways dysregulated, but also we were able to reinforce the role of energy metabolism and oligodendrocytes in schizophrenia, despite the data provided in this study should further be validated by others orthogonal methods (i.e. western blot, immunocytochemistry). Our findings increase the understanding of schizophrenia pathophysiology and could be targeted for further treatment strategies.

References

[1] Freedman R (2003) Schizophrenia. N Engl J Med 349(18):1738-1749

[2] Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60(12):1187-1192

[3] Hegarty JD, Baldessarini RJ, Tohen M, Waternaux C, Oepen G (1994) One hundred years of schizophrenia: a meta-analysis of the outcome literature. Am J Psychiatry 151(10):1409-1416.

[4] Weickert TW, Goldberg TE, Gold JM, Bigelow LB, Egan MF, Weinberger DR (2000) Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arch Gen Psychiatry 57(9):907-913

[5] Fitsiori A, Nguyen D, Karentzos A, Delavelle J, Vargas MI. (2011) The corpus callosum: White matter or terra incognita. Br J Radiol 84:5–18

[6] Guo H, Christoff JM, Campos VE, Li Y. (2000) Normal corpus callosum in Emx1 mutant mice with C57BL/6 background. Biochemical and biophysical research communications 276(2):649-653

[7] Rotarska-Jagiela A, Schönmeyer R, Oertel V, Haenschel C, Vogeley K, Linden DEJ (2008) The corpus callosum in schizophrenia – volume and connectivity changes affect specific regions. NeuroImage 39:1522–1532

[8] Innocenti GM, Ansermet F, Parnas J (2003) Schizophrenia, neurodevelopment and corpus callosum. Mol Psychiatry 8:261–274

[9] Martins-De-Souza D (2012) Proteomics tackling schizophrenia as a pathway disorder. Schizophrenia Bulletin 38(6):1107–1108 80

[10] Martins-de-Souza D (2010) Proteome and transcriptome analysis suggests oligodendrocyte dysfunction in schizophrenia. J Psychiatr Res 44(3):149–156. doi:10.1016/j.jpsychires.2009.07

[11] Horvth, S., Janka, Z., & Mirnics, K. (2011). Analyzing schizophrenia by DNA microarrays. Biological Psychiatry, 69(2), 157– 162. doi:10.1016/j.biopsych.2010.07.017

[12] Nascimento, J. M., & Martins-de-Souza, D. (2015). The proteome of schizophrenia. Npj Schizophrenia, 1(October 2014), 14003.

[13] Rockstroh, M.; Mü ller, S. A.; Jende, C.; Kerzhner, A.; von Bergen, M.; Tomm, J. M. (2011) Cell fractionation - an important tool for compartment proteomics. OMICS, 1, 135−143.

[14] Martins-de-Souza, D., Gattaz, W. F., Schmitt, A., Novello, J. C., Marangoni, S., Turck, C. W., & Dias-Neto, E. (2009). Proteome analysis of schizophrenia patients Wernicke’s area reveals an energy metabolism dysregulation. BMC Psychiatry, 9, 17.

[15] Nogueira, F. C. S., Domont G. D. (2014). Survey of Shotgun Proteomics. Shotgun Proteomics. Springer New York, 3-23.

[16] Oliveira, B. M., Coorssen, J. R., & Martins-de-Souza, D. (2014). 2DE: The Phoenix of Proteomics. Journal of Proteomics, 104, 140–150.

[17] Jahn T, Mussgay L (1989) Die statistische Kontrolle moeglicher Medikamenteneinfluesse in experimentalpsychologischen Schizophrenie studien: Ein Vorschlag zur Berechnung von Chlorpromazina aequivalenten. Z Klin Psychol Psychother 18:10.

[18] Meltzer H.Y., Fatemi S.H. (1998) Treatment of schizophrenia. In: Schatzberg AF, Nemeroff CB (eds) The American psychiatric text book of psychopharmacology. American Psychiatric Press, Washington, pp 127–135 10.

[19] Cox, B., Emili, A. (2006). Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nature Protocols, 1(4), 1872–1878. doi:10.1038/nprot.2006.273

[20] Maccarrone G, Rewerts C, Lebar M, Turck CW, Martins-de- Souza D (2013) Proteome profiling of peripheral mononuclear cells from human blood. Proteomics 13:893–897.

[21] Oliva, Daniele, et al. (1991) "Complete structure of the human gene encoding neuron-specific enolase." Genomics 10.1: 157- 165.

[22] Martins-de-Souza, D., Harris, L. W., Guest, P. C., & Bahn, S. (2011). The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxidants & Redox Signaling, 15(7), 2067–2079. doi:10.1089/ars.2010.3459

[23] Martins-de-Souza, D., Maccarrone, G., Wobrock, T., Zerr, I., Gormanns, P., Reckow, S., Turck, C. W. (2010). Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. Journal of Psychiatric Research, 44(16), 1176–1189.

[24] Ishtiaq, M., Campos-Melo, D., Volkening, K., & Strong, M. J. (2014). Analysis of novel NEFL mRNA targeting microRNAs in amyotrophic lateral sclerosis. PloS One, 9(1), e85653. doi:10.1371/journal.pone.0085653

[25] Sivagnanasundaram, S., Crossett, B., Dedova, I., Cordwell, S., & Matsumoto, I. (2007). Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: A proteome study. Proteomics - Clinical Applications, 1, 1291–13.

[26] Bergson C, Levenson R, Goldman-Rakic PS, Lidow MS. (2003). Dopamine receptor-interacting proteins: the Ca2+ connection in dopamine signaling. Trends Pharmacol Sci 24:486–492.

[27] Kapitein, L. C., & Hoogenraad, C. C. (2011). Which way to go? Cytoskeletal organization and polarized transport in neurons. Molecular and Cellular Neuroscience, 46(1), 9–20.

[28] Berg, D., Holzmann, C., & Riess, O. (2003). 14-3-3 Proteins in the Nervous System. Nature Reviews. Neuroscience, 4(September), 752–762.

[29] Muratake, T., Hayashi, S., Ichikawa, T., Kumanishi, T., Ichimura, Y., Kuwano, R., Takahashi, Y. (1996). Structural organization and chromosomal assignment of the human 14-3-3 eta chain gene (YWHAH). Genomics, 36, 63–69.

81

[30] Calvano, S. E., Xiao, W., Richards, D. R., Felciano, R. M., Baker, H. V, Cho, R. J. Lowry, S. F. (2005). A network-based analysis of systemic inflammation in humans. Nature, 437(October), 1032–1037.

[31] Martins-de-Souza, D., Gattaz, W. F., Schmitt, A., Maccarrone, G., Hunyadi-Gulyás, E., Eberlin, M. N., Dias-Neto, E. (2009). Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. Journal of Psychiatric Research, 43(11), 978–986.

[32] Martins-de-Souza, D, Guest, PC, Rahmoune, H, Bahn, S (2012) Proteomic approaches to unravel the complexity of schizophrenia. Expert Rev Proteomics, 9(1): 97-108.

[33] Bell, R., Munro, J., Russ, C., Powell, J. F., Bruinvels, a, Kerwin, R. W., & Collier, D. a. (2000). Systematic screening of the 14-3-3 eta (eta) chain gene for polymorphic variants and case-control analysis in schizophrenia. American Journal of Medical Genetics, 96(March), 736–743.

[34] Wong, A. H. C., Likhodi, O., Trakalo, J., Yusuf, M., Sinha, A., Pato, C. N., Kennedy, J. L. (2005). Genetic and post-mortem mRNA analysis of the 14-3-3 genes that encode phosphoserine/threonine-binding regulatory proteins in schizophrenia and bipolar disorder. Schizophrenia Research, 78, 137–146.

[35] Ikeda, M., Hikita, T., Taya, S., Uraguchi-asaki, J., Toyo-Oka, K., Wynshaw-boris, A., Iwata, N. (2008). Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia. Human Molecular Genetics, 17(20), 3212–3222.

[36] Foote, M., Qiao, H., Graham, K., Wu, Y., & Zhou, Y. (2015). Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice. Biological psychiatry.

[37] Schmid, S. L. (1997). Clathrin-coated vesicle formation and protein sorting: an integrated process. Annual review of biochemistry, 66(1), 511-548.

[38] Schubert, K. O., Föcking, M., Prehn, J. H. M., & Cotter, D. R. (2012). Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Molecular Psychiatry, 17(7), 669–681. doi:10.1038/mp.2011.123

[39] Martins-De-Souza, D., Gattaz, W. F., Schmitt, A., Rewerts, C., Marangoni, S., Novello, J. C.,Dias-Neto, E. (2009). Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. Journal of Neural Transmission, 116, 275–289.

[40] Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001;98(8):4746–51

[41] Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003;362(9386):798–805

[42] Foong J, Maier M, Barker GJ, Brocklehurst S, Miller DH, Ron MA. In vivo investigation of white matter pathology in schizophrenia with magnetization transfer imaging. Journal of Neurology, Neurosurgery and Psychiatry 2000; 68:70–4

[43] Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V, et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55(5):597–610

[44] Konrad, A., & Winterer, G. (2008). Disturbed structural connectivity in schizophrenia - Primary factor in pathology or epiphenomenon? Schizophrenia Bulletin, 34(1), 72–92. doi:10.1093/schbul/sbm034

[45] Bartzokis, G. (2002). Schizophrenia: breakdown in the well- regulated lifelong process of brain development and maturation. Neuropsychopharmacology 27(4):672-683

[46] Chew, L. J., Fusar-Poli, P., & Schmitz, T. (2013). Oligodendroglial alterations and the role of microglia in white matter injury: Relevance to schizophrenia. Developmental Neuroscience, 35(2-3), 102–129. doi:10.1159/000346157

[47] Moehle, M. S., Luduena, R. F., Haroutunian, V., Meador-Woodruff, J. H., & McCullumsmith, R. E. (2012). Regional differences in expression of β-tubulin isoforms in schizophrenia. Schizophrenia research, 135(1), 181-186

[48] Denarier E, Aguezzoul M, Jolly C, Vourc’h C, Roure A, Andrieux A, et al. 1998. Genomic structure and chromosomal mapping 82

of the mouse STOP gene (Mtap6). Biochem Biophys Res Commun 243:791–796

[49] Xi, Z. R., Qin, W., Yang, Y. F., He, G., Gao, S. H., Ren, M. S., He, L. (2004). Transmission disequilibrium analysis of the GSN gene in a cohort of family trios with schizophrenia. Neuroscience Letters, 372(3), 200–203. doi:10.1016/j.neulet.2004.09.041

[50] Sun, H. Q., Yamamoto, M., Mejillano, M., & Yin, H. L. (1999). Gelsolin, a multifunctional actin regulatory protein. Journal of Biological Chemistry,274(47), 33179-33182. doi:10.1074/jbc.274.47.33179

[51] Prabakaran S, Wengenroth M, Lockstone HE, Lilley K, Leweke FM, Bahn S. 2007. 2-D DIGE analysis of liver and red blood cells provides further evidence for oxidative stress in schizophrenia. J Proteome Res 6:141–149.

[52] Funfschilling, U., Supplie, L. M., Mahad, D., Boretius, S., Aiman, S., Edgar, J., Nave, K. (2013). Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity, 485(7399), 517–521. doi:10.1038/nature11007.

[53] Magistretti, P. J. (2011). Neuron-glia metabolic coupling and plasticity. Experimental Physiology, 96, 407–410.

[54] Reddy, R.D., Sahebarao, M.P., Mukherjee, S., Murthy, J.N., 1991. Enzymes of the antioxidant defense system in chronic schizophrenic patients. Biol. Psychiatry 30, 409 – 412.

[55] Yao, J.K., Reddy, R.D., van Kammen, D.P., 2001. Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 15, 287 – 310.

[56] Zhang, X. Y., Zhou, D. F., Cao, L. Y., Zhang, P. Y., & Wu, G. Y. (2003). Elevated blood superoxide dismutase in neuroleptic- free schizophrenia: Association with positive symptoms. Psychiatry Research, 117, 85–88.

[57] Rajasekaran, A., Venkatasubramanian, G., Berk, M., & Debnath, M. (2015). Mitochondrial dysfunction in schizophrenia: Pathways, mechanisms and implications. euroscience & Biobehavioral Reviews, 48, 10–21.

[58] Föcking, M., Lopez, L. M., English, J. a, Dicker, P., Wolff, a, Brindley, E., Cotter, D. R. (2014). Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Molecular Psychiatry, (April), 1–9.

[59] Prabakaran, S., Swatton, J. E., Ryan, M. M., Huffaker, S. J., Huang, J. T.-J., Griffin, J. L., Bahn, S. (2004). Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Molecular Psychiatry, 9(7), 684– 697, 643.

[60] Clark D, Dedova I, Cordwell S, Matsumoto I (2006) A proteome analysis of the anterior cingulate cortex gray matter in schizo- phrenia. Mol Psychiatry 11(5):459–470

[61] Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D (2006) Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes. Proteomics 6(11):3414–3425

[62] Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pari- ante CM, Cotter DR (2008) Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psy- chiatry 13(12):1102–1117

[63] Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR (2009) Pro- teomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 pro- tein expression. Mol Psychiatry 14(6):601–613

[64] Pennington K, Dicker P, Dunn MJ, Cotter DR (2008) Proteomic analysis reveals protein changes within layer 2 of the insular cor- tex in schizophrenia. Proteomics 8(23–24):5097–5107

[65] Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Macca- rrone G, Dias-Neto E, Turck CW (2009) Prefrontal cortex shot- gun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychia- try Clin Neurosci 259(3):151–163

[66] English JA, Dicker P, Föcking M, Dunn MJ, Cotter DR (2009) 2-D DIGE analysis implicates cytoskeletal abnormalities in psy- chiatric disease. Proteomics 9(12):3368–3382

[67] Schubert KO, Föcking M, Cotter DR (2015) Proteomic path- way analysis of the hippocampus in schizophrenia and bipo- lar affective disorder implicates 14-3-3 signaling, aryl hydro- carbon receptor signaling, and glucose metabolism: potential roles in 83

GABAergic interneuron pathology. Schizophr Res. doi:10.1016/j.schres.2015.02.002

[68] Föcking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cot- ter DR (2011) Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch Gen Psychiatry 68(5):477–488

[69] Martins-de-Souza D, Schmitt A, Röder R, Lebar M, Schneider- Axmann T, Falkai P, Turck CW (2010) Sex-specific proteome differences in the anterior cingulate cortex of schizophrenia. J Psychiatr Res 44(14):989–991

84

5. CAPITULO 3

Artigo publicado online no periódico Schizophrenia Research (doi:10.1016/j.schres.2016.03.022).

DIFFERENTIAL PROTEOME AND PHOSPHOPROTEOME MAY IMPACT CELL SIGNALING IN THE CORPUS CALLOSUM OF SCHIZOPHRENIA PATIENTS

Verônica M. Saia-Cereda1, Juliana S. Cassoli1, Andrea Schmitt2,3, Peter Falkai3, Daniel Martins-de-Souza1,2,4,*.

1- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas

(UNICAMP), Campinas, SP, Brazil

2- Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil

3- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University (LMU), Munich, Germany

4- UNICAMP’s Neurobiology Center, Campinas, Brazil

Abstract

Schizophrenia is a multifactorial disease in both clinical and molecular terms. Thus, depicting the molecular aspects of the disease will contribute to the understanding of its biochemical mechanisms and consequently may lead to the development of new treatment strategies. The protein phosphorylation/dephosphorylation switch acts as the main mechanism for regulating cellular signaling. Moreover, approximately one third of human proteins are phosphorylable. Thus, identifying proteins differentially phosphorylated in schizophrenia postmortem brains may improve our understanding of the molecular basis of brain function in this disease. Hence, we quantified the phosphoproteome of corpus callosum samples collected postmortem from schizophrenia patients and healthy controls. We used state-of-the-art, bottom-up shotgun mass spectrometry in a two-dimensional liquid chromatography-tandem mass spectrometry setup in the MSE mode with label-free quantification. We identified 60,634 peptides, belonging to 3283 proteins. Of these, 68 proteins were differentially phosphorylated, and 56 were differentially expressed. These proteins are mostly involved in signaling pathways, such as ephrin B and ciliary neurotrophic factor signaling. The data presented here are novel because this was the very first phosphoproteome analysis of schizophrenia brains. They support the important role of glial cells, especially astrocytes, in schizophrenia and help to further the understanding of the molecular aspects of this disease. Our findings indicate a need for further studies on cell signaling, which might shape the development of treatment strategies.

85

1. Introduction

Post-translational modifications (PTMs) play a vital role in regulating the function and localization of proteins (Bremang et al. 2013). Phosphorylation is the most studied and understood PTM because it is the key regulator of intracellular signaling (Morandell et al. 2006; Reinders and Sickmann 2005). Protein phosphorylation mediates and regulates processes such as energy metabolism, transcription, translation, protein degradation, homeostasis, cell signaling and communication, proliferation, differentiation, and cell survival (Graves and Krebs 1960; Hunter 2000). Because they are reversible modifications, changes in protein activity can be precisely controlled by phosphorylation/dephosphorylation in response to cellular or environmental stimuli or both. The phosphorylation sites in proteins are serine, threonine, and tyrosine residues (Thingholm, Jensen, and Larsen 2009). The importance of the phosphorylation/dephosphorylation cycle is supported by the number of protein kinases and phosphatases, which constitute about 2% of all human genes (C. Manning, D.B. Whyte, R. Martinez, T. hunter 2002; Jaros et al. 2012). Furthermore, over 50% of all proteins are estimated to be phosphorylated during their lifetime (Reinders and Sickmann 2005), and studies indicate that there may be more than 100 000 phosphorylation sites in the human proteome (Zhang et al. 2002). While some proteins are constitutively phosphorylated, most are only transiently phosphorylated, depending on the cell environment in which this protein is located. Noteworthy is that proteomics bioinformatics has advanced considerably in recent years, which has enabled the identification and quantification of protein phosphorylation in a large-scale quantitative manner, even without enrichment techniques. This progress has allowed the study of brain phosphoproteomics, which may generate useful information about the molecular aspects of the human brain and its disorders (Daniel Martins-de-Souza, Guest, Vanattou-Saifoudine, Wesseling, et al. 2011). The corpus callosum (CC) is the largest white matter structure in the human brain and is enriched in glial cells; it is located at the center of the brain, between the right and left hemispheres, and is responsible mainly for inter-hemispheric communication (Fitsiori et al. 2011). Morphological, electrophysiological, and neurophysiological studies have suggested alterations in the CC of schizophrenia patients (Guo et al. 2000; Innocenti, Ansermet, and Parnas 2003; Rotarska-Jagiela et al. 2008). The findings of these studies indicate that the CC is of pivotal

86

importance in establishing and maintaining schizophrenia, so it is important to increase the understanding of its molecular features. To better understand the biochemical pathways involved in schizophrenia and the role of glia in the disease, we evaluated the phosphoproteome of the CC. Our aim was to observe whether the deficiencies in cell signaling previously observed in neurons (Curley and Lewis 2012) are present also in the CC.

2. Materials and methods

2.1 Human samples The CC was collected postmortem from 5 chronic schizophrenia patients and 5 healthy controls (Table 1). Patient samples were provided by the Psychiatric Center Nordbaden, Wiesloch, Germany, whilst control samples were provided by the Institute of Neuropathology, Heidelberg University, Heidelberg, Germany. The controls had not had any kind of brain disorder or somatic diseases and had not taken any antidepressant or antipsychotic medications. More information about the patients and controls can be found in Saia-Cereda et al. (Saia-Cereda et al. 2015). All assessments, postmortem evaluations, and procedures were approved by the ethics committee of the Faculty of Medicine of Heidelberg University, Heidelberg, Germany. Before their death, both patients and controls had given written consent for their brains to be used for research purposes.

87

Table 1 - Clinical data of schizophrenia patients and healthy controls.

Last

Case ECT

Hosp

years

(years)

Gender

atyptyp Alcohol

DSM IV

pH pH values

Cigarettes

Medication Medication

Age (years)

Duration of Duration of

PMI (hours)

CPE last ten

Age at Onset

CPE last dose

Disease (years)Disease

Cause of Death

heart Perphenazine 32 mg, SCZ 73 M 20 6.6 43 40 1 507.4 1.7 295.6 30 30/day no 33 no infarction Promethazine 150 mg Zuclopethixol 40 mg, heart SCZ 43 M 18 6.9 22 20 2 464 2.6 295.6 20 Valproate 1200 mg, 0 no 13 no infarction Tiapride 300 mg heart SCZ 63 F 31 6.8 40 30 3 75 1.8 295.6 24 Olanzapine 15 mg 30/day no 30 yes infarction heart Haloperidol 32 mg, SCZ 71 M 28 6.4 40 35 1 782.4 10 295.6 30 40/day no 12 no infarction Pipamperone 40 mg heart Haloperidol 40 mg, SCZ 81 M 4 6.7 62 50 1 92.8 1.4 295.6 19 20 no 48 no insufficiency Prothypendyl 80 mg heart Control 41 M 7 6.5 0 no infarction heart Control 57 M 24 6.9 0 no infarction heart Control 53 M 18 7 0 no infarction heart Control 66 M 16 6.8 0 no infarction heart Control 79 M 24 6.4 0 no infarction atyptyp: relation between duration of atypical treatment and duration of treatment with typical neuroleptics during lifetime; CPE: medication calculated in chlorpromazine equivalents(mg); CPE last 10 years: the sum of medications during the last 10 years in kg; Hosp: hospitalization time in years; ECT: electro- convulsive therapy; PMI: postmortem interval

2.2 Sample preparation Twenty milligrams of each CC sample was homogenized with a sample grinding (GE Healthcare Life Sciences, Little Chalfont, UK) in 250 μL of buffer containing 7M urea, 2M thiourea, 4% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 70mM dithiothreitol (DTT), 2% Halt™ Phosphatase Inhibitor Cocktail, and 2% Halt ™ Protease Inhibitor Cocktail EDTA-Free (Thermo Fisher Scientific, Waltham, MA, USA) and centrifuged at 14 000 rpm for 10 min at 4°C. The supernatant was collected and subjected to quantification by a Qubit® 3.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA), and 50 μg of each sample was subjected to reduction, alkylation, and digestion. First, 0.2% Rapigest was added to the samples, which were then incubated at 80°C for 15 min. As the next step, the samples were reduced with 100 mM DTT at 60°C for 30 min and alkylated with 200 mM iodoacetamide (IAA) for 30 min at

88

room temperature in the dark. Next, the samples were subjected to digestion in a 1:50 trypsin:total protein ratio solution at 37°C overnight. This procedure was stopped with the addition of 5% TFA at 37°C for 90 min. Then, the sample was centrifuged for 30 min at 4°C and 14 000 rpm. The supernatant was collected, its pH was adjusted with 1N NH4OH, and was frozen until the mass spectrometric analyses. 2.3 Liquid chromatography-mass spectrometry

Qualitative and quantitative proteomic and phosphoproteomic analyses were performed in a bidimensional nanoUPLC tandem nanoESI-HDMSE platform by multiplexed data-independent acquisitions (DIA) experiments. The peptides (1 µg) were injected into a 2D-RP/RP Acquity UPLC M-Class System (Waters Corporation, Milford, MA) coupled to a Synapt G2-Si mass spectrometer (Waters Corporation, Milford, MA). The samples were fractionated in first dimension chromatography with an XBridge Peptide BEH C18 NanoEase Column (130Å, 3.5 µm, 300 µm X 50 mm, Waters Corporation, Milford, MA). Peptide elutions were performed by using discontinuous steps of acetonitrile (11%, 14%, 17%, 20%, and 50% acetonitrile) for 10 min at a flow rate of 2 000 nL/min. After each step, peptide loads were carried to second dimension separation in an ACQUITY UPLC HSS T3 nanoACQUITY Column (100Å, 1.8 µm, 75 µm X 150mm, Waters Corporation, Milford, MA). Peptide elutions were achieved by using an acetonitrile gradient from 7% to 40% (v/v) for 54 min at a flow rate of 500 nL/min directly into a Synapt G2-Si. For every measurement, the mass spectrometer was operated in resolution mode with an m/z resolving power of about 35 000 FWHM, using ion mobility with a cross-section resolving power at least 40 Ω /ΔΩ. The effective resolution obtained with the conjoined ion mobility was 1 800 000 FWHM. MS/MS analyses were performed by nano-electrospray ionization in positive ion mode nanoESI (+) and a NanoLock Spray (Waters, Manchester, UK) ionization source. The lock mass channel was sampled every 30 sec. The mass spectrometer was calibrated with an MS/MS spectrum of [Glu1]-Fibrinopeptide B human (Glu-Fib) solution that was delivered through the reference sprayer of the NanoLock Spray source. 2.4 Database search and proteome quantification

Proteins were identified and quantitative data processed by using dedicated algorithms and searching against the Uniprot human proteomic database, version 2015/08 (70,076 entries), with 89

the default parameters for ion accounting and quantitation (Li et al. 2009). The databases used were reversed “on the fly” during the database queries and appended to the original database to assess the false-positive identification rate. For proper spectra processing and database searching conditions, we used the Progenesis® QI version 2.1 software package with Apex3D, peptide 3D, and ion accounting informatics (Waters). This software starts with LC-MS data loading, then per- forms alignment and peak detection, which creates a list of interesting peptide ions (peptides) that are explored within Peptide Ion Stats by multivariate statistical methods; the final step is protein identity and protein statistics.

The following parameters were considered in identifying peptides: 1) Digestion by trypsin with at most one missed cleavage; 2) variable modifications by oxidation (M), phosphorylation (STY), and fixed modification by carbamidomethyl (C); 3) false discovery rate (FDR) less than 1%; and 4) peptides/proteins (N) equal to 3 in the quantification of proteins by the method of relative quan- tification with HI-N. Identifications that did not satisfy these criteria were rejected.

2.5 Systems biology analysis in silico

Protein networks and canonical pathways associated with differentially expressed and differ- entially phosphorylated proteins were identified by Ingenuity Pathway Analysis (IPA, Ingenuity Systems, Qiagen, Redwood, CA, USA; www.ingenuity.com). This program is based on an algo- rithm that uses curated connectivity information from the literature to determine the network of interactions among the differentially expressed proteins and canonical pathways in which they are involved (Calvano et al. 2005). Significant biological functions are based on Fisher's test, and multiple correlation hypothesis is performed on the basis of the Benjamini-Hochberg (B-H) ap- proach at 1% FDR threshold (Schubert, Föcking, and Cotter 2015).

3. Results

We identified a total of 60,634 peptides that corresponded to 3,283 proteins on the CC prote- ome. 218 peptides (Table 5, see Anexo I), corresponding to 68 proteins, were found to be differ- entially phosphorylated in patients with schizophrenia compared to healthy controls (Table 4).

90

Additionally, 56 proteins were found to be differentially expressed in schizophrenia patients com- pared to controls (Table 5). The canonical pathways identified by IPA have connections among them, as shown in Figure 13, suggesting a link between the differentially expressed and phosphor- ylated proteins of schizophrenia patients.

This corroborates the fact that schizophrenia is a polygenic multifactorial disease; in other words, the phenotype of this disease is the additive effect of multiple genes and environmental factors (Tsuang, Stone, and Aone 2001). This finding may also support the notion of schizophrenia as a spectrum disorder, because interactions between different genes and environmental factors can result in different phenotypes of the disease. Also, as shown in Figure 15 there is a predomi- nance of pathways associated with cell signaling to both differentially expressed and differentially phosphorylated proteins. Few proteomic studies of schizophrenia patients have focused on analyz- ing cell signaling, but many of those that did have found this pathway to be deregulated (Katayama et al. 2009; Daniel Martins-de-Souza, Gattaz, Schmitt, Maccarrone, et al. 2009; Saia-Cereda et al. 2015).

Table 4 - Proteins differentially phosphorylated in the corpus callosum of schizophrenia patients compared to healthy controls; proteins are identified by the peptides shown in Table 6 (AnexoI).

Accession Symbol Peptide count Description Fold p-value Location A0A087WWB6 TAGLN3 14 Transgelin 2.106 0.00703 Extracellular Space A0A087X1F3 PIK3R6 5 Phosphoinositide 3-kinase regulatory subunit 6 0.744 0.04816 Cytoplasm A0A0A0MRZ4 TNIP1 3 TNFAIP3-interacting protein 1 7.096 0.00993 Nucleus A0A0B4J203 FIP1L1 18 Pre-mRNA 3'-end-processing factor FIP1 2.213 0.02060 Nucleus A0A0G2JNM9 CYP2D7 11 Putative cytochrome P450 2D7 3.166 0.00009 Other A0A0G2JP77 ZNF676 7 Zinc finger protein 676 1.792 0.02937 Nucleus A6NHG4 DDTL 7 D-dopachrome decarboxylase-like protein 2.432 0.03322 Cytoplasm B4E2M5 ANKRD66 3 repeat domain-containing protein 66 0.050 0.04390 Other NGFI-A binding protein 1 (EGR1 binding protein B8ZZS2 NAB1 12 0.335 0.02399 Nucleus 1), isoform CRA_b C9J798 RASA4B 4 Ras GTPase-activating protein 4B 3.430 0.00001 Other E9PDR5 IBTK 22 Inhibitor of Bruton tyrosine kinase 1.930 0.04724 Cytoplasm Microtubule-actin cross-linking factor 1, isoforms E9PLY5 MACF1 30 2.542 0.00367 Cytoplasm 1/2/3/5 (Fragment) E9PM69 PSMC3 44 26S protease regulatory subunit 6A 0.392 0.03336 Nucleus F5H7S3 TPM1 42 Tropomyosin alpha-1 chain 3.930 0.02450 Cytoplasm G3V162 TARDBP 6 TAR DNA binding protein, isoform CRA_d 2.142 0.00253 Nucleus G5EA36 CDC27 4 Cell division cycle 27, isoform CRA_c 2.365 0.04010 Nucleus H0Y8C6 IPO5 32 Importin-5 (Fragment) 2.262 0.04502 Nucleus 91

J3KT65 ACTG1 58 Actin, cytoplasmic 2 0.605 0.04985 Cytoplasm K7EK80 ZNF540 4 Zinc finger protein 540 (Fragment) 2.159 0.01171 Cytoplasm O00178 GTPBP1 9 GTP-binding protein 1 5.063 0.01594 Cytoplasm O14737 PDCD5 9 Programmed cell death protein 5 3.097 0.00952 Nucleus NADH dehydrogenase [ubiquinone] iron-sulfur O75489 NDUFS3 16 1.315 0.01132 Cytoplasm protein 3, mitochondrial O94923 GLCE 7 D-glucuronyl C5-epimerase 3.664 0.03134 Cytoplasm O95786 DDX58 20 Probable ATP-dependent RNA helicase DDX58 1.414 0.01984 Cytoplasm P02100 HBE1 14 Hemoglobin subunit epsilon 4.031 0.00023 Cytoplasm P04040 CAT 35 Catalase 1.262 0.01448 Cytoplasm P05413 FABP3 23 Fatty acid-binding protein, heart 1.722 0.01359 Cytoplasm P09110 ACAA1 10 3-ketoacyl-CoA thiolase, peroxisomal 1.571 0.03883 Cytoplasm P11137 MAP2 113 Microtubule-associated protein 2 1.630 0.01003 Plasma Membrane P23458 JAK1 11 Tyrosine- JAK1 2.051 0.00174 Cytoplasm P25705 ATP5A1 109 ATP synthase subunit alpha, mitochondrial 1.353 0.00625 Cytoplasm P41222 PTGDS 12 Prostaglandin-H2 D-isomerase 3.755 0.04437 Cytoplasm P42345 MTOR 79 Serine/threonine-protein kinase mTOR 0.539 0.00252 Nucleus Isocitrate dehydrogenase [NAD] subunit gamma, P51553 IDH3G 15 1.711 0.03744 Cytoplasm mitochondrial P52907 CAPZA1 24 F-actin-capping protein subunit alpha-1 0.756 0.03003 Cytoplasm P56385 ATP5I 4 ATP synthase subunit e, mitochondrial 1.345 0.00836 Cytoplasm P60174 TPI1 94 Triosephosphate isomerase 1.480 0.03236 Cytoplasm Q00610 CLTC 214 Clathrin heavy chain 1 1.335 0.01492 Plasma Membrane Q01995 TAGLN 12 Transgelin 1.739 0.02214 Cytoplasm Q07864 POLE 25 DNA polymerase epsilon catalytic subunit A 1.714 0.03535 Nucleus Q08493 PDE4C 22 cAMP-specific 3',5'-cyclic phosphodiesterase 4C 2.447 0.03959 Cytoplasm Q12905 ILF2 11 Interleukin enhancer-binding factor 2 2.110 0.02230 Nucleus Q13573 SNW1 23 SNW domain-containing protein 1 2.702 0.04484 Nucleus Q13618 CUL3 57 Cullin-3 1.165 0.03882 Nucleus Q14141 SEPT6 45 -6 1.579 0.04853 Cytoplasm Bifunctional ATP-dependent dihydroxyacetone Q3LXA3 TKFC 17 2.798 0.04720 Cytoplasm kinase/FAD-AMP lyase Q4VXN5 EPB41L1 9 Band 4.1-like protein 1 (Fragment) 0.490 0.03207 Plasma Membrane Q5JTV8 TOR1AIP1 16 Torsin-1A-interacting protein 1 0.487 0.01810 Nucleus Q5TA12 DOPEY1 7 Protein dopey-1 4.930 0.03621 Cytoplasm Q5TB80 CEP162 6 Centrosomal protein of 162 kDa 3.091 0.03127 Nucleus Q5VW36 FOCAD 13 Focadhesin 1.299 0.02492 Plasma Membrane Q6KB66 KRT80 27 , type II cytoskeletal 80 1.886 0.02152 Cytoplasm Q6PJI9 WDR59 31 WD repeat-containing protein 59 0.740 0.02817 Other Q6V1X1 DPP8 6 Dipeptidyl peptidase 8 1.875 0.02612 Cytoplasm Q86T82 USP37 20 Ubiquitin carboxyl-terminal hydrolase 37 2.710 0.00052 Nucleus Q8IXQ9 METTL20 12 Protein N-lysine methyltransferase METTL20 7.610 0.01732 Cytoplasm Q8WUQ7 CACTIN 7 Cactin 1.506 0.00075 Nucleus

92

Q92738 USP6NL 4 USP6 N-terminal-like protein 2.716 0.00902 Plasma Membrane Q92805 GOLGA1 14 Golgin subfamily A member 1 0.583 0.01159 Cytoplasm Q96AC1 FERMT2 34 Fermitin family homolog 2 0.760 0.02475 Cytoplasm Q96L91 EP400 27 E1A-binding protein p400 1.914 0.01290 Nucleus Q9HC77 CENPJ 36 Centromere protein J 2.696 0.04539 Nucleus Q9NRN5 OLFML3 5 Olfactomedin-like protein 3 0.101 0.00715 Extracellular Space Q9NSE4 IARS2 22 Isoleucine--tRNA ligase, mitochondrial 1.720 0.01937 Cytoplasm Q9ULE0 WWC3 11 Protein WWC3 1.781 0.00371 Cytoplasm Q9ULU4 ZMYND8 15 Protein kinase C-binding protein 1 1.878 0.03715 Nucleus Q9UNE2 RPH3AL 6 Rab effector Noc2 2.023 0.00923 Plasma Membrane Q9Y376 CAB39 37 Calcium-binding protein 39 1.332 0.00550 Cytoplasm

Table 5 - Proteins differentially expressed in the corpus callosum of schizophrenia patients compared to healthy controls.

Peptide Accession Symbol count Description Fold p-value Location A0A075B740 TMEM249 4 Transmembrane protein 249 (Fragment) 4.60 0.030 Other A0A087WZD7 FBXO8 3 F-box only protein 8 1.63 0.032 Cytoplasm A0A0A0MSB4 OSBP2 4 Oxysterol-binding protein 3.92 0.032 Cytoplasm A0A0G2JPA5 C6orf10 3 Uncharacterized protein C6orf10 7.28 0.027 Nucleus A6NMQ1 POLA1 8 DNA polymerase 2.26 0.027 Nucleus Heterogeneous nuclear ribonucleoprotein L- B7WPG3 HNRNPLL 8 like 7.18 0.034 Other DNA topoisomerase I, mitochondrial E5RIC7 TOP1MT 14 (Fragment) 2.67 0.033 Cytoplasm Bifunctional heparan sulfate N-deacetylase/N- E7EVJ3 NDST1 3 sulfotransferase 1 1.55 0.026 Cytoplasm E9PCW1 GOSR1 4 Golgi SNAP receptor complex member 1 3.41 0.014 Cytoplasm E9PEY4 DTNB 7 Dystrobrevin 8.70 0.044 Plasma Membrane G3V3D1 NPC2 6 Epididymal secretory protein E1 (Fragment) 11.59 0.002 Extracellular Space H0Y8Z4 ANK3 6 Ankyrin-3 (Fragment) 0.60 0.046 Plasma Membrane J3QSX6 ABLIM1 4 Actin-binding LIM protein 1 3.18 0.036 Cytoplasm K7EJJ5 CLTC 22 Clathrin heavy chain 1 (Fragment) 1.89 0.015 Plasma Membrane K7EKW9 FLOT2 4 Flotillin-2 (Fragment) 17.79 0.009 Plasma Membrane O43304 SEC14L5 6 SEC14-like protein 5 0.28 0.030 Other O60284 ST18 6 Suppression of tumorigenicity 18 protein 3.81 0.002 Nucleus Calcium-transporting ATPase type 2C member O75185 ATP2C2 5 2 6.49 0.037 Cytoplasm 26S proteasome non-ATPase regulatory O75832 PSMD10 3 subunit 10 2.33 0.023 Cytoplasm O94874 UFL1 5 E3 UFM1-protein ligase 1 2.15 0.004 Cytoplasm O95571 ETHE1 7 Persulfide dioxygenase ETHE1, mitochondrial 5.43 0.037 Cytoplasm Cytochrome b-c1 complex subunit 6, P07919 UQCRH 5 mitochondrial 2.84 0.026 Cytoplasm 93

P30046 DDT 9 D-dopachrome decarboxylase 2.43 0.033 Cytoplasm P34913 EPHX2 9 Bifunctional epoxide hydrolase 2 1.67 0.000 Cytoplasm P36543 ATP6V1E1 36 V-type proton ATPase subunit E 1 1.13 0.038 Cytoplasm P52735 VAV2 3 Guanine nucleotide exchange factor VAV2 1.50 0.041 Cytoplasm P53602 MVD 7 Diphosphomevalonate decarboxylase 3.92 0.038 Cytoplasm P81274 GPSM2 6 G-protein-signaling modulator 2 2.94 0.007 Nucleus Serine/threonine-protein phosphatase 2A 55 Q00005 PPP2R2B 4 kDa B 2.24 0.006 Cytoplasm Q5RKV6 EXOSC6 3 Exosome complex component MTR3 4.29 0.036 Nucleus Q5SXM1 ZNF678 4 Zinc finger protein 678 3.86 0.009 Nucleus Q5T7N8 FAM27D1 3 Protein FAM27D1 0.55 0.026 Other Q68CR1 SEL1L3 8 Protein sel-1 homolog 3 0.42 0.027 Nucleus Serine/threonine-protein phosphatase 4 Q6IN85 PPP4R3A 4 regulatory subunit 3A 4.10 0.038 Plasma Membrane Q6UXB4 CLEC4G 3 C-type lectin domain family 4 member G 2.08 0.029 Plasma Membrane Ciliogenesis-associated TTC17-interacting Q7Z7H3 CATIP 3 protein 3.39 0.009 Cytoplasm 1328. Q8N0Z3 SPICE1 9 Spindle and -associated protein 1 94 0.036 Cytoplasm Q8N5H7 SH2D3C 2 SH2 domain-containing protein 3C 1.16 0.045 Cytoplasm Q8NHW5 RPLP0P6 11 60S acidic ribosomal protein P0-like 2.88 0.026 Cytoplasm Q92561 PHYHIP 11 Phytanoyl-CoA hydroxylase-interacting protein 6.69 0.020 Other Q96HU1 SGSM3 8 Small G protein signaling modulator 3 19.58 0.005 Plasma Membrane Q96J88 EPSTI1 7 Epithelial-stromal interaction protein 1 1.98 0.025 Other Q9BQE5 APOL2 7 Apolipoprotein L2 2.67 0.005 Cytoplasm Q9BUP0 EFHD1 11 EF-hand domain-containing protein D1 1.88 0.035 Cytoplasm Leucine-rich repeat and coiled-coil domain- Q9C099 LRRCC1 9 containing protein 1 0.70 0.018 Nucleus Q9H069 DRC3 5 Leucine-rich repeat-containing protein 48 2.33 0.026 Cytoplasm Q9H8L6 MMRN2 7 Multimerin-2 0.45 0.026 Extracellular Space Q9H992 MARCH7 5 E3 ubiquitin-protein ligase MARCH7 1.89 0.006 Extracellular Space Guanine nucleotide-binding protein subunit Q9HAV0 GNB4 33 beta-4 1.39 0.005 Plasma Membrane Q9NRU3 CNNM1 6 Metal transporter CNNM1 4.94 0.033 Plasma Membrane CDGSH iron-sulfur domain-containing protein Q9NZ45 CISD1 9 1 1.62 0.008 Cytoplasm Q9UBN4 TRPC4 4 Short transient receptor potential channel 4 10.71 0.031 Plasma Membrane Q9UBW8 COPS7A 3 COP9 signalosome complex subunit 7a 4.78 0.021 Cytoplasm Q9ULF5 SLC39A10 3 Zinc transporter ZIP10 5.64 0.032 Extracellular Space Q9ULM3 YEATS2 8 YEATS domain-containing protein 2 2.69 0.033 Nucleus Brain-specific angiogenesis inhibitor 1- Q9UQB8 BAIAP2 12 associated protein 2 0.45 0.019 Plasma Membrane

94

Analysis

Figure

1

5

-

Networkpathwaysof withcanonical (A) associated differentiallyand differentially (B) proteins expressed phosphop expressed roteinsby Ingenuity Pathway

95

4. Discussion Signals are transmitted between cells by extracellular molecules and then mediated intra- cellularly (Ravandi, Talpaz, and Estrov 2003). These extracellular molecules affect every basic cellular process, including energy metabolism, growth, division, differentiation, motility, orga- nelle trafficking, membrane transport, immunity, learning, and memory (C. Manning, D.B. Whyte, R. Martinez, T. hunter 2002; G et al. 2002; Ubersax and Ferrell 2007). The ability of many cells to transmit signals is either increased or decreased by phosphorylation of their molecules (Ravandi, Talpaz, and Estrov 2003). One of the important functions of cell signaling is synapse formation, which regulates connectivity between neurons during development; aberrant synaptic connectivity can cause abnormal functions in the brain. Recent studies indicate that cell signaling modulates neural plasticity, generating robustness and flexibility, which ensures normal functioning of the central nervous system (Scheiffele 2003).

Role of differentially expressed proteins In our study, canonical pathway ephrin B signaling (Boyd, Bartlett, and Lackmann 2014) was significantly dysregulated, as shown by the analysis of proteins differentially expressed according to IPA (p-value 1.74E-02; see Figure 16). This pathway is implicated in synaptic remodeling during learning and memory and in response to brain injuries (J Du, Fu, and Sretavan 2007; Klein 2009) and plays essential roles in various tissue developments, such as axon guidance (Takeuchi, Katoh, and Negishi 2015).

96

Figure 16 - Ephrin B signaling. The canonical pathway is significantly associated with the differentially expressed proteins.

97

A bioinformatic study showed the connection between miR-137, a microRNA associated with schizophrenia, and molecules with ephrin signaling (Wright et al. 2013). The proteins associated with ephrin signaling found to be differentially expressed in this study were guanine nucleotide binding protein (GNB4) and guanine nucleotide exchange factory (VAV2). These two proteins are also associated with axon guidance, a process that occurs during neurodevelopment in which neurons send out their axons to find their correct target (Tessier-Lavigne and Goodman 1996). Glial cells have an important role in this displacement, because they are responsible for guiding the axons between hemispheres, forming the CC (Chédotal and Richards 2010). This brain region has been found recently to be altered in many neuroimaging studies in patients with schizophrenia (Patel et al. 2015; del Re et al. 2015; Rigucci et al. 2015), which may be an indication of its importance in the disease. The ephrin B signaling pathway was also related to migration of oligodendrocyte precursor cells (OPC), both in cell-cell interaction as cell environment. For this migration occurs properly there must be interaction between axonal EphB receptors with the OPCs in order to enable these migratory processes (PRESTOZ et al. 2004). This pathway plays an important role in neuron-glia communication in the contact- dependent synapse, especially in connection with astrocytes (Zhuang et al. 2011). This neuron- astrocyte interaction, mediated by Eph receptors and ephrin in synapses, has direct consequences on synaptic plasticity (Murai and Pasquale 2011). Good functioning of this interaction is important for cognitive functions, such as learning and memory (Citri and Malenka 2008), which are known to be altered in patients with schizophrenia (Weickert et al. 2000). Role of differentially phosphorylated proteins In our study, the analysis of related, differentially phosphorylated proteins showed that they are connected to canonical pathway ciliary neurotrophic factor (CNTF) signaling, p value 6.80E- 04, as shown in Figure 17. This pathway group of molecules consists mainly of cytokines, which participate in cell-signaling chemistry and act as communicators. They have important roles in the survival, proliferation, differentiation, activation, and death of different cell types, including neurons and glia (Vergara and Ramirez 2004). CNTF plays a role in the survival and maturation of oligodendrocytes and helps them in myelin synthesis (Barres et al. 1993; Louis et al. 1993). The increase of protein/RNA CNTF in astrocytes is related to mouse myelin recovery (Albrecht et al.

98

2003), and protein/RNA CNTF have been found to be deregulated in several studies of patients with schizophrenia (Martins-de-Souza et al. 2010; Tkachev et al. 2003, Cassoli et al., 2015).

Figure 17 - Ciliary neurotrophic factor (CNTF) signaling. The canonical pathway is significantly associated with the differentially expressed phosphoproteins. (SCZ: Schizophrenia patients) 99

One of the differentially phosphorylated proteins related to the CNTF signaling pathway is phosphoinositide-3-kinase (PI3K). This protein is involved in fundamental processes such as cell growth, proliferation, differentiation, motility, intracellular trafficking, and survival (Engelman, Luo, and Cantley 2006; García et al. 2006). A recent study indicated a relationship between the gene that encodes PI3K and a risk of schizophrenia (Kordi-Tamandani and Mir 2015). This protein has been associated also with the protective effect that astrocytes promote in oligoden- drocytes subjected to starvation and oxidative stress (Arai and Lo 2010).

Another dysregulated, differentially phosphorylated protein associated with this pathway is the mammalian target of rapamycin (mTOR), a kinase that belongs to a family related to PI3K (Lisi et al. 2011). mTOR plays a role in regulating protein synthesis, mainly by direct and indirect phosphorylation (Hay and Sonenberg 2004), and is a key regulator of intracellular processes in glia cells (Lisi et al. 2011). It is known for acting on astrocytes involved in the maintainability of homeostasis on the nervous system and nerve function (Latacz et al. 2015).

Similar to ephrin B signaling, the phosphorylated proteins PI3K and mTOR are related to synaptic plasticity (Banko 2006; Gururajan and van den Buuse 2014; Hale et al. 2011; Hou 2004). The CC is not expected to present as many synapses as cortical regions, because it consists mainly of axons and glia cells (Fitsiori et al. 2011). The dysregulation of this pathway or these proteins in astrocytes might be systemic to other brain regions; however, because astrocytes do not play such a prominent role in cell formation in other regions, these dysregulated proteins might not be easily found there. This hypothesis opens the way for further studies to confirm the role of astrocytes in patients with schizophrenia, for instance by using stem cell technology.

5. Conclusion

These results indicate the importance of the CC, the brain’s largest white matter structure, in schizophrenia. Recent neuroimaging, histological, and genetic studies have shown alterations in the CC (Bohlken et al. 2015; Hazlett et al. 2008; S. Lee et al. 2016). Here, we show a relationship between this brain region and pathways related mainly to signaling and cellular communication.

100

Our data support also the important role of glial cells, especially astrocytes, in schizophrenia, which indicates one more approach to understanding the neuropathology of this disease.

101

7. References Aebersold, Ruedi, and Matthias Mann. 2003. “Mass Spectrometry-Based Proteomics.” Nature 422(6928): 198–207. http://www.ncbi.nlm.nih.gov/pubmed/12634793. Akarsu, Süleyman et al. 2015. “Mitochondrial Complex I and III mRNA Levels in Bipolar Disorder.” Journal of affective disorders 184: 160–63. http://www.ncbi.nlm.nih.gov/pubmed/26093828. American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). Aparicio, S, and C.J Eaves. 2009. “p53: A New Kingpin in the Stem Cell Arena.” Cell 138: 1060–62. Arai, Ken, and Eng H Lo. 2010. “Astrocytes Protect Oligodendrocyte Precursor Cells via MEK/ERK and PI3K/Akt Signaling.” Journal of neuroscience research 88(4): 758–63. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3705578&tool=pmcentrez&rendertype=abstract. Araque, A, R P Sanzgiri, V Parpura, and P G Haydon. 1999. “Astrocyte-Induced Modulation of Synaptic Transmission.” Canadian journal of physiology and pharmacology 77(9): 7. http://www.ncbi.nlm.nih.gov/pubmed/10566947. Baldelli, Pietro, and Jacopo Meldolesi. 2015. “The Transcription Repressor REST in Adult Neurons: Physiology, Pathology, and Diseases(1,2,3).” eNeuro 2(4). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4596026&tool=pmcentrez&rendertype=abstract. Banko, J. L. 2006. “Regulation of Eukaryotic Initiation Factor 4E by Converging Signaling Pathways during Metabotropic Glutamate Receptor-Dependent Long-Term Depression.” Journal of Neuroscience 26(8): 2167–73. http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5196-05.2006. Beasley, Clare L. et al. 2006. “Proteomic Analysis of the Anterior Cingulate Cortex in the Major Psychiatric Disorders: Evidence for Disease-Associated Changes.” Proteomics 6(11): 3414–25. Bell, R et al. 2000. “Systematic Screening of the 14-3-3 Eta (Eta) Chain Gene for Polymorphic Variants and Case-Control Analysis in Schizophrenia.” American journal of medical genetics 96(March): 736–43. Belmaker, R H, and Galila Agam. 2008. “Major Depressive Disorder.” The New England journal of medicine 358(1): 55–68. Berg, Daniela, Carsten Holzmann, and Olaf Riess. 2003. “14-3-3 Proteins in the Nervous System.” Nature reviews. Neuroscience 4(September): 752–62. Berrettini, Wade H. 2000. “Are Schizophrenic and Bipolar Disorders Related ? A Review of Family and Molecular Studies.” Biewenga, J E, L H Schrama, and W H Gispen. 1996. “Presynaptic Phosphoprotein B-50/GAP-43 in Neuronal and Synaptic Plasticity.” Acta Biochim Pol 43(2): 327–38. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8862178. Bleuler, E. 1908. “The Prognosis of Dementia Praecox: The Group of Schizophrenias.” Algemeine Zeitschrift fur Psychiatrie 65: 436–64. Bohlken, Marc M. et al. 2015. “Structural Brain Connectivity as a Genetic Marker for Schizophrenia.” JAMA Psychiatry: 1. http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2015.1925. Boyd, Andrew W, Perry F Bartlett, and Martin Lackmann. 2014. “Therapeutic Targeting of EPH Receptors and Their Ligands.” Nature reviews. Drug discovery 13(1): 39–62. http://www.ncbi.nlm.nih.gov/pubmed/24378802. Bremang, Michael et al. 2013. “Mass Spectrometry-Based Identification and Characterisation of Lysine and Arginine Methylation in the Human Proteome.” Molecular BioSystems 9(9): 2231. http://xlink.rsc.org/?DOI=c3mb00009e. Butterfield, Lisa H, Douglas M Potter, and John M Kirkwood. 2011. “Multiplex Serum Biomarker Assessments : Technical and Biostatistical Issues.” Journal of Translational Medicine 9(1): 173. http://www.translational- medicine.com/content/9/1/173. C. Manning, D.B. Whyte, R. Martinez, T. hunter, S. Sudarsanam. 2002. “The Protein Kinase Complement of the : EBSCOhost.” Sciencemag.Org 1912(2002): 1912–34. Calvano, Steve E et al. 2005. “A Network-Based Analysis of Systemic Inflammation in Humans.” Nature 437(October): 1032– 37. Cassoli, Juliana Silva et al. 2015. “Disturbed Macro-Connectivity in Schizophrenia Linked to Oligodendrocyte Dysfunction: From Structural Findings to Molecules.” npj Schizophrenia 1(August): 15034. http://www.nature.com/articles/npjschz201534. Chauvin, Stéphanie, and André Sobel. 2014. “Neuronal Stathmins: A Family of Phosphoproteins Cooperating for Neuronal Development, Plasticity and Regeneration.” Progress in neurobiology 126: 1–18. http://www.ncbi.nlm.nih.gov/pubmed/25449700. Che, Meixia, Ren Wang, Hui-yun Wang, and X F Steven Zheng. 2015. “Expanding Roles of Superoxide Dismutases in Cell Regulation and Cancer.” 00(00): 1–7. Cheah, P-S et al. 2012. “Neurodevelopmental and Neuropsychiatric Behaviour Defects Arise from 14-3-3ζ Deficiency.” Molecular Psychiatry 17(4): 451–66. http://www.nature.com/doifinder/10.1038/mp.2011.158. Chédotal, Alain, and Linda J. Richards. 2010. “Wiring the Brain: The Biology of Neuronal Guidance.” Cold Spring Harbor perspectives in biology 2(6): 1–17. Chelius, D, and P.V Bondarenko. 2002. “Quantitative Profiling of Proteins in Complex Mixtures Using Liquid Chromatography and Mass Spectrometry.” J Proteome Res 1(4): 317–23. Chou, I-han, and Tanguy Chouard. 2008. “Neuropsychiatric Disease.” Nature 455(7215): 889. Citri, Ami, and Robert C Malenka. 2008. “Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms.” 102

Neuropsychopharmacology 33(1): 18–41. http://www.nature.com/doifinder/10.1038/sj.npp.1301559. Clark, D, I Dedova, S Cordwell, and I Matsumoto. 2006. “A Proteome Analysis of the Anterior Cingulate Cortex Gray Matter in Schizophrenia.” Molecular psychiatry 11(5): 459–70, 423. Conde, Cecilia, and Alfredo Cáceres. 2009. “Microtubule Assembly, Organization and Dynamics in Axons and Dendrites.” Nature reviews. Neuroscience 10(5): 319–32. Coughlin, J M et al. 2013. “Marked Reduction of Soluble Superoxide Dismutase-1 (SOD1) in Cerebrospinal Fluid of Patients with Recent-Onset Schizophrenia.” Molecular psychiatry 18(1): 10–11. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4113962&tool=pmcentrez&rendertype=abstract. Coyle, Joseph T, and Robert Schwarcz. 2013. “Mind Glue.” Arch Gen Psychiatry 57: 90–93. Craddock, N. 2005. “Genes for Schizophrenia and Bipolar Disorder? Implications for Psychiatric Nosology.” Schizophrenia Bulletin 32(1): 9–16. http://schizophreniabulletin.oxfordjournals.org/cgi/doi/10.1093/schbul/sbj033. Cramer, Rainer. 2009. 531 Methods Mol Biol Difference Gel Electrophoresis (DIGE). http://books.google.com/books?id=Ku2wPAAACAAJ. Curley, Allison a, and David a Lewis. 2012. “Cortical Basket Cell Dysfunction in Schizophrenia.” The Journal of physiology 590: 715–24. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3381305&tool=pmcentrez&rendertype=abstract. Deka, Hemchandra, Rajeev Sarmah, Ankita Sharma, and Sagarika Biswas. 2015. “Modelling and Characterization of Glial Fibrillary Acidic Protein.” 11(8). Dieset, Ingrid et al. 2012. “Cardiovascular Risk Factors during Second Generation Antipsychotic Treatment Are Associated with Increased C-Reactive Protein.” Schizophrenia Research 140(1-3): 169–74. http://dx.doi.org/10.1016/j.schres.2012.06.040. Djoba Siawaya, Joel Fleury et al. 2008. “An Evaluation of Commercial Fluorescent Bead-Based Luminex Cytokine Assays.” PLoS ONE 3(7): 1–12. Domon, Bruno, and Sebastien Gallien. 2015. “Recent Advances in Targeted Proteomics for Clinical Applications.” (i): 423–31. Du, J, C Fu, and D W Sretavan. 2007. “Eph/ephrin Signaling as a Potential Therapeutic Target after Central Nervous System Injury.” Current pharmaceutical design 13(24): 2507–18. http://www.ncbi.nlm.nih.gov/pubmed/17692019. Du, Jing, Rodrigo Machado-Vieira, and Rushaniya Khairova. 2011. “Synaptic Plasticity in the Pathophysiology and Treatment of Bipolar Disorder.” Current Topics in Behavioral Neurosciences (November 2010): 167–85. http://link.springer.com/chapter/10.1007/7854_2011_176. Eisch, Amelia J et al. 2009. “Adult Neurogenesis, Mental Health, and Mental Illness: Hope or Hype?” J Neurosci 28(46): 11785– 91. Ellington, Allison a, Iftikhar J Kullo, Kent R Bailey, and George G Klee. 2010. “Antibody-Based Protein Multiplex Platforms: Technical and Operational Challenges.” 56(2): 186–93. Engelman, Jeffrey a, Ji Luo, and Lewis C Cantley. 2006. “The Evolution of Phosphatidylinositol 3-Kinases as Regulators of Growth and Metabolism.” Nature reviews. Genetics 7(8): 606–19. English, Jane a. et al. 2009. “2-D DIGE Analysis Implicates Cytoskeletal Abnormalities in Psychiatric Disease.” Proteomics 9(12): 3368–82. Filiou, Michaela D., Christoph W. Turck, and Daniel Martins-De-Souza. 2011. “Quantitative Proteomics for Investigating Psychiatric Disorders.” Proteomics - Clinical Applications 5(1-2): 38–49. Fitsiori, a. et al. 2011. “The Corpus Callosum: White Matter or Terra Incognita.” British Journal of Radiology 84(997): 5–18. Föcking, M et al. 2014. “Proteomic and Genomic Evidence Implicates the Postsynaptic Density in Schizophrenia.” Molecular psychiatry (April): 1–9. http://www.ncbi.nlm.nih.gov/pubmed/25048004. Föcking, Melanie et al. 2011. “Common Proteomic Changes in the Hippocampus in Schizophrenia and Bipolar Disorder and Particular Evidence for Involvement of Cornu Ammonis Regions 2 and 3.” Archives of general psychiatry 68(5): 477–88. Foote, Molly et al. 2015. “Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice.” Biological Psychiatry 78(6): 386–95. http://linkinghub.elsevier.com/retrieve/pii/S0006322315001250. Foote, Molly, and Yi Zhou. 2012. “14-3-3 Proteins in Neurological Disorders.” International Journal of Biochemistry and Molecular Biology 3(2): 152–64. Fornito, Alex, and Ben J. Harrison. 2012. “Brain Connectivity and Mental Illness.” Frontiers in Psychiatry 3(July): 1–2. Frankle, W. Gordon, Juan Lerma, and Marc Laruelle. 2003. “The Synaptic Hypothesis of Schizophrenia.” Neuron 39(2): 205–16. Freedman, Robert. 2003. “Schizophrenia.” new england journal of medicine 349(18): 1738–49. G, Manning, Plowman Gd, Hunter T, and Sudarsanam S. 2002. “Evolution of Protein Kinase Signaling from Yeast to Man.” Trends in Biochemical Sciences 27(10): 514–20. http://www.wormbase.org/db/misc/paper?name=WBPaper00005510. Gafken, Philip R., and Paul D. Lampe. 2006. “Methodologies for Characterizing Phosphoproteins by Mass Spectrometry.” Cell Communication & Adhesion 13(5-6): 249–62. http://www.tandfonline.com/doi/full/10.1080/15419060601077917. García, Zaira et al. 2006. “Phosphoinositide 3-Kinase Controls Early and Late Events in Mammalian Cell Division.” The EMBO journal 25(4): 655–61. Gejman, P.V., A.R. Sanders, and D. Duan. 2010. “The Role of Genetics in the Etiology of Schizophrenia.” Psychiatr Clin North Am 33(1): 35–66. Gigante, a.D. et al. 2011. “Decreased mRNA Expression of Uncoupling Protein 2, a Mitochondrial Proton Transporter, in Post- Mortem Prefrontal Cortex from Patients with Bipolar Disorder and Schizophrenia.” Neuroscience Letters 505(1): 47–51. http://www.ncbi.nlm.nih.gov/pubmed/22001364. Gillies, D, P Buykx, Parker Ag, and Hetrick Se. 2015. “Consultation Liaison in Primary Care for People with Mental Disorders.” 103

The Cochrane Library (9): 1–28. Gottschalk, Michael G, Hendrik Wesseling, Paul C Guest, and Sabine Bahn. 2015. “Proteomic Enrichment Analysis of Psychotic and Affective Disorders Reveals Common Signatures in Presynaptic Glutamatergic Signaling and Energy Metabolism.” : 1–11. Graves, J D, and E G Krebs. 1960. “Protein Phosphorylation and .” Pharmacology & therapeutics 82(2-3): 111–21. http://www.ncbi.nlm.nih.gov/pubmed/10454190. Guo, H, JM Christoff, VE Campos, and Y Li. 2000. “Normal Corpus Callosum in Emx1 Mutant Mice with C57BL/6 Background. Biochemical and Biophysical Research Communications.” Biochemical and biophysical research communications 276(2): 649–53. Gururajan, Anand, and Maarten van den Buuse. 2014. “Is the mTOR-Signalling Cascade Disrupted in Schizophrenia?” Journal of Neurochemistry 129(3): 377–87. http://doi.wiley.com/10.1111/jnc.12622. Gygi, S P et al. 1999. “Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags.” Nature biotechnology 17(10): 994–99. Hale, Carly F et al. 2011. “Essential Role for Vav Guanine Nucleotide Exchange Factors in Brain-Derived Neurotrophic Factor- Induced Dendritic Spine Growth and Synapse Plasticity.” The Journal of neuroscience : the official journal of the Society for Neuroscience 31(35): 12426–36. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3183742&tool=pmcentrez&rendertype=abstract. Hay, Nissim, and Nahum Sonenberg. 2004. “Upstream and Downstream of mTOR.” : 1926–45. Hazlett, Erin a. et al. 2008. “Cortical Gray and White Matter Volume in Unmedicated Schizotypal and Schizophrenia Patients.” Schizophrenia Research 101(1-3): 111–23. Van Heeringen, C., and A. Marušič. 2003. “Understanding the Suicidal Brain.” British Journal of Psychiatry 183(OCT.): 282–84. Hegarty, J. D., R. J. Baldessarini, and G. Oepen. 1994. “One Hundred Years of Schizophrenia.” The American Journal of Psychiatry 151(October): 1409–16. Ho, C S et al. 2003. “Electrospray Ionisation Mass Spectrometry: Principles and Clinical Applications.” The Clinical biochemist 24(1): 3–12. Hor, Kahyee, and Mark Taylor. 2010. “Suicide and Schizophrenia: A Systematic Review of Rates and Risk Factors.” Journal of psychopharmacology (Oxford, England) 24(4 Suppl): 81–90. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2951591&tool=pmcentrez&rendertype=abstract. Hou, L. 2004. “Activation of the Phosphoinositide 3-Kinase-Akt-Mammalian Target of Rapamycin Signaling Pathway Is Required for Metabotropic Glutamate Receptor-Dependent Long-Term Depression.” Journal of Neuroscience 24(28): 6352–61. http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0995-04.2004. Hunter, Tony. 2000. “Signaling--2000 and Beyond.” Cell 100(1): 113–27. http://www.sciencedirect.com/science/article/pii/S0092867400816888. Inagaki, N et al. 2001. “CRMP-2 Induces Axons in Cultured Hippocampal Neurons.” Nature neuroscience 4(8): 781–82. Innocenti, G M, F Ansermet, and J Parnas. 2003. “Schizophrenia, Neurodevelopment and Corpus Callosum.” Molecular psychiatry 8(3): 261–74. Jaaro-Peled, Hanna, Yavuz Ayhan, Mikhail V. Pletnikov, and Akira Sawa. 2010. “Review of Pathological Hallmarks of Schizophrenia: Comparison of Genetic Models with Patients and Nongenetic Models.” Schizophrenia Bulletin 36(2): 301– 13. Jaros, Julian a J et al. 2012. “Protein Phosphorylation Patterns in Serum from Schizophrenia Patients and Healthy Controls.” Journal of Proteomics 76: 43–55. http://dx.doi.org/10.1016/j.jprot.2012.05.027. Javitt, C. D., and R. S. Zukin. 1991. “Recent Advances in the Phencyclidine Model of Schozophrenia.” Am J Psychiatry 148(October): 1301–8. Johnston-Wilson, N L et al. 2000. “Disease-Specific Alterations in Frontal Cortex Brain Proteins in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. The Stanley Neuropathology Consortium.” Molecular psychiatry 5(2): 142–49. Katayama, Taiichi et al. 2009. “Role of the PACAP-PAC1-DISC1 and PACAP-PAC1-stathmin1 Systems in Schizophrenia and Bipolar Disorder: Novel Treatment Mechanisms?” Pharmacogenomics 10(12): 1967–78. http://www.ncbi.nlm.nih.gov/pubmed/19958095. Keller, T.A. 2010. “Diagnostic Features, Prevalence, and Impact of Bipolar Disorder.” J Clin Psychiatry 71(6). Kessler, R C et al. 1997. “Social Consequences of Psychiatric Disorders .2. Teenage Parenthood.” American Journal of Psychiatry 154(10): 1405–11. ://A1997XY99700012. Kessler, Rc, and Wt Chiu. 2005. “Prevalence, Severity, and Comorbidity of Twelve-Month DSM-IV Disorders in the National Comorbidity Survey Replication (NCS- R).” Archives of general … 62(6): 617–27. http://archpsyc.ama- assn.org/cgi/reprint/62/6/617.pdf. Kessler, RC, CL Foster, WB Saunders, and PE Stang. 1995. “Social Consequences of Psychiatric Disorders, I: Educational Attainment.” The American journal of psychiatry 152(7): 1026–32. Kessler, Ronald C et al. 2011. “The Global Burden of Mental Disorders: An Update from the WHO World Mental Health (WMH) Surveys.” Epidemiologia e psichiatria sociale 18(1): 23–33. Kessler, Ronald C et al. 2012. “Twelve-Month and Lifetime Prevalence and Lifetime Morbid Risk of Anxiety and Mood Disorders in the United States.” International journal of methods in psychiatric research 21(3): 169–84. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4005415&tool=pmcentrez&rendertype=abstract. 104

Kessler, Ronald C., Ellen E. Walters, and Melinda S. Forthofer. 1998. “The Social Consequences of Psychiatric Disorders, III: Probability of Marital Stability.” American Journal of Psychiatry 155(8): 1092–96. Khan, Sameena S et al. 2004. “Multiplex Bead Array Assays for Detection of Soluble Cytokines : Comparisons of Sensitivity and Quantitative Values Among Kits From Multiple Manufacturers.” 39(August): 35–39. Kim, Dokyoon. 2015. “Methods of Integrating Data to Uncover Genotype – Phenotype Interactions.” Nature Publishing Group (January). http://dx.doi.org/10.1038/nrg3868. Kislinger, T., and A Emili. 2003. “Going Global: Protein Expression Profiling Using Shotgun Mass Spectrometry.” Current opinion in molecular therapeutics 5(3): 285–93. Klein, Rüdiger. 2009. “Bidirectional Modulation of Synaptic Functions by Eph/ephrin Signaling.” Nature Neuroscience 12(1): 15–20. http://www.nature.com/doifinder/10.1038/nn.2231. Klose, J, and U Kobalz. 1995. “Two-Dimensional Electrophoresis of Proteins: An Updated Protocol and Implications for a Functional Analysis of the Genome.” Eletrophoresis 16(6): 1034–59. Koide, Takayoshi et al. 2010. “SHORT COMMUNICATION A Two-Stage Case – Control Association Study of with Schizophrenia in Japanese Subjects.” Journal of Human Genetics 55(7): 469–72. http://dx.doi.org/10.1038/jhg.2010.38. Konradi, Christine et al. 2004. “Molecular Evidence for Mitochondrial Dysfunction in Bipolar Disorder.” Archives of general psychiatry 61(3): 300–308. Kordi-Tamandani, Dor Mohammad, and Atefeh Mir. 2015. “Relationship between Phosphoinositide-3-Kinase Genetic Polymorphism and Schizophrenia.” Nordic Journal of Psychiatry 9488(December): 1–4. http://www.tandfonline.com/doi/full/10.3109/08039488.2015.1092171. Krishnan, Vaishnav, and Eric J Nestler. 2009. “The Molecular Neurobiology of Depression.” 455(7215): 894–902. Kupfer, David J, Ellen Frank, and Mary L Phillips. 2012. “Major Depressive Disorder: New Clinical, Neurobiological, and Treatment Perspectives.” Lancet 379(9820): 1045–55. Kurien, Biji T., and R. Hal Scofield. 2015. 1312 Western Blotting Methods and Protocols. Springer Protocols. http://link.springer.com/10.1007/978-1-4939-2694-7. Lange, Vinzenz, Paola Picotti, Bruno Domon, and Ruedi Aebersold. 2008. “Selected Reaction Monitoring for Quantitative Proteomics: A Tutorial.” Molecular systems biology 4(222): 222. Latacz, Anna L et al. 2015. “Review mTOR Pathway – Novel Modulator of Astrocyte Activity.” 63(2): 63–67. Latosinska, Agnieszka et al. 2015. “Comparative Analysis of Label-Free and 8-Plex iTRAQ Approach for Quantitative Tissue Proteomic Analysis.” Plos One 10(9): e0137048. http://dx.plos.org/10.1371/journal.pone.0137048. Lee, S Hong. 2013. “Genetic Relationship between Five Psychiatric Disorders Estimated from Genome-Wide SNPs.” NATURE GENETICS 45(9). Lee, Sung-jae et al. 2016. “Psychiatry Research : Neuroimaging White Matter Alterations Associated with Suicide in Patients with Schizophrenia or Schizophreniform Disorder.” Psychiatry Research: Neuroimaging: 1–7. http://dx.doi.org/10.1016/j.pscychresns.2016.01.011. Levin, Y, and Sabine Bahn. 2010. “Quantification of Proteins by Label-Free LC-MS/MS.” Methods Mol Biol 658: 217–31. Li, Guo-Zhong et al. 2009. “Database Searching and Accounting of Multiplexed Precursor and Product Ion Spectra from the Data Independent Analysis of Simple and Complex Peptide Mixtures.” Proteomics 9(6): 1696–1719. Lieberman, J.A., T.S Stroup, J.P. McEvoy, and M.S. Swartz. 2005. “Effectiveness of Antipsychotic Drugs in Patients with Chronic Schizophrenia.” 353(12): 1209–23. Link, a J et al. 1999. “Direct Analysis of Protein Complexes Using Mass Spectrometry.” Nature biotechnology 17(7): 676–82. Lisi, Lucia, Pierluigi Navarra, Douglas L Feinstein, and Cinzia Dello Russo. 2011. “The mTOR Kinase Inhibitor Rapamycin Decreases iNOS mRNA Stability in Astrocytes.” Journal of neuroinflammation 8(1): 1. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3025854&tool=pmcentrez&rendertype=abstract. Lisitsyn, N A et al. 2014. “Methods of Protein Immunoanalysis.” Molecular Biology 48(5): 624–33. http://link.springer.com/10.1134/S0026893314050094. Liu, Huijuan et al. 2013. “p53 Regulates Neural Stem Cell Proliferation and Differentiation via BMP-Smad1 Signaling and Id1.” Stem cells and development 22(6): 913–27. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3585476&tool=pmcentrez&rendertype=abstract. Lu, Peng et al. 2007. “Absolute Protein Expression Profiling Estimates the Relative Contributions of Transcriptional and Translational Regulation.” Nature Biotechnology 25(1): 117–24. http://www.nature.com/doifinder/10.1038/nbt1270. Lynch, Heather E, Ana M Sancheza, and M. Patricia D’Souza. 2015. “Development and Implementation of a Proficiency Testing Program for Luminex Bead-Based Cytokine Assays.” J Immunol Methods.: 62–71. MacLean, B. et al. 2010. “Skyline: An Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments.” Bioinformatics 26(7): 966–68. http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btq054. Magistretti, P J, and L Pellerin. 1999. “Cellular Mechanisms of Brain Energy Metabolism and Their Relevance to Functional Brain Imaging.” Philos Trans R Soc Lond B Biol Sci 354(1387): 1155–63. http://dx.doi.org/10.1098/rstb.1999.0471. Maj, M. 2003. “The Effect of Lithium in Bipolar Disorder: A Review of Recent Research Evidence.” Bipolar Disorders 5(3): 180–88. Mallick, Parag et al. 2007. “Computational Prediction of Proteotypic Peptides for Quantitative Proteomics.” Nature Biotechnology 25(1): 125–31. http://www.nature.com/doifinder/10.1038/nbt1275. 105

Marmol, Frederic. 2008. “Lithium: Bipolar Disorder and Neurodegenerative Diseases Possible Cellular Mechanisms of the Therapeutic Effects of Lithium.” Progress in Neuro-Psychopharmacology and Biological Psychiatry 32(8): 1761–71. http://dx.doi.org/10.1016/j.pnpbp.2008.08.012. Martins-de-Souza, D et al. 2012. “Identification of Proteomic Signatures Associated with Depression and Psychotic Depression in Post-Mortem Brains from Major Depression Patients.” Translational Psychiatry 2(3): e87. http://dx.doi.org/10.1038/tp.2012.13. Martins-De-Souza, Daniel, Wagner F. Gattaz, Andrea Schmitt, Christiane Rewerts, Sérgio Marangoni, et al. 2009. “Alterations in Oligodendrocyte Proteins, Calcium Homeostasis and New Potential Markers in Schizophrenia Anterior Temporal Lobe Are Revealed by Shotgun Proteome Analysis.” Journal of Neural Transmission 116: 275–89. Martins-De-Souza, Daniel, Wagner F. Gattaz, Andrea Schmitt, Christiane Rewerts, Giuseppina Maccarrone, et al. 2009. “Prefrontal Cortex Shotgun Proteome Analysis Reveals Altered Calcium Homeostasis and Immune System Imbalance in Schizophrenia.” European Archives of Psychiatry and Clinical Neuroscience 259: 151–63. Martins-de-Souza, Daniel, Wagner F Gattaz, Andrea Schmitt, José C Novello, et al. 2009. “Proteome Analysis of Schizophrenia Patients Wernicke’s Area Reveals an Energy Metabolism Dysregulation.” BMC psychiatry 9: 17. Martins-de-Souza, Daniel, Wagner F. Gattaz, Andrea Schmitt, Giuseppina Maccarrone, et al. 2009. “Proteomic Analysis of Dorsolateral Prefrontal Cortex Indicates the Involvement of Cytoskeleton, Oligodendrocyte, Energy Metabolism and New Potential Markers in Schizophrenia.” Journal of Psychiatric Research 43(11): 978–86. http://dx.doi.org/10.1016/j.jpsychires.2008.11.006. Martins-de-Souza, Daniel, Giuseppina Maccarrone, et al. 2010. “Proteome Analysis of the Thalamus and Cerebrospinal Fluid Reveals Glycolysis Dysfunction and Potential Biomarkers Candidates for Schizophrenia.” Journal of Psychiatric Research 44(16): 1176–89. http://dx.doi.org/10.1016/j.jpsychires.2010.04.014. Martins-de-Souza, Daniel, Andrea Schmitt, et al. 2010. “Sex-Specific Proteome Differences in the Anterior Cingulate Cortex of Schizophrenia.” Journal of Psychiatric Research 44(14): 989–91. http://dx.doi.org/10.1016/j.jpsychires.2010.03.003. Martins-de-Souza, Daniel, Paul C. Guest, Natacha Vanattou-Saifoudine, Laura W. Harris, et al. 2011. 101 International Review of Neurobiology Proteomic Technologies for Biomarker Studies in Psychiatry: Advances and Needs. Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-387718-5.00004-3. Martins-de-Souza, Daniel, Paul C. Guest, Natacha Vanattou-Saifoudine, Hendrik Wesseling, et al. 2011. “The Need for Phosphoproteomic Approaches in Psychiatric Research.” Journal of Psychiatric Research 45: 1404–6. Martins-de-Souza, Daniel et al. 2012. “Phosphoproteomic Differences in Major Depressive Disorder Postmortem Brains Indicate Effects on Synaptic Function.” European archives of psychiatry and clinical neuroscience 262(8): 657–66. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3491199&tool=pmcentrez&rendertype=abstract. Martins-de-Souza, Daniel. 2014. “Proteomics, Metabolomics, and Protein Interactomics in the Characterization of the Molecular Features of Major Depressive Disorder.” Dialogues in clinical neuroscience 16(1): 63–73. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3984892&tool=pmcentrez&rendertype=abstract. Martins-de-souza, Daniel, Juliana S Cassoli, and Juliana M Nascimento. 2015. “The Protein Interactome of Collapsing Response Mediator Protein-2 ( CRMP2 / DPYSL2 ) Reveals Novel Partner Proteins in Brain Tissue Clinical Relevance :” 2: 1–25. Maynard, T M, L Sikich, J a Lieberman, and a S LaMantia. 2001. “Neural Development, Cell-Cell Signaling, and The ‘two-Hit’ hypothesis of Schizophrenia.” Schizophrenia bulletin 27(3): 457–76. Megger, Dominik a., Thilo Bracht, Helmut E. Meyer, and Barbara Sitek. 2013. “Label-Free Quantification in Clinical Proteomics.” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1834(8): 1581–90. http://linkinghub.elsevier.com/retrieve/pii/S1570963913001556. Meltzer, H Y, and S M Stahl. 1976. “The Dopamine Hypothesis of Schizophrenia: A Review.” Schizophrenia bulletin 2(1): 19– 76. Middeldorp, J., and E.M. Hol. 2011. “GFAP in Health and Disease.” Progress in Neurobiology 93(3): 421–43. http://linkinghub.elsevier.com/retrieve/pii/S0301008211000062. Möller, Hans Jürgen. 2003. “Bipolar Disorder and Schizophrenia: Distinct Illnesses or a Continuum?” Journal of Clinical Psychiatry 64(SUPPL. 6): 23–27. Morandell, Sandra et al. 2006. “Phosphoproteomics Strategies for the Functional Analysis of Signal Transduction.” Proteomics 6: 4047–56. Moslemi, Ali-Reza, and Niklas Darin. 2007. “Molecular Genetic and Clinical Aspects of Mitochondrial Disorders in Childhood.” Mitochondrion 7(4): 241–52. Murai, Keith K., and Elena B. Pasquale. 2011. “Eph Receptors and Ephrins in Neuron-Astrocyte Communication at Synapses.” Glia 59(11): 1567–78. http://doi.wiley.com/10.1002/glia.21226. Nechansky, Andreas, Susanne Grunt, Ivan M Roitt, and Ralf Kircheis. 2008. “Comparison of the Calibration Standards of Three Commercially Available Multiplex Kits for Human Cytokine Measurement to WHO Standards Reveals Striking Differences.” 43(0): 227–35. Nock, M K, I Hwang, N A Sampson, and R C Kessler. 2010. “Mental Disorders, Comorbidity and Suicidal Behavior: Results from the National Comorbidity Survey Replication.” Molecular Psychiatry 15(8): 868–76. http://www.nature.com/doifinder/10.1038/mp.2009.29. O’Dushlaine, Colm et al. 2015. “Psychiatric Genome-Wide Association Study Analyses Implicate Neuronal, Immune and Histone Pathways.” Nature Neuroscience 18(2): 199–209. 106

http://www.nature.com/doifinder/10.1038/nn.3922\nhttp://www.ncbi.nlm.nih.gov/pubmed/25599223\nhttp://www.pubmed central.nih.gov/articlerender.fcgi?artid=PMC4378867\nhttp://www.ncbi.nlm.nih.gov/pubmed/25599223\nhttp://www.pub medcentral.nih.gov/articlerender. O’Farrell, P H. 1975. “High Resolution Two-Dimensional Electrophoresis of Proteins.” The Journal of biological chemistry 250(10): 4007–21. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2874754&tool=pmcentrez&rendertype=abstract. Ohgi, Y., T. Futamura, and K. Hashimoto. 2015. “Glutamate Signaling in Synaptogenesis and NMDA Receptors as Potential Therapeutic Targets for Psychiatric Disorders.” Current Molecular Medicine 15(3): 206–21. Oliveira, Bruno M., Jens R. Coorssen, and Daniel Martins-de-Souza. 2014. “2DE: The Phoenix of Proteomics.” Journal of Proteomics 104: 140–50. Ong, Shao-en, and Matthias Mann. 2007. “PROTOCOL A Practical Recipe for Stable Isotope Labeling by Amino Acids in Cell Culture ( SILAC ).” Patel, Veena S et al. 2015. “MIR137HG Risk Variant rs1625579 Genotype Is Related to Corpus Callosum Volume in Schizophrenia.” Neuroscience letters 602: 44–49. http://www.ncbi.nlm.nih.gov/pubmed/26123324. Pennington, K et al. 2008. “Prominent Synaptic and Metabolic Abnormalities Revealed by Proteomic Analysis of the Dorsolateral Prefrontal Cortex in Schizophrenia and Bipolar Disorder.” Molecular psychiatry 13(12): 1102–17. Pennington, K., D. Cotter, and M. J. Dunn. 2005. “The Role of Proteomics in Investigating Psychiatric Disorders.” British Journal of Psychiatry 187(JULY): 4–6. Pernikářová, Vendula, and Pavel Bouchal. 2015. “Targeted Proteomics of Solid Cancers: From Quantification of Known Biomarkers towards Reading the Digital Proteome Maps.” Expert Review of Proteomics 9450(October): 1–17. http://www.tandfonline.com/doi/full/10.1586/14789450.2015.1094381. Peterson, Amelia C. 2012. “PARALLEL REACTION MONITORING FOR HIGH RESOLUTION AND HIGH MASS ACCURACY QUANTITATIVE, TARGETED PROTEOMICS.” Molecular & Cellular Proteomics (608): 1–40. Picotti, Paola, and Ruedi Aebersold. 2012. “Selected Reaction Monitoring–based Proteomics: Workflows, Potential, Pitfalls and Future Directions.” Nature Methods 9(6): 555–66. http://www.nature.com/doifinder/10.1038/nmeth.2015. Pieczenik, Steve R., and John Neustadt. 2007. “Mitochondrial Dysfunction and Molecular Pathways of Disease.” Experimental and Molecular Pathology 83(1): 84–92. Prabakaran, S et al. 2004. “Mitochondrial Dysfunction in Schizophrenia: Evidence for Compromised Brain Metabolism and Oxidative Stress.” Molecular psychiatry 9(7): 684–97, 643. PRESTOZ, LAETITIA et al. 2004. “Control of Axonophilic Migration of Oligodendrocyte Precursor Cells by Eph–ephrin Interaction.” Neuron Glia Biology 1(01): 73–83. http://www.ncbi.nlm.nih.gov/pubmed/18634608. Purim, Sheila Gregório. 2006. “ESTUDO MOLECULAR DE ASSOCIAÇÃO.” UNIVERSIDADE DE SÃO PAULO. Qiao, H. et al. 2014. “14-3-3 Proteins Are Required for Hippocampal Long-Term Potentiation and Associative Learning and Memory.” Journal of Neuroscience 34(14): 4801–8. http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4393- 13.2014. Quiroz, Jorge a, Neil a Gray, Tadafumi Kato, and Husseini K Manji. 2008. “Mitochondrially Mediated Plasticity in the Pathophysiology and Treatment of Bipolar Disorder.” Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 33(11): 2551–65. Rapoport, JL. 2012. “Neurodevelopmental Model of Schizophrenia: Update 2012.” Mol Psychiatry 17(12): 1228–38. Ravandi, Farhad, Moshe Talpaz, and Zeev Estrov. 2003. “Modulation of Cellular Signaling Pathways : Prospects for Targeted Therapy in Hematological Malignancies Modulation of Cellular Signaling Pathways : Prospects for Targeted Therapy in Hematological Malignancies.” 9(February): 535–50. del Re, Elisabetta C et al. 2015. “Enlarged Lateral Ventricles Inversely Correlate with Reduced Corpus Callosum Central Volume in First Episode Schizophrenia: Association with Functional Measures.” Brain Imaging and Behavior i: No – Specified. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc11&NEWS=N&AN=2015-57563-001. Reddy, Ravinder, Mahadik P. Sahebarao, Sukdeb Mukherjee, and Jayasimha N. Murthy. 1991. “Enzymes of the Antioxidant Defense System in Chronic Schizophrenic Patients.” Biological Psychiatry 30: 409–12. Reinders, Joerg, and Albert Sickmann. 2005. “State-of-the-Art in Phosphoproteomics.” Proteomics 5: 4052–61. Rice, Matthew W et al. 2014. “Assessment of Cytochrome C Oxidase Dysfunction in the Substantia Nigra/ventral Tegmental Area in Schizophrenia.” PloS one 9(6): e100054. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100054. Rigucci, Silvia et al. 2015. “White Matter Microstructure in Ultra-High Risk and First Episode Schizophrenia: A Prospective Study.” Psychiatry Research: Neuroimaging: 1–7. http://linkinghub.elsevier.com/retrieve/pii/S092549271530158X. Rinas, Aimee, and Lisa M. Jones. 2014. “Fast Photochemical Oxidation of Proteins Coupled to Multidimensional Protein Identification Technology (MudPIT): Expanding Footprinting Strategies to Complex Systems.” Journal of The American Society for Mass Spectrometry 26(4): 540–46. http://link.springer.com/10.1007/s13361-014-1017-6. Rollins, Brandi et al. 2009. “Mitochondrial Variants in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder.” PLoS ONE 4(3): e4913. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2654519&tool=pmcentrez&rendertype=abstract. Ross, P. L. 2004. “Multiplexed Protein Quantitation in Saccharomyces Cerevisiae Using Amine-Reactive Isobaric Tagging Reagents.” Molecular & Cellular Proteomics 3(12): 1154–69. http://www.mcponline.org/cgi/doi/10.1074/mcp.M400129- 107

MCP200. Rotarska-Jagiela, Anna et al. 2008. “The Corpus Callosum in Schizophrenia-Volume and Connectivity Changes Affect Specific Regions.” NeuroImage 39(4): 1522–32. Rubin, Camelia Iancu, and George F. Atweh. 2004. “The Role of Stathmin in the Regulation of the Cell Cycle.” Journal of Cellular Biochemistry 93(2): 242–50. Ruce, M Ihai C, I O N V Asile, M Anuela V Asile, and A Lina M Aria V Îlcea. 2015. “C-Abl and YWHAZ Gene Expression in Gastric Cancer.” 56: 717–23. Rush, A. 2006. “Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report.” American Journal of Psychiatry 163(11): 1905. http://psychiatryonline.org/article.aspx?doi=10.1176/appi.ajp.163.11.1905. Sadock, B. J., and V. A. Sadock. 2007. Compêndio de Psiquiatria: Ciência Do Comportamento E Psiquiatria Clínica. Artmed. Porto Alegre: Artmed. Saia-Cereda, Verônica M. et al. 2015. “Proteomics of the Corpus Callosum Unravel Pivotal Players in the Dysfunction of Cell Signaling, Structure, and Myelination in Schizophrenia Brains.” European Archives of Psychiatry and Clinical Neuroscience 265: 601–12. http://link.springer.com/10.1007/s00406-015-0621-1. Sawai, Hashime, Takako Takai-igarashi, and Hiroshi Tanaka. 2015. “Identification of Collaborative Activities with Oxidative Phosphorylation in Bipolar Disorder.” 11(4). Scheiffele, Peter. 2003. “C ELL -C ELL S IGNALING D URING S YNAPSE F ORMATION IN THE CNS.” Annual Review of Neuroscience 26(1): 485–508. http://www.annualreviews.org/doi/abs/10.1146/annurev.neuro.26.043002.094940. Schmidt, Alexander, Josef Kellermann, and Friedrich Lottspeich. 2005. “A Novel Strategy for Quantitative Proteomics Using Isotope-Coded Protein Labels.” Proteomics 5(1): 4–15. http://doi.wiley.com/10.1002/pmic.200400873. Schubert, Klaus Oliver, Melanie Föcking, and David R. Cotter. 2015. “Proteomic Pathway Analysis of the Hippocampus in Schizophrenia and Bipolar Affective Disorder Implicates 14-3-3 Signaling, Aryl Hydrocarbon Receptor Signaling, and Glucose Metabolism: Potential Roles in GABAergic Interneuron Pathology.” Schizophrenia Research. http://linkinghub.elsevier.com/retrieve/pii/S0920996415000778. Scott, Mark E, Sarah S Wilson, and Lisa A. Cosentino. 2012. “Interlaboratory Reproducibility of Female Genital Tract Cytokine Measurements by Luminex: Implications for Microbicide Safety Studies.” Cytokine 56(2): 430–34. Shaw, E., and D.W Woolley. 1958. “Some Serotoninlike Activities of Lysergic Acid Diethylamide.” Science 124: 121–23. Sivagnanasundaram, Sinthuja et al. 2007. “Abnormal Pathways in the Genu of the Corpus Callosum in Schizophrenia Pathogenesis: A Proteome Study.” Proteomics - Clinical Applications 1: 1291–1305. Smeitink, J, L van den Heuvel, and S DiMauro. 2001. “The Genetics and Pathology of Oxidative Phosphorylation.” Nature reviews. Genetics 2(5): 342–52. Steinacker, Petra, Alastair Aitken, and Markus Otto. 2011. “14-3-3 Proteins in Neurodegeneration.” Seminars in Cell & 22(7): 696–704. http://linkinghub.elsevier.com/retrieve/pii/S1084952111001194. Stelzhammer, Viktoria et al. 2015. “Distinct Proteomic pro Fi Les in Post-Mortem Pituitary Glands from Bipolar Disorder and Major Depressive Disorder Patients.” Journal of Psychiatric Research 60: 40–48. http://dx.doi.org/10.1016/j.jpsychires.2014.09.022. Sullivan, Patrick F, Kenneth S Kendler, and Michael C Neale. 2003. “Schizophrenia as a Complex Trait.” Archives of general psychiatry 60: 1187–92. Sussulini, Alessandra. 2014. “Proteomics and Metabolomics of Bipolar Disorder.” 29: 116–116. http://www.karger.com?doi=10.1159/000358037. Suzuki, T et al. 1997. “Excitable Membranes and Synaptic Transmission: Postsynaptic Mechanisms. Localization of Alpha- Internexin in the Postsynaptic Density of the Rat Brain.” Brain research 765(1): 74–80. http://www.ncbi.nlm.nih.gov/pubmed/9310396. Takeuchi, Shingo, Hironori Katoh, and Manabu Negishi. 2015. “Eph/ephrin Reverse Signalling Induces Axonal Retraction through RhoA/ROCK Pathway.” Journal of Biochemistry 158(3): 245–52. http://jb.oxfordjournals.org/lookup/doi/10.1093/jb/mvv042. Tandon, Rajiv, Henry A. Nasrallah, and Matcheri S. Keshavan. 2010. “Schizophrenia, ‘Just the Facts’ 5. Treatment and Prevention Past, Present, and Future.” Schizophrenia Research 122(1-3): 1–23. http://dx.doi.org/10.1016/j.schres.2010.05.025. Taylor, Paul et al. 2009. “Automated 2D Peptide Separation on a 1D Nano-LC-MS System.” Journal of Proteome Research 8(3): 1610–16. Tessier-Lavigne, Marc, and Corey Goodman. 1996. “The Molecular Biology of Axon Guidance.” Science (New York, N.Y.) 274: 1123–33. Thingholm, Tine E., Ole N. Jensen, and Martin R. Larsen. 2009. “Analytical Strategies for Phosphoproteomics.” Proteomics 9(6): 1451–68. To, S.E, R.A Zepf, and Alisa G Woods. 2005. “The Symptoms, Neurobiology, and Current Pharmacological Treatment of Depression.” J Neurosci Nurs 32(2): 102–7. Torrey, E. Fuller. 1995. “Surviving Schizophrenia: A Manual for Families, Consumers, and Providers.” HarperPerennial. Toyo-oka, Kazuhito et al. 2014. “14-3-3Ε and Ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the 108

Developing Brain.” The Journal of neuroscience : the official journal of the Society for Neuroscience 34(36): 12168–81. http://www.ncbi.nlm.nih.gov/pubmed/25186760. Trivedi, M. H. et al. 2006. “Factors Associated with Health-Related Quality of Life among Outpatients with Major Depressive Disorder: A STAR* D Report.” The Journal of clinical psychiatry 67(2): 185–95. Tsai, Meng-Chang, and Tiao-Lai Huang. 2015. “Thiobarbituric Acid Reactive Substances (TBARS) Is a State Biomarker of Oxidative Stress in Bipolar Patients in a Manic Phase.” Journal of affective disorders 173: 22–26. http://www.ncbi.nlm.nih.gov/pubmed/25462391. Tsang, Chi Kwan et al. 2014. “Superoxide Dismutase 1 Acts as a Nuclear Transcription Factor to Regulate Oxidative Stress Resistance.” Nature Communications 5: 1–11. http://www.nature.com/doifinder/10.1038/ncomms4446. Tsuang, Ming T, William S Stone, and Stephen V F A R Aone. 2001. “Genes , Environment and Schizophrenia.” 8. Tsuang, Ming T., William S. Stone, and Stephen V. Faraone. 2000. “Toward Reformulating the Diagnosis of Schizophrenia.” American Journal of Psychiatry 157(7): 1041–50. Tunçel, Özgür Korhan et al. 2015. “Oxidative Stress in Bipolar and Schizophrenia Patients.” Psychiatry Research 228(3): 688– 94. http://linkinghub.elsevier.com/retrieve/pii/S0165178115003170. Tzivion, G., and J. Avruch. 2002. “14-3-3 Proteins: Active Cofactors in Cellular Regulation by Serine/Threonine Phosphorylation.” Journal of Biological Chemistry 277(5): 3061–64. http://www.jbc.org/cgi/doi/10.1074/jbc.R100059200. Ubersax, Jeffrey a, and James E Ferrell. 2007. “Mechanisms of Specificity in Protein Phosphorylation.” Nature reviews. Molecular cell biology 8(7): 530–41. http://www.ncbi.nlm.nih.gov/pubmed/17585314. Unlü, M, M E Morgan, and J S Minden. 1997. “Difference Gel Electrophoresis: A Single Gel Method for Detecting Changes in Protein Extracts.” Electrophoresis 18(11): 2071–77. Wang, Q et al. 2015. “SNAP25 Is Associated with Schizophrenia and Major Depressive Disorder in the Han Chinese Population.” The Journal of clinical psychiatry 76(1): 76–82. Webster, M.J., J. O’Grady, J.E. Kleinman, and C.S. Weickert. 2005. “Glial Fibrillary Acidic Protein mRNA Levels in the Cingulate Cortex of Individuals with Depression, Bipolar Disorder and Schizophrenia.” Neuroscience 133(2): 453–61. http://linkinghub.elsevier.com/retrieve/pii/S0306452205001818. Weickert, T W et al. 2000. “Cognitive Impairments in Patients with Schizophrenia Displaying Preserved and Compromised Intellect.” Archives of general psychiatry 57(9): 907–13. Wesseling, H., M. G. Gottschalk, and S. Bahn. 2014. “Targeted Multiplexed Selected Reaction Monitoring Analysis Evaluates Protein Expression Changes of Molecular Risk Factors for Major Psychiatric Disorders.” International Journal of Neuropsychopharmacology 18(1): pyu015–pyu015. http://ijnp.oxfordjournals.org/cgi/doi/10.1093/ijnp/pyu015. Wesseling, Hendrik et al. 2013. “A Combined Metabonomic and Proteomic Approach Identifies Frontal Cortex Changes in a Chronic Phencyclidine Rat Model in Relation to Human Schizophrenia Brain Pathology.” Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 38(12): 2532–44. http://www.ncbi.nlm.nih.gov/pubmed/23942359. Wilkins, M R et al. 1996. “From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Analysis.” Bio/technology (Nature Publishing Company) 14: 61–65. Wolters, D. a., M. P. Washburn, and J. R. Yates. 2001. “An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics.” Analytical Chemistry 73(23): 5683–90. Wong, Albert H C et al. 2005. “Genetic and Post-Mortem mRNA Analysis of the 14-3-3 Genes That Encode Phosphoserine/threonine-Binding Regulatory Proteins in Schizophrenia and Bipolar Disorder.” Schizophrenia Research 78: 137–46. Wong, Jason W H, and Gerard Cagney. 2010. “An Overview of Label-Free Quantitation Methods in Proteomics by Mass Spectrometry.” Proteome Bioinformatics 604: 273–83. http://link.springer.com/10.1007/978-1-60761-444-9. World Health Organization, Null. 2008. “The Global Burden of Disease: 2004 Update.” Update 2010: 146. http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/index.html. Wright, Carrie, Jessica a Turner, Vince D Calhoun, and Nora Perrone-Bizzozero. 2013. “Potential Impact of miR-137 and Its Targets in Schizophrenia.” Frontiers in genetics 4(April): 58. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3636510&tool=pmcentrez&rendertype=abstract. Yao, J K, R D Reddy, and D P van Kammen. 2001. “Oxidative Damage and Schizophrenia: An Overview of the Evidence and Its Therapeutic Implications.” CNS drugs 15(4): 287–310. Zhang, Hui et al. 2002. “Phosphoprotein Analysis Using Antibodies Broadly Reactive against Phosphorylated Motifs.” Journal of Biological Chemistry 277(42): 39379–87. Zhuang, Zhiye, Jian Huang, Maria L Cepero, and Daniel J Liebl. 2011. “Eph Signaling Regulates Gliotransmitter Release.” Communicative & integrative biology 4(2): 223–26. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3104586&tool=pmcentrez&rendertype=abstract. Zubenko, George S et al. 2014. “Differential Hippocampal Gene Expression and Pathway Analysis in an Etiology-Based Mouse Model of Major Depressive Disorder.” American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 165B(6): 457–66. http://www.ncbi.nlm.nih.gov/pubmed/25059218.

109

110

6. CONCLUSÃO FINAL

Como discutido nos capítulos desta dissertação, os estudos proteômicos em cérebro post- mortem de pacientes com esquizofrenia mostraram que as proteínas diferencialmente expressas estão, de acordo com análises de programas de biologia sistêmica in silico, principalmente ligadas às vias de metabolismo energético, sinalização e crescimento/manutenção celular. A principal via canônica encontrada desregulada em nossa compilação de estudos proteômicos (Capitulo 1) foi a via de sinalização 14-3-3, que também foi mostrada diferencialmente expressa em proteínas solúveis do corpo caloso de pacientes (Capitulo 2). À esta via pertence a proteína que foi encontrada diferencialmente expressa em maior número de estudos analisados em nossa revisão, a proteína 14-3-3Z (YWHAZ). As proteínas 14-3-3 são abundantemente encontradas expressas no cérebro, e interagem com uma variedade de proteínas celulares, como quinases, fosfatases e receptores transmembrana (Foote and Zhou 2012; Tzivion and Avruch 2002). Essa via canônica regula a sinalização intracelular, divisão e diferenciação celular, função de canais de íons, apoptose, neuro-degeneração e síntese de dopamina (Berg, Holzmann, and Riess 2003; Tzivion and Avruch 2002). Além disso, a família de proteínas 14-3-3 é relacionada com processos de neurotransmissão, e possui algumas isoformas diretamente associadas a sinapses (Berg 2003). Estudos realizados com camundongo knockut para proteínas 14-3-3, mostrou que esses animais exibiram comportamento parecido com os observados em pacientes com SCZ, além de apresentarem aumento da quantidade de dopamina, decréscimo na complexidade das proteínas encontradas em dendritos de neurônios e diminuição da densidade dessas espinhas dendríticas (Foote 2015). Outra via canônica encontrada desregulada em análises do corpo caloso de pacientes com esquizofrenia foi a via de sinalização Efrina B, essa via é relacionada à remodelação sináptica durante a aprendizagem e a formação de memória (Du, Fu, and Sretavan 2007; Klein 2009), sendo fundamental no desenvolvimento neuronal, já que é indispensável para direcionar corretamente o axônio no neurodesenvolvimento (Takeuchi, Katoh, and Negishi 2015). Ela possui também um papel importante na comunicação neurônio-glia quando em contato sináptico, especialmente na conexão neurônios-astrócitos denominada sinapse tripartite (Zhuang et al. 2011). Sinapse tripartite é o nome dado a comunicação bidirecional entre astrócitos e neurônios, onde os neurônios pré e pós sinápticos (bipartite) se conectam-se a prolongamentos astrocitários

111

formando assim a tripartite. Essa troca de informações que ocorrem entre os dois tipos celulares é o elemento chave para a atividade sináptica e por isso é uma importante ponte de regulação da transmissão neuronal (Perea, Navarrete, and Araque 2009). Essa transmissão é principalmente regulada por moléculas que possuem modificações pós traducionais, ou seja, moléculas que podem ser ativadas/desativadas de acordo com condições ambientais, sendo a principal delas a fosforilação. Em concordância com isso, na análise do fosfoproteoma do corpo caloso, também encontramos proteínas diretamente relacionadas à atividade sináptica, duas delas são as proteínas mTOR e PI3K. Essas proteínas possuem um papel direto na plasticidade sináptica, além de serem proteínas importantes no metabolismo de células da glia, principalmente nos astrócitos (Banko 2006; Gururajan and van den Buuse 2014; Hale et al. 2011; Hou 2004). Como elucidado acima tanto as fosfoproteínas mTOR e PI3K, quanto as vias de sinalização Efrina B e 14-3-3 estão relacionadas à plasticidade sináptica e aos astrócitos (Banko, 2006; Gururajan and van den Buuse, 2014; Hale et al., 2011; Hou, 2004). A plasticidade está diretamente relacionada à aprendizagem e à memória (Citri and Malenka 2008), funções cognitivas sabidamente prejudicadas em pacientes com esquizofrenia (Weickert et al. 2000), reforçando ainda mais o papel dessas proteínas/vias no desenvolvimento da doença. Como mencionado na introdução dessa dissertação, sabe-se que existe um papel importante da sinapse no desenvolvimento da esquizofrenia, porém como é recente o achado da importância dos astrócitos na transmissão sináptica, ainda não há estudos que investigaram o possível papel dessas células na conexão sináptica alterada da doença. A maior dificuldade desse estudo célula-específica é que o tecido cerebral não pode ser coletado in vivo de pacientes, como comumente feito em estudos de câncer (biópsias). Porém, para solucionar essa dificuldade, células tronco embrionárias pode ser entregadas nesses estudos, possibilitando, assim a análise do papel de cada tipo celular no desenvolvimento da doença.

112

7. PERSPECTIVAS

Este trabalho ressaltou o papel da sinalização celular, que já tinha sido apontada como importante na esquizofrenia em estudos com outras regiões cerebrais. Esses resultados indicaram uma possível correlação dessas proteínas desreguladas com as células astrocitárias, motivo que direciona a futuras pesquisas a comunicação/sinalização astrócitos-neurônios. Assim, trabalhos futuros consistirão em analiar a comunicação celular entre neurônios-astrócitos, usando para isso células embrionárias humanas, com um enfoque direcionado principalmente comunicação entre esses dois tipos células e o seu papel na sinalização da plasticidade sináptica a fim de investigar essa hipótese proposta a partir dos dados obtidos nesta dissertação.

113

8. REFERÊNCIAS BIBLIOGRÁFICAS (INTRODUÇÃO, DISCUSSÃO E CONCLUSÃO)

Berg, D., Holzmann, C., & Riess, O. (2003). 14-3-3 Proteins in the Nervous System. Nature Reviews. Neuroscience, 4(September), 752–762.

Bleuler, E. 1908. The Prognosis of Dementia Praecox: The Group of Schizophrenias. Algemeine Zeitschrift fur Psychiatrie 65: 436–64.

Cagney, Gerard et al. 2003. In Silico Proteome Analysis to Facilitate Proteomics Experiments Using Mass Spectrometry. Proteome science 1: 5.

Calvano, Steve E et al. 2005. “A Network-Based Analysis of Systemic Inflammation in Humans.” Nature 437(October): 1032–37.

Conesa, Ana et al. 2005. Blast2GO: A Universal Tool for Annotation, Visualization and Analysis in Functional Genomics Research. Bioinformatics 21(18): 3674–76.

DASS, C. 2007. Fundamentals of contemporary mass spectrometry. John Wiley & Sons, Hoboken, New Jersey

Dieset, Ingrid et al. 2012. Cardiovascular Risk Factors during Second Generation Antipsychotic Treatment Are Associated with Increased C-Reactive Protein. Schizophrenia Research 140(1-3): 169–74. http://dx.doi.org/10.1016/j.schres.2012.06.040.

Du, Y.; Dreyfus, CF. 2002. Oligodendrocytes as Providers of Growth Factors. Journal of Neuroscience Research. v. 68, p. 647–654.

Fitsiori, a. et al. 2011. The Corpus Callosum: White Matter or Terra Incognita. British Journal of Radiology 84(997): 5–18.

Foote, Molly et al. 2015. Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice. Biological Psychiatry 78(6): 386–95.

Frankle, W. Gordon, Juan Lerma, and Marc Laruelle. 2003. The Synaptic Hypothesis of Schizophrenia. Neuron 39(2): 205–16.

Gejman, P.V., A.R. Sanders, and D. Duan. 2010. The Role of Genetics in the Etiology of Schizophrenia. Psychiatr Clin North Am 33(1): 35–66.

Hegarty, J. D., R. J. Baldessarini, and G. Oepen. 1994. One Hundred Years of Schizophrenia. The American Journal of Psychiatry 151(October): 1409–16.

Ho, C S et al. 2003. Electrospray Ionisation Mass Spectrometry: Principles and Clinical Applications. The Clinical biochemist 24(1): 3–12.

Hoffmann, E.; Stroobant V. 2007. Mass Spectrometry: Principles and Applications. John Wiley & Sons, Chichester, UK. Third Edition

Hor, Kahyee, and Mark Taylor. 2010. Suicide and Schizophrenia: A Systematic Review of Rates and Risk Factors. Journal of psychopharmacology (Oxford, England) 24(4 Suppl): 81–90.

114

Jaaro-Peled, Hanna, Yavuz Ayhan, Mikhail V. Pletnikov, and Akira Sawa. 2010. Review of Pathological Hallmarks of Schizophrenia: Comparison of Genetic Models with Patients and Nongenetic Models. Schizophrenia Bulletin 36(2): 301–13.

Jablensky, A. 2000. Prevalence and Incidence of Schizophrenia Spectrum Disorders: Implications for Prevention. Australian and New Zealand Journal of Psychiatry 34(SUPPL. 1): S26–34.

Javitt, C. D., and R. S. Zukin. 1991. Recent Advances in the Phencyclidine Model of Schozophrenia. Am J Psychiatry 148(October): 1301–8.

Jensen, Lars J. et al. 2009. STRING 8 - A Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research 37(SUPPL. 1): 412–16.

Kanehisa, M, and S Goto. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28(1): 27– 30.

Levin Y, Hradetzky E, Bahn S (2011) Quantification of proteins using data-independent analysis ( MS E ) in simple and complex samples : A systematic evaluation. 3273–3287. doi: 10.1002/pmic.201000661

Lieberman, J.A., T.S Stroup, J.P. McEvoy, and M.S. Swartz. 2005. Effectiveness of Antipsychotic Drugs in Patients with Chronic Schizophrenia. 353(12): 1209–23.

Lalli P.M. 2010. Mobilidade iônica acoplada a espectrometria de massas: Interferência de parâmetros do drift gas na resolução de anilinas substituídas e determinação da mobilidade intrínseca de agregados de líquidos iônicos. Universidade estadual de Campinas.

Martins-De-Souza, Daniel. 2012. Proteomics Tackling Schizophrenia as a Pathway Disorder. Schizophrenia Bulletin 38: 1107–8.

Martins-de-Souza, D. 2008. Determinação Do Perfil de Expressão Gênica e Proteômica em Tecido Cerebral de Pacientes Esquizofrênicos. Universidade Estadual de Campinas.

Maynard, T M, L Sikich, J a Lieberman, and a S LaMantia. 2001. Neural Development, Cell-Cell Signaling, and The ‘two-Hit’ hypothesis of Schizophrenia. Schizophrenia bulletin 27(3): 457–76.

Meltzer, H Y, and S M Stahl. 1976. The Dopamine Hypothesis of Schizophrenia: A Review. Schizophrenia bulletin 2(1): 19–76.

Perea, Gertrudis, Marta Navarrete, and Alfonso Araque. 2009. Tripartite Synapses: Astrocytes Process and Control Synaptic Information. Trends in Neurosciences 32(8): 421–31.

Polak, M.; Haymaker, W.; Johson, J E.; D’Amelio, F. 1982. Neuroglia and their reactions. In: Haymaker W, Adams RD, editors, Histology and histopathology of the nervous system. Springfield.

Purim, S.G. 2006. Neurogênes e esquizofrenia: estudo molecular de associação. Universidade de São Paulo.

Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biol Mass Spectrom. doi: 10.1002/bms.1200111109

Sadock, B. J., and V. A. Sadock. 2007. Compêndio de Psiquiatria: Ciência Do Comportamento E Psiquiatria Clínica. Artmed. Porto Alegre: Artmed.

Sukanta, S., Chant, D., Welham, J., McGrath, J. 2005. A Systematic Review of the Prevalence of Schizophrenia. PLoS Medicine 2(5): 0413–33.

Santos L.F.A. 2011. Uso de Espectrometria de Massas e Mobilidade Iônica na Caracterização de Peptídeos Provenientes de Experimentos de. Universidade Estatudal De Campinas 115

Scigelova, Michaela, and Alexander Makarov. 2006. Orbitrap Mass Analyzer - Overview and Applications in Proteomics. Proteomics 1(1-2 SUPPL.): 16–21.

Shaw, E., and D.W Woolley. 1958. Some Serotoninlike Activities of Lysergic Acid Diethylamide. Science 124: 121– 23.

Sullivan, Patrick F, Kenneth S Kendler, and Michael C Neale. 2003. Schizophrenia as a Complex Trait. Archives of general psychiatry 60: 1187–92.

Tandon, Rajiv, Henry A. Nasrallah, and Matcheri S. Keshavan. 2010. Schizophrenia, ‘Just the Facts’ 5. Treatment and Prevention Past, Present, and Future. Schizophrenia Research 122(1-3): 1–23. http://dx.doi.org/10.1016/j.schres.2010.05.025.

Torrey, E. Fuller. 1995. Surviving Schizophrenia: A Manual for Families, Consumers, and Providers. HarperPerennial.

Tsuang, Ming T., William S. Stone, and Stephen V. Faraone. 2000. Toward Reformulating the Diagnosis of Schizophrenia. American Journal of Psychiatry 157(7): 1041–50.

Wilkins, M R et al. 1996. From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Amino Acid Analysis. Bio/technology (Nature Publishing Company) 14: 61–65.

World Health Organization, Null. 2008. The Global Burden of Disease: 2004 Update. Update 2010: 146. http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/index.html.

116

9. ANEXOS ANEXO I

Table 6 - Peptides differentially phosphorylated in the corpus callosum of schizophrenia patients compared to healthy controls

clathrin, heavy chain (Hc) (Q00610) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ AGKTLQIFNIE 32911 4.99 1 1571.787 2 12345 [4] Phosphoryl STY no 675.65 642.72 MK

AMLSANIR 14385 6.47 2 954.4443 1,2 12345 [4] Phosphoryl STY no 1269.86 1105.58

ARESYVETELI 47121 6.03 1 1918.91 3 12345 [5] Phosphoryl STY no 21.59 72.57 FALAK

EHLELFWSRV 37986 5.99 1 1846.911 3,2 12345 [8] Phosphoryl STY no 38.43 88.77 NIPK

FNALFAQGN 39415 5.8 2 1709.755 2 12345 [10] Phosphoryl no 186.07 61.68 YSEAAK STY

FNALFAQGN 17020 6.36 1 2361.128 2 12345 [10] Phosphoryl no 181.54 87.71 YSEAAKVAAN STY APK GQAGGKLHII 37066 6.4 1 2602.265 3 12345 [14] Phosphoryl no 151.23 114.73 EVGTPPTGNQ STY|[17] PFPK Phosphoryl STY

HDVVFLITK 8380 5.93 1 1150.578 1,2 12345 [8] Phosphoryl STY no 2277.26 2789.93

HSSLAGCQII 18201 5.32 1 1597.714 2 12345 [2] Phosphoryl no 786.17 536.92 NYR STY|[7] Carbamidomethyl C

LASTLVHLGE 2782 6.01 1 2050.001 2 12345 [3] Phosphoryl STY no 17106.48 13159.3 YQAAVDGAR 5

MREHLELFW 37470 6.39 1 1582.729 2 12345 [10] Phosphoryl no 180.76 92.54 SR STY

117

NLQNLLILTAI 6363 5.84 1 1432.816 3 12345 [9] Phosphoryl STY no 5998.75 3091.31 K

NNLQKYIEIY 25964 6.09 1 1731.875 2 12345 [6] Phosphoryl STY no 383.52 249.37 VQK

QLPLVKPYLR 43534 6.25 1 2227.156 3 12345 [8] Phosphoryl STY no 115.42 187.42 SVQNHNNK

RPLIDQVVQT 5642 6.2 1 3040.469 3 12345 [13] Phosphoryl no 2.00E+04 750.89 ALSETQDPEE STY|[22] VSVTVK Phosphoryl STY

SVDPTLALSVYL 33089 5.78 1 2216.103 3,4 12345 [1] Phosphoryl no 315.58 517.36 RANVPNK STY|[11] Phosphoryl STY

SLSRYLVR 8911 5.79 2 1072.546 1 12345 [3] Phosphoryl STY no 822.32 486.9

TGQIKEVER 42159 6.21 1 1138.541 2 12345 [1] Phosphoryl STY no 88.96 113.19

TLQIFNIEMK 9179 ------1530.694 1 12345 [1] Phosphoryl STY no 106387.3 59312.2 SK

TPDTIRR 5151 6.48 1 937.4604 2 12345 [4] Phosphoryl STY no 4881.33 3358.14

VVGAMQLYS 33783 5.65 1 1544.767 2,3 12345 [8] Phosphoryl STY no 668002.8 717601. VDRK 2

YIEIYVQK 41746 6.46 1 1134.556 2 12345 [1] Phosphoryl STY no 86.64 50.77

YIEIYVQKVN 6675 5.03 1 1687.791 3 12345 [5] Phosphoryl STY no 6744.81 9927.11 PSR

YLQMARK 7319 6.3 1 988.4888 1 12345 [1] Phosphoryl STY no 1538.56 668.97

triosephosphate isomerase 1 (P60174) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ

118

AEDGEEAEFH 26840 7.22 1 2602.142 2 12345 [15] Phosphoryl no 136.98 174.91 FAALYISGQW STY PR GWLKSNVSD 39412 6.23 1 1797.853 2 12345 [8] Phosphoryl STY no 454.2 186.6 AVAQSTR

HVFGESDELI 29468 6.58 1 1537.69 3 12345 [6] Phosphoryl STY no 201.44 116.1 GQK

KQSLGELIGTL 24210 7.21 1 1621.851 2 12345 [10] Phosphoryl no 212.62 306.22 NAAK STY

VIADNVKDW 3470 7.8 1 1353.642 2,3 12345 [10] Phosphoryl no 9697.31 11540.5 SK STY 5

VPADTEVVC 12760 7.92 1 2527.207 3 12345 [9] no 1099.98 718.71 APPTAYIDFAR Carbamidomethyl QK C|[15] Phosphoryl STY

VPADTEVVC 22537 7.24 1 2607.145 3 12345 [5] Phosphoryl no 270.5 187.42 APPTAYIDFAR STY|[9] Carbami- QK domethyl C|[13] Phosphoryl STY

VTNGAFTGEI 19445 7.2 1 1700.784 2 12345 [2] Phosphoryl STY no 649.55 548.22 SPGMIK

VTNGAFTGEI 19445 7.2 1 1700.784 2 12345 [11] Phosphoryl no 649.55 548.22 SPGMIK STY

VTNGAFTGEI 30692 6.24 1 1780.718 3 12345 [2] Phosphoryl no 417.48 348.62 SPGMIK STY|[7] Phosphoryl STY

VVFEQTK 20302 7.39 1 929.4225 1,2 12345 [6] Phosphoryl STY no 760.15 1030.42

VVLAYEPVW 18536 6.93 1 1681.874 3 12345 [5] Phosphoryl STY no 1601.84 1367.21 AIGTGK

VVLAYEPVW 50854 6.98 1 1681.869 2 12345 [13] Phosphoryl no 148 121.53 AIGTGK STY

cullin 3 (Q13618)

119

Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ FYLAKHSGR 14445 5.67 1 1157.588 2 12345 [7] Phosphoryl STY no 819.99 845.16

IQTVAAKQGE 25629 4.58 1 1707.789 2 12345 [3] Phosphoryl STY no 401.77 400.67 SDPER

LEGMFRDMS 46351 4.77 1 2374.955 2 12345 [11] Phosphoryl no 15.25 174.28 ISNTTMDEFR STY|[15] Oxidation M

NAYTMVLHK 37506 4.93 1 1606.763 2 12345 [4] Phosphoryl STY no 25.35 175.7 HGEK

QTIAGDFEYF 669 5.41 1 1966.91 3 12345 [2] Phosphoryl STY no 5.31E+04 2.85E+0 LNLNSR 4

YTFEEIQQET 23740 5.92 1 2474.116 3 12345 [2] Phosphoryl STY no 279.2 274.09 DIPERELVR

catalase (P04040) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ MLQGRLFAY 49424 5.59 1 1783.855 2 12345 [12] Phosphoryl no 360.12 61.3 PDTHR STY

NAIHTFVQSG 28375 5.84 1 2045.001 3 12345 [9] Phosphoryl STY no 405.12 630.87 SHLAAREK

fatty acid binding protein 3 (P05413) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ SLGVGFATR 38681 6.09 1 986.5338 2 12345 [1] Phosphoryl STY no 64.05 96.22

SLGVGFATR 48363 5 1 986.4675 2 12345 [8] Phosphoryl STY no 97.22 146.27

THSTFKNTEIS 40723 6.2 1 1618.741 2 12345 [8] Phosphoryl STY no 26.62 17.23 FK

WD repeat domain 59 (Q6PJI9) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances 120

CTR SCZ EGSKDYQLVT 12981 5.41 1 1647.744 2 12345 [12] Phosphoryl no 1150.46 1130.21 WSR STY

KCYGEILYR 23279 4.69 1 1280.578 2 12345 [2] no 263.49 217.65 Carbamidomethyl C|[8] Phosphoryl STY

SEKEQVSISSF 46840 5.43 1 1773.867 2 12345 [1] Phosphoryl STY no 175.56 15.63 YYK

VTTAYGSYQ 37009 5.48 1 1978.9 3 12345 [5] Phosphoryl STY no 43.34 68.07 DANIPFPR

microtubule-actin crosslinking factor 1 (E9PLY5) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ AFVESQQKSP 17977 4.51 1 1384.612 2 12345 [5] Phosphoryl STY no 70.73 142.43 GK

VMRLQDELV 4390 5.09 1 1567.793 2 12345 [2] Oxidation no 5909.71 4144.5 TLR M|[10] Phosphoryl STY

WIEETTAQQ 40343 4.8 1 4587.071 5 12345 [20] Phosphoryl no 190.73 1.12 EMMKPGQAE STY DSRVLSEQLS QQTALFAEIER

isoleucyl-tRNA synthetase 2, mitochondrial (Q9NSE4) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ GPGAAALAT 6402 5.46 3 1034.499 1,2 12345 [9] Phosphoryl STY no 4033.46 3439.98 AR

SVSGASNHQ 35508 4.34 1 1677.692 3 12345 [12] Phosphoryl no 63.01 132.23 PNSNSGR STY

TFYQMYDKG 56263 5.3 1 1778.828 2 12345 [1] Phosphoryl no 41.77 47.18 LVYR STY|[5] Oxidation M

transgelin (Q01995) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances 121

CTR SCZ AAEDYGVIKT 25718 5.44 1 2556.1233 2 12345 [5] Phosphoryl STY no 366.02 522.59 DMFQTVDLFE GK

EVQSKIEK 19584 5.54 1 1039.5076 2 12345 [4] Phosphoryl STY no 400.51 513.71

isocitrate dehydrogenase 3 (NAD+) gamma (P51553) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ LAQESGRK 31590 6.07 2 967.4574 1,2 12345 [5] Phosphoryl STY no 744.93 716.5

NNILRTSLDLY 37295 5.41 1 2383.049 3 12345 [6] Phosphoryl no 98.49 119.64 ANVIHCK STY|[7] Phosphoryl STY|[11] Phosphoryl STY|[17] Carbamidomethyl C

Ubiquitin carboxyl-terminal hydrolase (Q86T82) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ QAWFTYNDL 11456 5.02 1 2777.283 3 12345 [6] Phosphoryl STY yes 1498.3 372.68 EVSKIQEAAV QSDR RYSFNVALSL 16038 5.05 1 1684.747 2 12345 [2] Phosphoryl no 1964.74 1649.53 NNK STY|[9] Phosphoryl STY

SMQTGITK 9064 4.97 1 944.4135 1 12345 [4] Phosphoryl STY no 1561.42 1026.59

TWKTEPVSG 3953 6.01 1 2442.932 2,3 12345 [8] Phosphoryl no 1.34E+04 1.12E+0 EENSPDISATR STY|[13] Phos- 4 phoryl STY|[19] Phosphoryl STY

Protein N-lysine methyltransferase METTL20 (Q8IXQ9)

122

Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ SVLDLGSGCG 47280 6.09 1 2259.027 2 12345 [9] no 614.67 55.34 ATAIAAKMSG Carbamidomethyl ASR C|[19] Phosphoryl STY

Protein WWC3 (Q9ULE0) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ YDPHQIKAEI 41674 4.54 1 1686.74 2 12345 [1] Phosphoryl yes 366.78 95.27 ASR STY|[12] Phosphoryl STY

ATP synthase subunit e, mitochondrial (P56385) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ MVPPVQVSP 2029 6.15 2 1386.746 1,2 12345 [8] Phosphoryl STY no 67498 47584.3 LIK 5

USP6 N-terminal like (Q92738) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ LSMEELVEFF 16242 5 1 1992.932 2 12345 [13] Phosphoryl no 1233.71 1244.49 QETLAK STY

Actin, cytoplasmic 2 (J3KT65) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ VAPEEHPVLL 11003 7.38 1 2033.02 2,3 12345 [11] Phosphoryl no 9038.64 458.38+ TEAPLNPK STY 458.38

RGILTLK 432 7.21 1 879.4999 1, 2 12345 [5] Phosphoryl STY no 3.07E+04 3.49E+0 4

DSYVGDEAQS 37050 7.28 1 1433.5902 2,3 12345 [2] Phosphoryl STY no 368.65 408.73 KR

cAMP-specific 3',5'-cyclic phosphodiesterase 4C (Q08493)

123

Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ

[2] Phosphoryl STY|[8] LSWPVSSCRR Carbamidomethyl 5173 6.46 1 1326.618 2 12345 C no 726.82 741.02 DNA polymerase epsilon catalytic subunit A (Q07864) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ

[7] Phosphoryl STY|[9] Carbamidomethyl AETDLKTICR 31775 4.14 1 1285.661 2 12345 C no 147.89 197.13

AFHELSREEQ 1.99E+0 AK 96 5.63 1 1523.713 2 12345 [6] Phosphoryl STY no 2.56E+05 5

HLSGWEAET FALEHLEMR 50940 4.79 1 2235.036 3 12345 [3] Phosphoryl STY yes 95.07 50.08

INYGVLDWQ R 21269 4.35 1 1342.65 2 12345 [3] Phosphoryl STY no 307.44 445.31 Prostaglandin-H2 D-isomerase (P41222) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ

[4] Phosphoryl AALSMCKSV STY|[6] Carbami- VAPATDGGLN domethyl C|[14] LTSTFLR 58859 6.54 1 2839.331 2 12345 Phosphoryl STY no 10.12 101.32 SVVAPATDG GLNLTSTFLRK [16] Phosphoryl 30189 5.37 1 2126.15 3 12345 STY yes 368.77 459.32 Focadhesin (Q5VW36) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ

VQVLSFLWT HTQNK 44601 4.61 1 1779.892 2 12345 [5] Phosphoryl STY yes 109.72 9.88 124

D-dopachrome tautomerase-like (A6NHG4) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ

[3] Phosphoryl STY|[6] Phos- FPTVLSTSPA phoryl STY|[17] AHGGPRCPG Carbamidomethyl EIIEGK 22755 6.86 1 2737.298 3,4 12345 C no 987.48 375.15 Protein dopey-1 (Q5TA12) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ

AELDLQTEPP FSK 50401 4.75 1 1553.704 3 12345 [7] Phosphoryl STY yes 69.56 75.04

VAVAQSSSLN 1.49E+0 LFANR 1751 5.14 1 1655.798 2,3 12345 [6] Phosphoryl STY no 1.56E+04 4 centrosomal protein 162kDa (Q5TB80) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ

ATFSEKEK 23012 5.03 1 1018.435 2 12345 [2] Phosphoryl STY no 287.31 343.38 TNFAIP3 interacting protein 1 (A0A0A0MRZ4) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ ALEEALSIQTP PSSPPTAFGSP [21] Phosphoryl EGAGALLR 47748 5.14 1 3043.528 3 12345 STY no 132.53 53.32 ankyrin repeat domain 66 (B4E2M5) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ

[3] Carbamidomethyl TACQHRAPQI C|[11] Phosphoryl SHK 13968 5.25 1 1612.741 3 12345 STY no 1588.51 949.74 ATP synthase subunit alpha, mitochondrial (P25705)

125

Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ EVAAFAQFG 3795 5.81 1 2729.311 2 12345 [10] Phosphoryl no 1.32E+04 1.00E+0 SDLDAATQQL STY 4 LSRGVR FENAFLSHVV 4181 ------2526.197 2, 3, 4 12345 [11] Phosphoryl no 49195.65 39778.0 SQHQALLGTI STY|[19] 3 R Phosphoryl STY

HALIIYDDLSK 2326 6.67 1 1366.677 2 12345 [6] Phosphoryl STY no 1.30E+04 1.05E+0 4

ISEQSDAKLK 11454 7.38 1 1197.579 2 12345 [5] Phosphoryl STY no 589.58 616.51

ISVREPMQT 5213 6.55 1 1437.716 3 12345 [2] Phosphoryl STY no 2669.9 3861.86 GIK

KLYCIYVAIGQ 38670 7.3 1 1534.775 2,3 12345 [3] Phosphoryl no 217.47 220.89 K STY|[4] Carbamidomethyl C

LEPSKITK 5332 7.16 1 994.5018 1,2 12345 [7] Phosphoryl STY no 3384.73 2893.84

NFHASNTHL 51593 6.4 1 1375.617 2 12345 [7] Phosphoryl STY no 151.54 60.17 QK

VVDALGNAI 19087 6.37 1 1789.902 3 12345 [17] Phosphoryl no 887.48 1058.06 DGKGPIGSK STY

Microtubule-associated protein 2 (P11137) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ AQAKVGSLD 12177 5.33 1 2135.018 2,3 12345 [7] Phosphoryl STY no 2486.14 2697.45 NAHHVPGGG NVK DEFSVDK 16516 3.94 1 918.3524 1 12345 [4] Phosphoryl STY no 1091.32 1261.06

EASAHISGDK 47454 5.3 1 1093.454 2 12345 [7] Phosphoryl STY no 61.93 8.83

126

ETAEEVSAR 22441 4.04 1 1070.44 2 12345 [7] Phosphoryl STY no 145.59 112.58

ETSPESSLIQD 5886 5.39 1 1824.886 2 12345 [2] Phosphoryl STY no 5879.03 3211.51 EIAVK

GLSSVPEIAEV 9491 4.52 1 1748.929 2 12345 [14] Phosphoryl no 2651.46 1678.89 EPSKK STY

KEPSTVSR 5640 5.17 1 982.4521 1 12345 [4] Phosphoryl STY no 2844.59 896.82

LASVSADAEV 42779 4.65 1 1267.56 3 12345 [3] Phosphoryl STY no 23.26 44.24 AR

LSNVSSSGSI 11071 5.02 1 3556.774 4 12345 [20] Phosphoryl no 356.96 1776.63 NLLESPQLATL STY|[26] AEDVTAALAK Phosphoryl STY QGL

MEFHDQQEL 11381 4.7 2 2476.953 2 12345 [10] Phosphoryl no 2497.99 1936.82 TPSTAEPSDQ STY|[17] K Phosphoryl STY

QDSFPVSLEQ 21373 4.34 1 2787.216 2,3 12345 [3] Phosphoryl no 1335.63 571.89 AVTDSAMTSK STY|[17] Oxidation TLEK M|[18] Phosphoryl STY

QKTEPSLVVP 452 5.72 1 1799.975 2,3 12345 [3] Phosphoryl STY yes 7.08E+04 4.79E+0 GIDLPK 4

RSSLPRPSSIL 13162 5.59 1 1721.835 2 12345 [2] Phosphoryl no 422.99 385.51 PPR STY|[3] Phosphoryl STY

SAILVPSEKK 3922 5.55 1 1150.585 1, 2 12345 [7] Phosphoryl STY no 8238.41 6716.03

SANGFPYRED 4945 4.88 1 3114.273 2,3 12345 [1] Phosphoryl STY no 5020.86 6181.46 EEGAFGEHGS QGTYSNTK SANGFPYRED 29430 4.71 1 3114.264 3 12345 [7] Phosphoryl STY no 486.03 180.24 EEGAFGEHGS QGTYSNTK 127

SLGLGGRSAI 3316 5.1 1 1422.694 3 12345 [8] Phosphoryl STY no 9768.38 6215.85 EQR

TPPKSPATPK 3213 5.34 1 1102.537 1, 2 12345 [8] Phosphoryl STY no 3541.33 4772.56

TTAAGGESAL 20634 4.4 1 1585.743 4 12345 [13] Phosphoryl no 291.14 287.53 APSVFK STY

TTAAGGESAL 58041 5.42 1 1912.919 2 12345 [13] Phosphoryl no 17.76 15.51 APSVFKQAK STY

VGSLDNAHH 5941 5.72 1 2308.105 2,3 12345 [20] Phosphoryl no 6656.94 8307.98 VPGGGNVKID STY SQK Serine/threonine-protein kinase mTOR (P42345) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ AIQIDTWLQV 3008 4.87 1 2057.13 3 12345 [6] Phosphoryl STY no 1.86E+04 2.88E+0 IPQLIAR 4

DLMGFGTKP 28399 4.39 1 1200.565 2 12345 [7] Phosphoryl STY no 86.97 61.37 R

DSVMAVLEA 5364 5.58 1 3216.442 3, 4 12345 [2] Phosphoryl no 3746.28 4937.83 FVYDPLLNWR STY|[12] Phos- LMDTNTK phoryl STY|[21] Oxidation M

ELAICTVGR 24720 4.56 1 1097.501 2 12345 [5] no 149.28 508.15 Carbamidomethyl C|[6] Phosphoryl STY

KNLSIQR 13628 4.17 1 937.4803 1 12345 [4] Phosphoryl STY no 704.07 610.29

LFDAPEAPLP 7576 4.13 1 1519.754 2 12345 [11] Phosphoryl no 2250.51 3270.42 SRK STY

LGTGPAAATT 10983 4.51 2 2828.41 3, 4 12345 [26] Phosphoryl yes 2202.35 4242.56 AATTSSNVSV STY LQQFASGLK QLDHPLPTV 59863 4.42 1 2876.353 3 12345 [14] Phosphoryl no 24.21 12.98 HPQVTYAYM STY KNMWK

128

TAAFQALGLL 33962 4.81 1 2087.103 4 12345 [16] Phosphoryl no 164.78 150.89 SVAVRSEFK STY

TLGSFEFEGHS 20931 4.26 1 2113.93 2 12345 [1] Phosphoryl no 257.7 453.11 LTQFVR STY|[13] Phosphoryl STY

TWLKYASLCG 7600 3.56 1 1405.655 2, 3 12345 [1] Phosphoryl no 2875.84 2323.56 K STY|[9] Carbamidomethyl C

VFMHDNSPG 19690 4.7 1 1778.861 2 12345 [13] Phosphoryl no 391.41 538.23 RIVSIK STY

YHPQALIYPL 10933 4.55 1 1859.843 2 12345 [11] Phosphoryl no 2431.44 2317.87 TVASK STY|[14] Phosphoryl STY

Tropomyosin alpha-1 chain (F5H7S3) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ AELSEGQVR 35864 5.78 1 1963.932 2 12345 [4] Phosphoryl STY no 941.52 877.63 QLEEQLR

ETAEADVASL 57964 6.77 1 1510.673 2 12345 [9] Phosphoryl STY no 26.93 18.16 NRR

LATALQK 18307 6.42 1 823.4155 1 12345 [3] Phosphoryl STY no 527.36 929.51

LATALQKLEE 18102 6.03 1 1522.759 2 12345 [3] Phosphoryl STY no 435.24 299.48 AEK

SIDDLEDQLY 32120 ------2185.968 2, 3 12345 [1] Phosphoryl STY no 86.63 1076.62 QQLEQNR

SLQEQADAAE 36909 6.2 1 1425.587 2 12345 [1] Phosphoryl STY no 106.19 108.78 ER

VLSDKLK 6794 7.27 1 881.464 1 12345 [3] Phosphoryl STY no 1698.48 1413.51

Septin-6 (Q14141)

129

Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ STLMDTLFNT 16482 6.65 1 1349.603 1 12345 [6] Phosphoryl STY no 419.3 170 K

STLMDTLFNT 13664 6.01 1 1365.602 2 12345 [4] Oxidation no 731.43 516.96 K M|[10] Phosphoryl STY

SVSQGFCFNIL 5956 4.81 1 2331.964 2,3 12345 [1] Phosphoryl no 85528.27 90618.8 CVGETGLGK STY|[7] 6 Carbamidomethyl C|[12] Carbamidomethyl C|[16] Phosphoryl STY

SVSQGFCFNI 200 ------2331.975 2 12345 [3] Phosphoryl no 7.11E+05 6.44E+0 LCVGETGLGK STY|[7] 5 Carbamidomethyl C|[12] Carbamidomethyl C|[16] Phosphoryl STY

Actin, cytoplasmic 2 Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ DSYVGDEAQ 37050 7.28 1 1433.59 2, 3 12345 [2] Phosphoryl STY no 368.65 408.73 SKR

RGILTLK 432 7.21 1 879.4999 1 12345 [5] Phosphoryl STY no 3.07E+04 3.49E+0 4

VAPEEHPVLL 11003 7.38 1 2033.02 3 12345 [11] Phosphoryl no 9038.64 3231.05 TEAPLNPK STY

26S protease regulatory subunit 6A (E9PM69) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ

130

ACAAQTKAT 16303 5.64 1 1388.658 2 12345 [2] no 818.99 609.43 FLK Carbamidomethyl C|[6] Phosphoryl STY

APSIIFIDELD 4372 6.43 1 1781.955 2,3 12345 [15] Phosphoryl no 7297.71 7179.53 AIGTK STY

MNLLPNIESP 1829 5.32 1 1562.832 2 12345 [12] Phosphoryl no 3365.24 3843.11 VTR STY

MSTEEIIQRT 23222 4.78 1 1442.68 2 12345 [10] Phosphoryl no 289.2 304.34 R STY

NLLPNIESPVT 25339 4.54 1 1511.697 2 12345 [8] Phosphoryl no 130.27 232.21 R STY|[11] Phosphoryl STY

RGATELTHED 6711 4.97 1 2485.146 4 12345 [11] Phosphoryl no 1.03E+04 8604.47 YMEGILEVQA STY|[12] Oxidation K M

TRLLDSEIK 22622 5.99 1 1153.581 1,2 12345 [1] Phosphoryl STY no 5552.19 1733.41

Calcium-binding protein 39 Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ FFSEYEKLLHS 40253 4.96 1 2212.991 2, 3 12345 [11] Phosphoryl no 1232.33 1102.31 ENYVTK STY

FFSEYEKLLHS 40253 6.14 1 2212.991 3 12345 [14] Phosphoryl no 304.25 259.77 ENYVTK STY

LLGELLLDRH 47407 5.28 1 2093.117 3 12345 [13] Phosphoryl no 85.21 48.16 NFTIMTK STY

Centromere protein J (Q9HC77) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ LRSQIQMLVR 22274 4.34 1 1338.709 3 12345 [3] Phosphoryl no 1065.64 1165.25 STY|[7] Oxidation M

131

NLFPDGQEES 41437 4.69 1 2213.059 2 12345 [16] Phosphoryl no 161.4 27.38 IFPDGTIVR STY

VILFPNGTRK 1125 5.52 1 1223.647 1, 2 12345 [8] Phosphoryl STY no 1.56E+04 2.15E+0 4

YTTAARTFPD 16482 4.93 1 1349.603 1 12345 [2] Phosphoryl STY no 419.3 170 K

Fermitin family homolog 2 (Q96AC1) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ INQLYEQAK 8076 5.53 1 1185.549 2 12345 [5] Phosphoryl STY no 1366.93 1069.04

TWLLKTHWT 19629 5.2 1 1620.803 2 12345 [6] Phosphoryl STY no 256.84 567.87 LDK

TWLLKTHWT 2299 5.92 1 1620.817 2,3 12345 [9] Phosphoryl STY no 3.75E+04 6.65E+0 LDK 4

YGIQADAKLQ 23449 4.28 1 1923.937 2 12345 [12] Phosphoryl no 84.3 163.95 FTPQHK STY

Importin-5 (H0Y8C6) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ LQELIQKGTK 4208 4.93 2 1236.629 2 12345 [9] Phosphoryl STY no 3417.57 3461.93

SELLMIIQMET 54057 4.59 1 1975.917 3 12345 [1] Phosphoryl STY no 76.68 63.73 QSSMR

Keratin, type II cytoskeletal 80 (Q6KB66) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ SAEYGSSLQSS 52253 4.68 1 2348.094 3 12345 [1] Phosphoryl STY no 223.85 310.67 RSEIADLNVR

TAASRSGLSK 1510 6.08 1 1056.501 2 12345 [4] Phosphoryl STY no 3.56E+04 2.70E+0 4

F-actin-capping protein subunit alpha-1 (P52907)

132

Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ DVQDSLTVS 31064 5.29 1 1784.807 2 12345 [7] Phosphoryl STY no 173.76 119.33 NEAQTAK

E1A-binding protein p400 (Q96L91) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ ALYEDVILQP 32833 4.13 1 1966.966 3 12345 [12] Phosphoryl no 129.11 126.66 GTQEALK STY

ASRLFQPVQY 7586 3.81 1 2039.941 3 12345 [2] Phosphoryl STY no 4114.64 7187.02 GQKPEGR

QCLDYHYQE 5352 5.37 1 1921.762 2 12345 [2] Carbamidome- no 1294.86 5105.04 MQALK thyl C|[7] Phos- phoryl STY|[10] Oxidation M

TPTKPPCQ 15877 4.92 1 1007.414 2 12345 [1] Phosphoryl no 416.65 888.3 STY|[7] Carbamidomethyl C

Probable ATP-dependent RNA helicase DDX58 (O95786) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ KYNDALIISEH 12610 4.64 1 1608.758 2 12345 [9] Phosphoryl STY no 1168.78 1138.95 AR

LSFLKPGILTG 11306 6.15 1 1460.737 2,3 12345 [2] Phosphoryl no 1617.05 2844.58 R STY|[10] Phosphoryl STY

NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial (O75489) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ SLVDLTAVDV 5330 6.12 1 1862.933 2 12345 [12] Phosphoryl no 5288.38 7139.26 PTRQNR STY

Transgelin (A0A087WWB6)

133

Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ TLMALGSVA 17862 6.14 1 1269.644 2 12345 [11] Phosphoryl no 1625.79 2359.99 VTK STY

SNW domain-containing protein 1 (Q13573) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ DMAQSIYRPS 36356 5.23 1 1844.853 2 12345 [10] Phosphoryl no 253.53 179.49 KNLDK STY

TNRFVPDK 37259 4.81 1 1055.481 3 12345 [1] Phosphoryl STY no 170.14 160.97

Inhibitor of Bruton tyrosine kinase (E9PDR5) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ TIIGVAAGR 28127 4.38 1 936.492 1 12345 [1] Phosphoryl STY no 175.71 112.99

Pre-mRNA 3'-end-processing factor (A0A0B4J203) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ ETALPSTKAE 49219 5.4 1 2210.03 3 12345 [12] Phosphoryl no 129.17 88.33 FTSPPSLFK STY|[16] Phosphoryl STY

Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase (Q3LXA3) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ DLDSLK 7662 0 1 769.3333 1 12345 [4] Phosphoryl STY no 1200.99 748.36

IKMATADEIV 7412 4.77 1 1297.659 2 12345 [5] Phosphoryl STY no 625.07 662.39 K

SDLDSLK 4894 6.11 1 856.3649 1 12345 [5] Phosphoryl STY no 2920.45 1630.87

134

SPGADLLQVL 9425 5.63 1 1320.712 3 12345 [11] Phosphoryl no 1.72E+04 1.08E+0 TK STY 4

Protein kinase C-binding protein 1 (Q9ULU4) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ EPKEPSPK 17065 5 1 990.4537 1,2 12345 [6] Phosphoryl STY no 7499.26 3942.08

ILMSKPVLSG 49806 4.95 1 1666.84 2,3 12345 [3] Oxidation no 28.59 333.15 GTGRR M|[9] Phosphoryl STY

KEPSPK 45562 0 1 764.3515 1 12345 [4] Phosphoryl STY yes 167.23 16.59

KPKPTNPVEI 2642 5.97 2 1828.984 2,3 12345 [5] Phosphoryl STY no 4.08E+04 26095.5 KEELK 5

Torsin-1A-interacting protein 1 (Q5JTV8) ISHLVLPVQP 11810 4.88 1 1893.021 2 12345 [2] Phosphoryl STY no 596.84 129.26 ENALKR

Golgin subfamily A member 1 (Q92805) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ GSIRPSISNPR 9850 5.12 1 1262.618 2 12345 [2] Phosphoryl STY no 1152.9 814.92

IAEETAVAQR 22700 4.14 1 1705.876 2, 3 12345 [5] Phosphoryl STY no 1133.08 1621.19 PGGATR

Putative cytochrome P450 2D7 (A0A0G2JNM9) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ FQKAFLTQLD 8159 5.25 1 2168.066 3,4,5 12345 [7] Phosphoryl STY no 6684.77 5057.12 ELLTEHR

3-ketoacyl-CoA thiolase, peroxisomal (P09110) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ

135

EKQDTFALAS 14161 4.42 1 1572.814 2 12345 [5] Phosphoryl STY yes 926.2 323.6 QQK

SITVTQDEGI 10676 ------2409.104 2,3,4 12345 [1] Phosphoryl no 4383.23 1167.9 RPSTTMEGLA STY|[13] Phos- K phoryl STY|[16] Oxidation M

Hemoglobin subunit epsilon (P02100) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ EFTPEVQAA 40863 ------2686.396 3,4,5 12345 [15] Phosphoryl yes 893.72 212 WQKLVSAVAI STY ALAHK NGFI-A binding protein 1 (B8ZZS2) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ ALRDWVTNP 276 5.78 1 3285.642 3,4 12345 [17] Phosphoryl no 1.83E+05 1.12E+0 GLFNQPLTSLP STY|[18] 5 VSSIPIYK Phosphoryl STY

Programmed cell death protein 5 (O14737) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ LSNLALVKPE 1193 5.05 1 1519.849 2,3 12345 [2] Phosphoryl STY no 3.32E+04 2.99E+0 KTK 4

GTP-binding protein 1 (O00178) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ FIKTPEYLHID 8581 5.51 1 1738.854 3 12345 [7] Phosphoryl STY no 3371.86 3566.06 QR

Tyrosine-protein kinase (P23458) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ NVLVESEHQ 12814 4.87 1 2192.084 3 12345 [6] Phosphoryl STY no 1767.79 2132.22 VKIGDFGLTK

Band 4.1-like protein 1 (Q4VXN5) 136

Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ FTVK 20103 0 1 555.2551 1 12345 [2] Phosphoryl STY no 242.08 301.05

QIRSSPWNF 25099 5.33 1 1759.864 2 12345 [4] Phosphoryl STY no 326.04 333.54 AFTVK

Uncharacterized protein (M0R2C6) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ GLYRVHHFTK 896 5.5 2 1336.66 2,3 12345 [9] Phosphoryl STY no 6.50E+04 4.79E+0 4

D-glucuronyl C5-epimerase (O94923) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ FLTNGSVSVV 24312 4.71 1 1802.869 2 12345 [13] Phosphoryl no 339.77 334.58 LETTEK STY

Phosphoinositide 3-kinase regulatory subunit (A0A087X1F3) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ ELEKVSSWTS 23327 ------1537.654 3 12345 [6] Phosphoryl yes 360.77 1513.62 GR STY|[9] Phosphoryl STY

Rab effector Noc2 (Q9UNE2) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ LPSTGVR 15944 4.98 1 808.4017 1 12345 [3] Phosphoryl STY yes 320.45 88.04

Dipeptidyl peptidase 8 (Q6V1X1) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ

137

AGKPYDLQIY 8679 4.87 1 2330.021 3 12345 [5] Phosphoryl yes 1998.04 1117.58 PQERHSIR STY|[16] Phosphoryl STY

Cactin (Q8WUQ7) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ QQLQVTGDA 13687 4.86 1 2456.044 3 12345 [10] Phosphoryl yes 2810.97 1384.29 SESAEDIFFRR STY|[12] Phosphoryl STY

TAR DNA binding protein, isoform CRA_d (G3V162) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ TSDLIVLGLP 29441 4.61 1 1420.712 2 12345 [1] Phosphoryl STY yes 1928.84 918.89 WK

Ras GTPase-activating protein 4B (C9J798) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ VDNEPIIRTAT 30843 4.42 1 1720.875 3 12345 [9] Phosphoryl STY no 204.01 333.6 VWK

Cell division cycle 27, isoform CRA_c (G5EA36) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ SVARIGQTGT 25039 4.52 1 1196.601 2 12345 [10] Phosphoryl yes 452.92 473.33 K STY

Olfactomedin-like protein 3 (Q9NRN5) Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ HLCLAKLDPQ 4659 4.61 1 3001.367 3 12345 [3] Carbamidome- no 9516.41 1.04E+0 TLDTEQQWD thyl C|[14] Phos- 4 TPCPR phoryl STY|[22] Carbamidomethyl C

Zinc finger protein 540 (K7EK80) 138

Sequence Peptide Ion Score Hits Mass Charge Fraction Modifications In Average Normalised quantitation Abundances CTR SCZ TFRLSFYLTEH 8536 4.93 1 1648.766 2 12345 [1] Phosphoryl STY no 5542.27 8690.25 R

ANEXO II

ID Symbol Entrez Gene Name Location Type(s) Q9NYB9 ABI2 abl-interactor 2 Cytoplasm other Q12979 ABR active BCR-related Cytoplasm other Extracellular P16112 ACAN aggrecan Space other P24752 ACAT1 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme Q9BWD1 ACAT2 acetyl-CoA acetyltransferase 2 Cytoplasm enzyme Q99798 ACO2 aconitase 2, mitochondrial Cytoplasm enzyme acyl-CoA synthetase long-chain fam- O95573 ACSL3 ily member 3 Cytoplasm enzyme Q562P0 ACT actin-like protein (ACT) gene Other other P60709 ACTB actin, beta Cytoplasm other P60709 ACTB actin, beta Cytoplasm other P63261 ACTG1 actin gamma 1 Cytoplasm other transcription O43707 ACTN4 , alpha 4 Cytoplasm regulator ARP1 actin-related protein 1 homolog P61163 ACTR1A A, centractin alpha (yeast) Cytoplasm other ARP2 actin-related protein 2 homolog Plasma P61160 ACTR2 (yeast) Membrane other ARP3 actin-related protein 3 homolog Plasma P61158 ACTR3 (yeast) Membrane other ARP3 actin-related protein 3 homolog Plasma P61158 ACTR3 (yeast) Membrane other P25098 ADRBK1 adrenergic, beta, receptor kinase 1 Cytoplasm kinase P00568 AK1 adenylate kinase 1 Cytoplasm kinase O43572 AKAP10 A kinase (PRKA) anchor protein 10 Cytoplasm other Extracellular P02768 ALB albumin Space transporter Extracellular P02768 ALB albumin Space transporter 139

Extracellular P02768 ALB albumin Space transporter aldehyde dehydrogenase 1 family, P00352 ALDH1A1 member A1 Cytoplasm enzyme aldehyde dehydrogenase 2 family P05091 ALDH2 (mitochondrial) Cytoplasm enzyme aldehyde dehydrogenase 4 family, P30038 ALDH4A1 member A1 Cytoplasm enzyme P04075 ALDOA aldolase A, fructose-bisphosphate Cytoplasm enzyme P04075 ALDOA aldolase A, fructose-bisphosphate Cytoplasm enzyme P04075 ALDOA aldolase A, fructose-bisphosphate Cytoplasm enzyme P04075 ALDOA aldolase A, fructose-bisphosphate Cytoplasm enzyme P09972 ALDOC aldolase C, fructose-bisphosphate Cytoplasm enzyme P09972 ALDOC aldolase C, fructose-bisphosphate Cytoplasm enzyme P09972 ALDOC aldolase C, fructose-bisphosphate Cytoplasm enzyme Plasma P49418 AMPH amphiphysin Membrane other Plasma P49418 AMPH amphiphysin Membrane other Plasma Q01484 ANK2 ankyrin 2, neuronal Membrane other Plasma Q01484 ANK2 ankyrin 2, neuronal Membrane other Plasma P04083 ANXA1 Membrane enzyme Plasma P04083 ANXA1 annexin A1 Membrane enzyme Plasma P08758 ANXA5 Membrane transporter Plasma P08758 ANXA5 annexin A5 Membrane transporter Plasma P08758 ANXA5 annexin A5 Membrane transporter adaptor-related protein complex 1, Q10567 AP1B1 beta 1 subunit Cytoplasm transporter adaptor-related protein complex 2, Plasma P63010 AP2B1 beta 1 subunit Membrane transporter adaptor-related protein complex 2, mu Q96CW1 AP2M1 1 subunit Cytoplasm transporter APEX nuclease (apurinic/apyrimidinic Q9UBZ4 APEX2 endonuclease) 2 Nucleus enzyme P84077 ARF1 ADP-ribosylation factor 1 Cytoplasm enzyme P84085 ARF5 ADP-ribosylation factor 5 Cytoplasm enzyme Plasma P62330 ARF6 ADP-ribosylation factor 6 Membrane transporter ADP-ribosylation factor GTPase acti- Q8N6T3 ARFGAP1 vating protein 1 Cytoplasm transporter Rho GDP dissociation inhibitor (GDI) P52565 ARHGDIA alpha Cytoplasm other actin related protein 2/3 complex, Extracellular Q92747 ARPC1A subunit 1A, 41kDa Space other actin related protein 2/3 complex, O15143 ARPC1B subunit 1B, 41kDa Cytoplasm other

140

Plasma Q86WG3 ATCAY ataxia, cerebellar, Cayman type Membrane other ATPase, Ca++ transporting, plasma Plasma P23634 ATP2B4 membrane 4 Membrane transporter ATP synthase, H+ transporting, mito- chondrial F1 complex, alpha subunit P25705 ATP5A1 1, cardiac muscle Cytoplasm transporter ATP synthase, H+ transporting, mitochondrial F1 complex, beta P06576 ATP5B polypeptide Cytoplasm transporter ATP synthase, H+ transporting, O75947 ATP5H mitochondrial Fo complex, subunit d Cytoplasm enzyme ATPase, H+ transporting, lysosomal Q93050 ATP6V0A1 V0 subunit a1 Cytoplasm transporter ATPase, H+ transporting, lysosomal P61421 ATP6V0D1 38kDa, V0 subunit d1 Cytoplasm transporter ATPase, H+ transporting, lysosomal Plasma P38606 ATP6V1A 70kDa, V1 subunit A Membrane transporter ATPase, H+ transporting, lysosomal P21281 ATP6V1B2 56/58kDa, V1 subunit B2 Cytoplasm transporter ATPase, H+ transporting, lysosomal ATP6V1B2 ATP6V1B2 56/58kDa, V1 subunit B2 Cytoplasm transporter ATPase, H+ transporting, lysosomal P36543 ATP6V1E1 31kDa, V1 subunit E1 Cytoplasm transporter ATPase, aminophospholipid trans- porter (APLT), class I, type 8A, mem- Q4G1C1 ATP8A1 ber 1 Cytoplasm transporter Plasma Q9UQB8 BAIAP2 BAI1-associated protein 2 Membrane kinase brain abundant, membrane attached transcription P80723 BASP1 signal protein 1 Nucleus regulator O00499 BIN1 bridging integrator 1 Nucleus other O00499 BIN1 bridging integrator 1 Nucleus other P30043 BLVRB biliverdin reductase B Cytoplasm enzyme O95861 BPNT1 3'(2'), 5'-bisphosphate nucleotidase 1 Nucleus phosphatase breast cancer metastasis suppressor Q9HCU9 BRMS1 1 Nucleus other bassoon presynaptic cytomatrix Plasma Q9UPA5 BSN protein Membrane other open reading frame Q5SNV9 C1orf167 167 Other other C2 calcium-dependent domain con- Q86YS7 C2CD5 taining 5 Cytoplasm other P00915 CA1 carbonic anhydrase I Cytoplasm enzyme P00918 CA2 carbonic anhydrase II Cytoplasm enzyme Plasma Q8N126 CADM3 cell adhesion molecule 3 Membrane other calcium/calmodulin-dependent protein Q13554 CAMK2B kinase II beta Cytoplasm kinase calcium/calmodulin-dependent protein Q4G1A8 CAMK2D kinase II delta Cytoplasm kinase calcium/calmodulin-dependent protein Q8WU40 CAMK2G kinase II gamma Cytoplasm kinase Q8NCB2 CAMKV CaM kinase-like vesicle-associated Other kinase 141

CAP, adenylate cyclase-associated Plasma Q01518 CAP1 protein 1 (yeast) Membrane other CAP, adenylate cyclase-associated Plasma P40123 CAP2 protein, 2 (yeast) Membrane other P16152 CBR1 carbonyl reductase 1 Cytoplasm enzyme O75828 CBR3 carbonyl reductase 3 Cytoplasm enzyme Q6ZP65 CCDC64 coiled-coil domain containing 64 Cytoplasm other Q5T2Q4 CCNYL2 cyclin Y-like 2, pseudogene Other other chaperonin containing TCP1, subunit P49368 CCT3 3 (gamma) Cytoplasm other chaperonin containing TCP1, subunit P49368 CCT3 3 (gamma) Cytoplasm other chaperonin containing TCP1, subunit P48643 CCT5 5 (epsilon) Cytoplasm other chaperonin containing TCP1, subunit A0A024RDL1 CCT6A 6A (zeta 1) Cytoplasm other Q00535 CDK5 cyclin-dependent kinase 5 Nucleus kinase CDP-diacylglycerol synthase (phos- O95674 CDS2 phatidate cytidylyltransferase) 2 Cytoplasm enzyme P23528 CFL1 cofilin 1 (non-muscle) Nucleus other coiled-coil-helix-coiled-coil-helix do- transcription A4D1N4 CHCHD3 main containing 3 Cytoplasm regulator P12277 CKB creatine kinase, brain Cytoplasm kinase Plasma P09497 CLTB clathrin, light chain B Membrane other Plasma Q00610 CLTC clathrin, heavy chain (Hc) Membrane other cytidine monophosphate (UMP-CMP) P30085 CMPK1 kinase 1, cytosolic Nucleus kinase 2',3'-cyclic nucleotide 3' phos- P09543 CNP phodiesterase Cytoplasm enzyme cannabinoid receptor interacting Extracellular Q96F85 CNRIP1 protein 1 Space other cannabinoid receptor interacting Extracellular Q96F85 CNRIP1 protein 1 Space other Plasma Q12860 CNTN1 contactin 1 Membrane enzyme P21964 COMT catechol-O-methyltransferase Cytoplasm enzyme Q9BT78 COPS4 COP9 signalosome subunit 4 Cytoplasm other P31146 CORO1A coronin, actin binding protein, 1A Cytoplasm other coactosin-like F-actin binding protein Q14019 COTL1 1 Cytoplasm other Q14194 CRMP1 collapsin response mediator protein 1 Cytoplasm enzyme Q14194 CRMP1 collapsin response mediator protein 1 Cytoplasm enzyme Q14194 CRMP1 collapsin response mediator protein 1 Cytoplasm enzyme P02511 CRYAB crystallin, alpha B Nucleus other P02511 CRYAB crystallin, alpha B Nucleus other Q9Y2S2 CRYL1 crystallin, lambda 1 Cytoplasm enzyme Q14894 CRYM crystallin, mu Cytoplasm enzyme Q14894 CRYM crystallin, mu Cytoplasm enzyme O75390 CS citrate synthase Cytoplasm enzyme Q13363 CTBP1 C-terminal binding protein 1 Nucleus enzyme

142

(cadherin-associated protein), Plasma Q9UQB3 CTNND2 delta 2 Membrane other P07339 CTSD cathepsin D Cytoplasm peptidase cytoplasmic FMR1 interacting protein Q96F07 CYFIP2 2 Cytoplasm other Q13561 DCTN2 2 (p50) Cytoplasm other dimethylarginine O94760 DDAH1 dimethylaminohydrolase 1 Cytoplasm enzyme dimethylarginine O94760 DDAH1 dimethylaminohydrolase 1 Cytoplasm enzyme dimethylarginine O94760 DDAH1 dimethylaminohydrolase 1 Cytoplasm enzyme DEAD (Asp-Glu-Ala-Asp) box O00571 DDX3X helicase 3, X-linked Cytoplasm enzyme P09622 DLD dihydrolipoamide dehydrogenase Cytoplasm enzyme Plasma Q08495 DMTN dematin actin binding protein Membrane other DnaJ (Hsp40) homolog, subfamily C, L0N9S0 DNAJC6 member 6 Cytoplasm other Q05193 DNM1 1 Cytoplasm enzyme Plasma P50570 DNM2 dynamin 2 Membrane enzyme Q16555 DPYSL2 dihydropyrimidinase-like 2 Cytoplasm enzyme Q16555 DPYSL2 dihydropyrimidinase-like 2 Cytoplasm enzyme Q16555 DPYSL2 dihydropyrimidinase-like 2 Cytoplasm enzyme O14531 DPYSL4 dihydropyrimidinase-like 4 Cytoplasm enzyme Q9BPU6 DPYSL5 dihydropyrimidinase-like 5 Cytoplasm enzyme Q9BPU6 DPYSL5 dihydropyrimidinase-like 5 Cytoplasm enzyme DSTN DSTN (actin depolymerizing factor) Cytoplasm other Q14204 DYNC1H1 , cytoplasmic 1, heavy chain 1 Cytoplasm peptidase eukaryotic translation elongation fac- translation Q05639 EEF1A2 tor 1 alpha 2 Cytoplasm regulator Q96C19 EFHD2 EF-hand domain family, member D2 Other other Q9NZN4 EHD2 EH-domain containing 2 Nucleus other Q9NZN3 EHD3 EH-domain containing 3 Cytoplasm other eukaryotic translation initiation factor translation O00303 EIF3F 3, subunit F Cytoplasm regulator eukaryotic translation initiation factor translation Q14240 EIF4A2 4A2 Cytoplasm regulator P06733 ENO1 enolase 1, (alpha) Cytoplasm enzyme P06733 ENO1 enolase 1, (alpha) Cytoplasm enzyme P06733 ENO1 enolase 1, (alpha) Cytoplasm enzyme P09104 ENO2 enolase 2 (gamma, neuronal) Cytoplasm enzyme P09104 ENO2 enolase 2 (gamma, neuronal) Cytoplasm enzyme ectonucleotide pyrophosphatase/phosphodiesterase Q6UWR7 ENPP6 6 Cytoplasm enzyme erythrocyte band Plasma Q9H4G0 EPB41L1 4.1-like 1 Membrane other Plasma O75477 ERLIN1 ER lipid raft associated 1 Membrane other

143

Plasma O94905 ERLIN2 ER lipid raft associated 2 Membrane other Extracellular Q8TAM6 ERMN ermin, ERM-like protein Space other Extracellular Q8TAM6 ERMN ermin, ERM-like protein Space other P30040 ERP29 endoplasmic reticulum protein 29 Cytoplasm transporter P10768 ESD esterase D Cytoplasm enzyme Q9BSJ8 ESYT1 extended synaptotagmin-like protein 1 Cytoplasm other Plasma A0FGR8 ESYT2 extended synaptotagmin-like protein 2 Membrane other fatty acid binding protein 3, muscle P05413 FABP3 and heart Cytoplasm transporter phenylalanyl-tRNA synthetase, alpha Q9Y285 FARSA subunit Cytoplasm enzyme phenylalanyl-tRNA synthetase, alpha Q6IBR2 FARSA subunit Cytoplasm enzyme Q13642 FHL1 four and a half LIM domains 1 Cytoplasm other Q02790 FKBP4 FK506 binding protein 4, 59kDa Nucleus enzyme Plasma Q9BTI6 FLOT2 flotillin 2 Membrane other Q16658 FSCN1 fascin actin-bundling protein 1 Cytoplasm other P02794 FTH1 ferritin, heavy polypeptide 1 Cytoplasm enzyme P02792 FTL ferritin, light polypeptide Cytoplasm enzyme far upstream element (FUSE) binding transcription Q96AE4 FUBP1 protein 1 Nucleus regulator Plasma P17677 GAP43 growth associated protein 43 Membrane other glyceraldehyde-3-phosphate P04406 GAPDH dehydrogenase Cytoplasm enzyme glyceraldehyde-3-phosphate P04406 GAPDH dehydrogenase Cytoplasm enzyme Q9Y2T3 GDA guanine deaminase Cytoplasm enzyme P31150 GDI1 GDP dissociation inhibitor 1 Cytoplasm other P31150 GDI1 GDP dissociation inhibitor 1 Cytoplasm other P14136 GFAP glial fibrillary acidic protein Cytoplasm other Plasma P17302 GJA1 gap junction protein, alpha 1, 43kDa Membrane transporter Q9NZD2 GLTP glycolipid transfer protein Cytoplasm transporter P00367 GLUD1 glutamate dehydrogenase 1 Cytoplasm enzyme P00367 GLUD1 glutamate dehydrogenase 1 Cytoplasm enzyme P15104 GLUL glutamate-ammonia ligase Cytoplasm enzyme P15104 GLUL glutamate-ammonia ligase Cytoplasm enzyme Plasma Q5JWF2 GNAS GNAS complex Membrane enzyme guanine nucleotide binding protein (G Plasma P62873 GNB1 protein), beta polypeptide 1 Membrane enzyme guanine nucleotide binding protein (G Plasma P62873 GNB1 protein), beta polypeptide 1 Membrane enzyme guanine nucleotide binding protein (G Plasma P62879 GNB2 protein), beta polypeptide 2 Membrane enzyme glutamate receptor, ionotropic, AMPA Plasma P42262 GRIA2 2 Membrane ion channel 144

Extracellular P06396 GSN gelsolin Space other Extracellular P06396 GSN gelsolin Space other P21266 GSTM3 glutathione S-transferase mu 3 (brain) Cytoplasm enzyme P78417 GSTO1 glutathione S-transferase omega 1 Cytoplasm enzyme P09211 GSTP1 glutathione S-transferase pi 1 Cytoplasm enzyme P09211 GSTP1 glutathione S-transferase pi 1 Cytoplasm enzyme K7EK07 H3F3A/H3F3B H3 histone, family 3A Nucleus other K7EK07 H3F3A/H3F3B H3 histone, family 3A Nucleus other Q6NXT2 H3F3C H3 histone, family 3C Other other Q16775 HAGH hydroxyacylglutathione hydrolase Cytoplasm enzyme hyaluronan and proteoglycan link pro- Extracellular Q5T3J1 HAPLN2 tein 2 Space other P68871 HBB hemoglobin, beta Cytoplasm transporter P02042 HBD hemoglobin, delta Other transporter Q9NRV9 HEBP1 heme binding protein 1 Cytoplasm other hepatic and glial cell adhesion mole- Plasma Q14CZ8 HEPACAM cule Membrane other histidine triad nucleotide binding pro- P49773 HINT1 tein 1 Nucleus enzyme Q4VB24 HIST1H1E histone cluster 1, H1e Nucleus other P19367 HK1 hexokinase 1 Cytoplasm kinase P19367 HK1 hexokinase 1 Cytoplasm kinase heterogeneous nuclear Q13151 HNRNPA0 ribonucleoprotein A0 Nucleus other heterogeneous nuclear ribonucleopro- P22626 HNRNPA2B1 tein A2/B1 Nucleus other heterogeneous nuclear P51991 HNRNPA3 ribonucleoprotein A3 Nucleus other heterogeneous nuclear ribonucleopro- P07910 HNRNPC tein C (C1/C2) Nucleus other heterogeneous nuclear ribonucleopro- P07910 HNRNPC tein C (C1/C2) Nucleus other heterogeneous nuclear transcription P61978 HNRNPK ribonucleoprotein K Nucleus regulator heterogeneous nuclear transcription P61978 HNRNPK ribonucleoprotein K Nucleus regulator heterogeneous nuclear ribonucleopro- Q00839 HNRNPU tein U (scaffold attachment factor A) Nucleus transporter heterochromatin protein 1, binding Q5SSJ5 HP1BP3 protein 3 Nucleus other P84074 HPCA Cytoplasm other hydroxysteroid (17-beta) G5E9S2 HSD17B4 dehydrogenase 4 Cytoplasm enzyme heat shock protein 90kDa alpha (cyto- P07900 HSP90AA1 solic), class A member 1 Cytoplasm enzyme P0DMV8 HSPA1A/HSPA1B heat shock 70kDa protein 1A Cytoplasm enzyme P34931 HSPA1L heat shock 70kDa protein 1-like Cytoplasm other P34931 HSPA1L heat shock 70kDa protein 1-like Cytoplasm other P54652 HSPA2 heat shock 70kDa protein 2 Cytoplasm other heat shock 70kDa protein 5 (glucose- HSPA5 HSPA5 regulated protein, 78kDa) Cytoplasm enzyme 145

heat shock 70kDa protein 5 (glucose- P11021 HSPA5 regulated protein, 78kDa) Cytoplasm enzyme heat shock 70kDa protein 5 (glucose- P11021 HSPA5 regulated protein, 78kDa) Cytoplasm enzyme heat shock 70kDa protein 5 (glucose- P11021 HSPA5 regulated protein, 78kDa) Cytoplasm enzyme heat shock 70kDa protein 6 HSPA6 HSPA6 (HSP70B') Nucleus enzyme heat shock 70kDa protein 6 HSPA6 HSPA6 (HSP70B') Nucleus enzyme P11142 HSPA8 heat shock 70kDa protein 8 Cytoplasm enzyme P11142 HSPA8 heat shock 70kDa protein 8 Cytoplasm enzyme P11142 HSPA8 heat shock 70kDa protein 8 Cytoplasm enzyme P11142 HSPA8 heat shock 70kDa protein 8 Cytoplasm enzyme P04792 HSPB1 heat shock 27kDa protein 1 Cytoplasm other heat shock 60kDa protein 1 (chap- P10809 HSPD1 eronin) Cytoplasm enzyme P41252 IARS isoleucyl-tRNA synthetase Cytoplasm enzyme isocitrate dehydrogenase 2 (NADP+), P48735 IDH2 mitochondrial Cytoplasm enzyme isocitrate dehydrogenase 3 (NAD+) P50213 IDH3A alpha Cytoplasm enzyme immunoglobulin superfamily, member Plasma Q969P0 IGSF8 8 Membrane other inner membrane protein, Q16891 IMMT mitochondrial Cytoplasm other inner membrane protein, Q16891 IMMT mitochondrial Cytoplasm other inositol(myo)-1(or 4)- P29218 IMPA1 monophosphatase 1 Cytoplasm phosphatase inositol(myo)-1(or 4)- P29218 IMPA1 monophosphatase 1 Cytoplasm phosphatase IMP (inosine 5'-monophosphate) de- P12268 IMPDH2 hydrogenase 2 Cytoplasm enzyme internexin neuronal intermediate fila- Q16352 INA ment protein, alpha Cytoplasm other internexin neuronal intermediate fila- Q16352 INA ment protein, alpha Cytoplasm other internexin neuronal intermediate fila- Q16352 INA ment protein, alpha Cytoplasm other internexin neuronal intermediate fila- Q59EM6 INA ment protein, alpha Cytoplasm other inositol polyphosphate-4-phosphatase Q96PE3 INPP4A type I A Cytoplasm phosphatase killer cell immunoglobulin-like recep- tor, three domains, long cytoplasmic Plasma P43630 KIR3DL2 tail, 2 Membrane other Plasma Q7Z2J9 L1CAM L1 cell adhesion molecule Membrane other LanC lantibiotic synthetase compo- Plasma Q68FQ9 LANCL2 nent C-like 2 (bacterial) Membrane other P28838 LAP3 leucine aminopeptidase 3 Cytoplasm peptidase P07195 LDHB lactate dehydrogenase B Cytoplasm enzyme

146

Extracellular P09382 LGALS1 lectin, galactoside-binding, soluble, 1 Space other phospholysine phosphohistidine inor- Q9H008 LHPP ganic pyrophosphate phosphatase Cytoplasm phosphatase Plasma O14910 LIN7A lin-7 homolog A (C. elegans) Membrane other P36776 LONP1 lon peptidase 1, mitochondrial Cytoplasm peptidase leucine-rich pentatricopeptide repeat P42704 LRPPRC containing Cytoplasm other Q96PK2 MACF1 microtubule-actin crosslinking factor 1 Cytoplasm enzyme P78559 MAP1A microtubule-associated protein 1A Cytoplasm other Plasma P11137 MAP2 microtubule-associated protein 2 Membrane other P27361 MAPK3 mitogen-activated protein kinase 3 Cytoplasm kinase microtubule-associated protein, Q15555 MAPRE2 RP/EB family, member 2 Cytoplasm other microtubule-associated protein, Q9UPY8 MAPRE3 RP/EB family, member 3 Cytoplasm enzyme Plasma P10636 MAPT microtubule-associated protein tau Membrane other Extracellular P02686 MBP myelin basic protein Space other malate dehydrogenase 1, NAD P40925 MDH1 (soluble) Cytoplasm enzyme malate dehydrogenase 1, NAD P40925 MDH1 (soluble) Cytoplasm enzyme malate dehydrogenase 1, NAD P40925 MDH1 (soluble) Cytoplasm enzyme malate dehydrogenase 2, NAD P40926 MDH2 (mitochondrial) Cytoplasm enzyme malic enzyme 3, NADP(+)-dependent, Q16798 ME3 mitochondrial Cytoplasm enzyme Q9H8H3 METTL7A methyltransferase like 7A Cytoplasm other macrophage migration inhibitory fac- Extracellular P14174 MIF tor (glycosylation-inhibiting factor) Space cytokine Extracellular Q16653 MOG myelin oligodendrocyte glycoprotein Space other Extracellular Q16653 MOG myelin oligodendrocyte glycoprotein Space other Plasma P26038 MSN moesin Membrane other P00403 MT-CO2 cytochrome c oxidase subunit II Cytoplasm enzyme Q9Y6C9 MTCH2 mitochondrial carrier 2 Cytoplasm other methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1, methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate A0A024R652 MTHFD1 synthetase Cytoplasm enzyme , heavy chain 11, smooth mus- Q4G140 MYH11 cle Cytoplasm other myosin, light chain 6, alkali, smooth P60660 MYL6 muscle and non-muscle Cytoplasm other Q9Y4I1 MYO5A myosin VA Cytoplasm enzyme

147

N-ethylmaleimide-sensitive factor at- P54920 NAPA tachment protein, alpha Cytoplasm transporter NCK interacting protein with SH3 do- Q9NZQ3 NCKIPSD main Other other NADH dehydrogenase (ubiquinone) 1 Q16718 NDUFA5 alpha subcomplex, 5 Cytoplasm enzyme NADH dehydrogenase (ubiquinone) 1 Q16795 NDUFA9 alpha subcomplex, 9, 39kDa Cytoplasm enzyme NADH dehydrogenase (ubiquinone) 1 O43674 NDUFB5 beta subcomplex, 5, 16kDa Cytoplasm enzyme NADH dehydrogenase (ubiquinone) 1 Q9Y6M9 NDUFB9 beta subcomplex, 9, 22kDa Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH- Q8N1C4 NDUFS1 coenzyme Q reductase) Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH- P28331 NDUFS1 coenzyme Q reductase) Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH- O75489 NDUFS3 coenzyme Q reductase) Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa (NADH- Q6IBA0 NDUFS5 coenzyme Q reductase) Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa (NADH- O75380 NDUFS6 coenzyme Q reductase) Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Q6IB76 NDUFV2 flavoprotein 2, 24kDa Cytoplasm enzyme P12036 NEFH neurofilament, heavy polypeptide Cytoplasm other P07196 NEFL neurofilament, light polypeptide Cytoplasm other P07196 NEFL neurofilament, light polypeptide Cytoplasm other P07196 NEFL neurofilament, light polypeptide Cytoplasm other P07196 NEFL neurofilament, light polypeptide Cytoplasm other Plasma P07197 NEFM neurofilament, medium polypeptide Membrane other Plasma P07197 NEFM neurofilament, medium polypeptide Membrane other Plasma P07197 NEFM neurofilament, medium polypeptide Membrane other Q9BPW8 NIPSNAP1 nipsnap homolog 1 (C. elegans) Cytoplasm enzyme non-POU domain containing, oc- Q15233 NONO tamer-binding Nucleus other nucleophosmin (nucleolar phospho- transcription P06748 NPM1 protein B23, numatrin) Nucleus regulator Extracellular Q15818 NPTX1 neuronal pentraxin I Space other P46459 NSF N-ethylmaleimide-sensitive factor Cytoplasm transporter P46459 NSF N-ethylmaleimide-sensitive factor Cytoplasm transporter nuclear casein kinase and cyclin-de- Q9H1E3 NUCKS1 pendent kinase substrate 1 Nucleus kinase oxoglutarate (alpha-ketoglutarate) Q02218 OGDH dehydrogenase (lipoamide) Cytoplasm enzyme P55809 OXCT1 3-oxoacid CoA transferase 1 Cytoplasm enzyme 148

P07237 P4HB prolyl 4-hydroxylase, beta polypeptide Cytoplasm enzyme protein kinase C and casein kinase Q9BY11 PACSIN1 substrate in neurons 1 Cytoplasm kinase Q99497 PARK7 parkinson protein 7 Nucleus enzyme protein-L-isoaspartate (D-aspartate) P22061 PCMT1 O-methyltransferase Cytoplasm enzyme O95263 PDE8B phosphodiesterase 8B Cytoplasm enzyme pyruvate dehydrogenase (lipoamide) P08559 PDHA1 alpha 1 Cytoplasm enzyme protein disulfide isomerase family A, P30101 PDIA3 member 3 Cytoplasm peptidase pyridoxal (pyridoxine, vitamin B6) Plasma Q96GD0 PDXP phosphatase Membrane phosphatase phosphatidylethanolamine binding P30086 PEBP1 protein 1 Cytoplasm other transcription O60925 PFDN1 prefoldin subunit 1 Cytoplasm regulator P17858 PFKL phosphofructokinase, liver Cytoplasm kinase P35080 PFN2 2 Cytoplasm other P18669 PGAM1 phosphoglycerate mutase 1 (brain) Cytoplasm phosphatase P18669 PGAM1 phosphoglycerate mutase 1 (brain) Cytoplasm phosphatase P18669 PGAM1 phosphoglycerate mutase 1 (brain) Cytoplasm phosphatase P18669 PGAM1 phosphoglycerate mutase 1 (brain) Cytoplasm phosphatase P15259 PGAM2 phosphoglycerate mutase 2 (muscle) Cytoplasm phosphatase O95336 PGLS 6-phosphogluconolactonase Cytoplasm enzyme P36871 PGM1 phosphoglucomutase 1 Cytoplasm enzyme transcription P35232 PHB prohibitin Nucleus regulator O43175 PHGDH phosphoglycerate dehydrogenase Cytoplasm enzyme phytanoyl-CoA 2-hydroxylase inter- Q92561 PHYHIP acting protein Other other phosphatidylinositol-5-phosphate 4-ki- P48426 PIP4K2A nase, type II, alpha Cytoplasm kinase phosphatidylinositol transfer protein, Q00169 PITPNA alpha Cytoplasm transporter P14618 PKM pyruvate kinase, muscle Cytoplasm kinase P14618 PKM pyruvate kinase, muscle Cytoplasm kinase P14786 PKM pyruvate kinase, muscle Cytoplasm kinase Q15149 PLEC Cytoplasm other Plasma P60201 PLP1 proteolipid protein 1 Membrane other Plasma A8K9L3 PLP1 proteolipid protein 1 Membrane other peptidylprolyl isomerase A (cyclophilin P62937 PPIA A) Cytoplasm enzyme protein phosphatase 1, catalytic subu- P62136 PPP1CA nit, alpha isozyme Cytoplasm phosphatase protein phosphatase 1, regulatory Q15435 PPP1R7 subunit 7 Nucleus phosphatase protein phosphatase 2, regulatory P30153 PPP2R1A subunit A, alpha Cytoplasm phosphatase protein phosphatase 3, catalytic subu- Q08209 PPP3CA nit, alpha isozyme Cytoplasm phosphatase 149

P50897 PPT1 palmitoyl-protein thioesterase 1 Cytoplasm enzyme Q06830 PRDX1 peroxiredoxin 1 Cytoplasm enzyme Q06830 PRDX1 peroxiredoxin 1 Cytoplasm enzyme Q13162 PRDX4 peroxiredoxin 4 Cytoplasm enzyme P30041 PRDX6 peroxiredoxin 6 Cytoplasm enzyme P05129 PRKCG protein kinase C, gamma Cytoplasm kinase phosphoribosyl pyrophosphate P60891 PRPS1 synthetase 1 Cytoplasm kinase Extracellular P35030 PRSS3 protease, serine, 3 Space peptidase transcription Q2NLD4 PURA purine-rich element binding protein A Nucleus regulator P11216 PYGB phosphorylase, glycogen; brain Cytoplasm enzyme P11217 PYGM phosphorylase, glycogen, muscle Cytoplasm enzyme P09417 QDPR quinoid dihydropteridine reductase Cytoplasm enzyme P09417 QDPR quinoid dihydropteridine reductase Cytoplasm enzyme RAB11B, member RAS Q15907 RAB11B family Cytoplasm enzyme RAB11 family interacting protein 5 Q9BXF6 RAB11FIP5 (class I) Cytoplasm other RAB3A, member RAS oncogene fam- P20336 RAB3A ily Cytoplasm enzyme RAB3B, member RAS oncogene fam- P20337 RAB3B ily Cytoplasm enzyme RAP1A, member of RAS oncogene P62834 RAP1A family Cytoplasm enzyme RAP2B, member of RAS oncogene Plasma P61225 RAP2B family Membrane enzyme Ras protein-specific guanine nucleo- O14827 RASGRF2 tide-releasing factor 2 Cytoplasm other RNA binding motif protein, X-linked- Q96E39 RBMXL1 like 1 Nucleus other P12271 RLBP1 retinaldehyde binding protein 1 Cytoplasm transporter P13489 RNH1 ribonuclease/angiogenin inhibitor 1 Cytoplasm other Plasma Q6PKD5 RPH3A rabphilin 3A Membrane transporter P26373 RPL13 ribosomal protein L13 Nucleus other RPL19 RPL19 ribosomal protein L19 Cytoplasm other RPL30 RPL30 ribosomal protein L30 Cytoplasm other P05386 RPLP1 ribosomal protein, large, P1 Cytoplasm other P05387 RPLP2 ribosomal protein, large, P2 Cytoplasm other P46783 RPS10 ribosomal protein S10 Cytoplasm other RPS4X RPS4X ribosomal protein S4, X-linked Cytoplasm other Q9NQC3 RTN4 reticulon 4 Cytoplasm other P06703 S100A6 S100 calcium binding protein A6 Cytoplasm transporter SAMM50 sorting and assembly ma- Q9Y512 SAMM50 chinery component Cytoplasm other P49591 SARS seryl-tRNA synthetase Cytoplasm enzyme Q12765 SCRN1 secernin 1 Cytoplasm other SEC22 homolog B, vesicle trafficking O75396 SEC22B protein (gene/pseudogene) Cytoplasm other Q15019 SEPT2 septin 2 Cytoplasm enzyme 150

Q9UH03 SEPT3 septin 3 Cytoplasm enzyme O43236 SEPT4 septin 4 Cytoplasm enzyme Q16181 SEPT7 septin 7 Cytoplasm other Q16181 SEPT7 septin 7 Cytoplasm other Q9UHD8 SEPT9 septin 9 Cytoplasm enzyme serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), Extracellular P01011 SERPINA3 member 3 Space other serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), Extracellular P01011 SERPINA3 member 3 Space other SH3 domain binding glutamate-rich Q9H299 SH3BGRL3 protein like 3 Nucleus other Plasma Q99962 SH3GL2 SH3-domain GRB2-like 2 Membrane enzyme SH3 and multiple ankyrin repeat do- Plasma Q9BYB0 SHANK3 mains 3 Membrane other Plasma O00241 SIRPB1 signal-regulatory protein beta 1 Membrane other solute carrier family 12 (potas- Plasma Q9H2X9 SLC12A5 sium/chloride transporter), member 5 Membrane transporter solute carrier family 1 (glial high affin- Plasma P43004 SLC1A2 ity glutamate transporter), member 2 Membrane transporter solute carrier family 25 (mitochondrial carrier; oxoglutarate carrier), member Q02978 SLC25A11 11 Cytoplasm transporter solute carrier family 25 (mitochondrial Q00325 SLC25A3 carrier; phosphate carrier), member 3 Cytoplasm transporter solute carrier family 25 (mitochondrial Q00325 SLC25A3 carrier; phosphate carrier), member 3 Cytoplasm transporter solute carrier family 9, subfamily A (NHE3, cation proton antiporter 3), Plasma O14745 SLC9A3R1 member 3 regulator 1 Membrane other synaptosomal-associated protein, Plasma P60880 SNAP25 25kDa Membrane transporter synuclein, alpha (non A4 component P37840 SNCA of amyloid precursor) Cytoplasm other synuclein, alpha (non A4 component P37840 SNCA of amyloid precursor) Cytoplasm other Q16143 SNCB synuclein, beta Cytoplasm other synuclein, gamma (breast cancer- O76070 SNCG specific protein 1) Cytoplasm other P00441 SOD1 superoxide dismutase 1, soluble Cytoplasm enzyme Plasma Q13813 SPTAN1 , alpha, non-erythrocytic 1 Membrane other Plasma Q01082 SPTBN1 spectrin, beta, non-erythrocytic 1 Membrane other P30626 SRI sorcin Cytoplasm transporter signal recognition particle 14kDa (ho- P37108 SRP14 mologous Alu RNA binding protein) Cytoplasm other signal recognition particle receptor, B Q9Y5M8 SRPRB subunit Cytoplasm other Q13247 SRSF6 serine/arginine-rich splicing factor 6 Nucleus other Q16629 SRSF7 serine/arginine-rich splicing factor 7 Nucleus other 151

single-stranded DNA binding protein Q04837 SSBP1 1, mitochondrial Cytoplasm other Q9UEW8 STK39 serine threonine kinase 39 Nucleus kinase P16949 STMN1 stathmin 1 Cytoplasm other serine/threonine kinase receptor as- Plasma Q9Y3F4 STRAP sociated protein Membrane other Q7Z5K3 STX1A syntaxin 1A (brain) Cytoplasm transporter P61764 STXBP1 syntaxin binding protein 1 Cytoplasm transporter Plasma P17600 SYN1 synapsin I Membrane transporter Plasma O14994 SYN3 synapsin III Membrane other Q8N3V7 SYNPO synaptopodin Cytoplasm other O00445 SYT5 synaptotagmin V Cytoplasm transporter Extracellular Q9UI15 TAGLN3 transgelin 3 Space other Extracellular P02787 TF transferrin Space transporter Extracellular P02787 TF transferrin Space transporter translocase of inner mitochondrial Q9UPE4 TIMM44 membrane 44 homolog (yeast) Cytoplasm transporter P29401 TKT transketolase Cytoplasm enzyme Q9NZR1 TMOD2 2 (neuronal) Cytoplasm other P60174 TPI1 triosephosphate isomerase 1 Cytoplasm enzyme P60174 TPI1 triosephosphate isomerase 1 Cytoplasm enzyme P60174 TPI1 triosephosphate isomerase 1 Cytoplasm enzyme P09493 TPM1 tropomyosin 1 (alpha) Cytoplasm other P07951 TPM2 tropomyosin 2 (beta) Other other P06753 TPM3 Cytoplasm other P06753 TPM3 tropomyosin 3 Cytoplasm other P67936 TPM4 tropomyosin 4 Cytoplasm other tubulin polymerization-promoting pro- A0A024R702 TPPP3 tein family member 3 Cytoplasm other Q5T0D9 TPRG1L tumor protein p63 regulated 1-like Cytoplasm other TTC9C TTC9C tetratricopeptide repeat domain 9C Other other Q71U36 TUBA1A tubulin, alpha 1a Cytoplasm other P68363 TUBA1B tubulin, alpha 1b Cytoplasm other P68363 TUBA1B tubulin, alpha 1b Cytoplasm other P68363 TUBA1B tubulin, alpha 1b Cytoplasm other Q9BQE3 TUBA1C tubulin, alpha 1c Cytoplasm other Q9BQE3 TUBA1C tubulin, alpha 1c Cytoplasm other P68366 TUBA4A tubulin, alpha 4a Cytoplasm other P68366 TUBA4A tubulin, alpha 4a Cytoplasm other A6NHL2 TUBAL3 tubulin, alpha-like 3 Other enzyme P07437 TUBB tubulin, beta class I Cytoplasm other P07437 TUBB tubulin, beta class I Cytoplasm other P07437 TUBB tubulin, beta class I Cytoplasm other Q13885 TUBB2A tubulin, beta 2A class IIa Cytoplasm other Q9BVA1 TUBB2B tubulin, beta 2B class IIb Cytoplasm other Q9BVA1 TUBB2B tubulin, beta 2B class IIb Cytoplasm other 152

Q13509 TUBB3 tubulin, beta 3 class III Cytoplasm other P04350 TUBB4A tubulin, beta 4A class IVa Cytoplasm other P04350 TUBB4A tubulin, beta 4A class IVa Cytoplasm other P68371 TUBB4B tubulin, beta 4B class IVb Cytoplasm other Q9BUF5 TUBB6 tubulin, beta 6 class V Cytoplasm other Q3ZCM7 TUBB8 tubulin, beta 8 class VIII Cytoplasm other Tu translation elongation factor, mito- translation P49411 TUFM chondrial Cytoplasm regulator P61088 UBE2N ubiquitin-conjugating enzyme E2N Cytoplasm enzyme P61088 UBE2N ubiquitin-conjugating enzyme E2N Cytoplasm enzyme ubiquitin carboxyl-terminal esterase P09936 UCHL1 L1 (ubiquitin thiolesterase) Cytoplasm peptidase ubiquitin carboxyl-terminal esterase P09936 UCHL1 L1 (ubiquitin thiolesterase) Cytoplasm peptidase Plasma Q9UPW8 UNC13A unc-13 homolog A (C. elegans) Membrane other ubiquinol-cytochrome c reductase P31930 UQCRC1 core protein I Cytoplasm enzyme ubiquitin specific peptidase 5 P45974 USP5 (isopeptidase T) Cytoplasm peptidase vesicle-associated membrane protein Plasma P63027 VAMP2 2 (synaptobrevin 2) Membrane other VAMP (vesicle-associated membrane Plasma O95292 VAPB protein)-associated protein B and C Membrane other VAMP (vesicle-associated membrane Plasma O95292 VAPB protein)-associated protein B and C Membrane other Extracellular Q86W61 VCAN versican Space other Q60932 VDAC1 voltage-dependent anion channel 1 Cytoplasm ion channel P45880 VDAC2 voltage-dependent anion channel 2 Cytoplasm ion channel P08670 VIM Cytoplasm other P62763 VSNL1 visinin-like 1 Cytoplasm other Extracellular O75083 WDR1 WD repeat domain 1 Space other P54577 YARS tyrosyl-tRNA synthetase Cytoplasm enzyme tyrosine 3-monooxygenase/trypto- phan 5-monooxygenase activation transcription P31946 YWHAB protein, beta Cytoplasm regulator tyrosine 3-monooxygenase/trypto- phan 5-monooxygenase activation P62258 YWHAE protein, epsilon Cytoplasm other tyrosine 3-monooxygenase/trypto- phan 5-monooxygenase activation P61981 YWHAG protein, gamma Cytoplasm other tyrosine 3-monooxygenase/trypto- phan 5-monooxygenase activation transcription Q04917 YWHAH protein, eta Cytoplasm regulator tyrosine 3-monooxygenase/trypto- phan 5-monooxygenase activation P27348 YWHAQ protein, theta Cytoplasm other tyrosine 3-monooxygenase/trypto- phan 5-monooxygenase activation P63104 YWHAZ protein, zeta Cytoplasm enzyme 153

tyrosine 3-monooxygenase/trypto- phan 5-monooxygenase activation P63104 YWHAZ protein, zeta Cytoplasm enzyme tyrosine 3-monooxygenase/trypto- phan 5-monooxygenase activation Q2F831 YWHAZ protein, zeta Cytoplasm enzyme

154

ANEXO III

ID Symbol Entrez Gene Name Location Type(s) AAK1_HUMAN AAK1 AP2 associated kinase 1 Cytoplasm kinase 4-aminobutyrate GABT_HUMAN ABAT aminotransferase Cytoplasm enzyme ABCD3_HUMA ATP-binding cassette, sub- N ABCD3 family D (ALD), member 3 Cytoplasm transporter ABHDA_HUMA abhydrolase domain N ABHD10 containing 10 Cytoplasm enzyme acetyl-CoA acetyltransferase THIL_HUMAN ACAT1 1 Cytoplasm enzyme ACON_HUMAN ACO2 aconitase 2, mitochondrial Cytoplasm enzyme BACH_HUMAN ACOT7 acyl-CoA thioesterase 7 Cytoplasm enzyme O00154 ACOT7 acyl-CoA thioesterase 7 Cytoplasm enzyme ACTB_HUMAN ACTB actin, beta Cytoplasm other ACTB_HUMAN ACTB actin, beta Cytoplasm other ACTB ACTB actin, beta Cytoplasm other ACTBL_HUMA N ACTBL2 actin, beta-like 2 Nucleus other ACTG_HUMAN ACTG1 actin gamma 1 Cytoplasm other ACTN1_HUMA transcription N ACTN1 actinin, alpha 1 Cytoplasm regulator ACTN3_HUMA actinin, alpha 3 Plasma N ACTN3 (gene/pseudogene) Membrane other ARP2 actin-related protein 2 Plasma ARP2_HUMAN ACTR2 homolog (yeast) Membrane other ARP3B_HUMA ARP3 actin-related protein 3 N ACTR3B homolog B (yeast) Cytoplasm other ADCK5_HUMA aarF domain containing N ADCK5 kinase 5 Cytoplasm kinase 1-acylglycerol-3-phosphate O- PLCB_HUMAN AGPAT2 acyltransferase 2 Cytoplasm enzyme SAHH2_HUMA adenosylhomocysteinase-like N AHCYL1 1 Cytoplasm enzyme KAD1_HUMAN AK1 adenylate kinase 1 Cytoplasm kinase aldo-keto reductase family 1, member A1 (aldehyde P14550 AKR1A1 reductase) Cytoplasm enzyme Extracellul ALBU_HUMAN ALB albumin ar Space transporter Extracellul P02768 ALB albumin ar Space transporter aldehyde dehydrogenase 1 ALDH1A1 ALDH1A1 family, member A1 Cytoplasm enzyme aldehyde dehydrogenase 1 AL1A3_HUMAN ALDH1A3 family, member A3 Cytoplasm enzyme aldehyde dehydrogenase 1 AL1L1_HUMAN ALDH1L1 family, member L1 Cytoplasm enzyme aldehyde dehydrogenase 3 AL3B1_HUMAN ALDH3B1 family, member B1 Cytoplasm enzyme aldehyde dehydrogenase 4 AL4A1_HUMAN ALDH4A1 family, member A1 Cytoplasm enzyme 155

aldehyde dehydrogenase 7 P49419 ALDH7A1 family, member A1 Cytoplasm enzyme aldehyde dehydrogenase 9 AL9A1_HUMAN ALDH9A1 family, member A1 Cytoplasm enzyme aldehyde dehydrogenase 9 P49189 ALDH9A1 family, member A1 Cytoplasm enzyme ALDOA_HUMA aldolase A, fructose- N ALDOA bisphosphate Cytoplasm enzyme ALDOC_HUMA aldolase C, fructose- N ALDOC bisphosphate Cytoplasm enzyme aldolase C, fructose- ALDOC ALDOC bisphosphate Cytoplasm enzyme ALG5, dolichyl-phosphate ALG5_HUMAN ALG5 beta-glucosyltransferase Cytoplasm enzyme alkB homolog 1, histone H2A ALKB1_HUMAN ALKBH1 dioxygenase Cytoplasm enzyme amyotrophic lateral sclerosis 2 (juvenile) chromosome region, AL2SB_HUMAN ALS2CR12 candidate 12 Cytoplasm other Plasma AMPH_HUMAN AMPH amphiphysin Membrane other archaelysin family AMZ1_HUMAN AMZ1 metallopeptidase 1 Other peptidase ankyrin 3, node of Ranvier Plasma ANK3_HUMAN ANK3 (ankyrin G) Membrane other ankyrin 3, node of Ranvier Plasma ANK3_HUMAN ANK3 (ankyrin G) Membrane other ANR16_HUMA N ANKRD16 ankyrin repeat domain 16 Other other ANR44_HUMA N ANKRD44 ankyrin repeat domain 44 Other other ANKS3_HUMA ankyrin repeat and sterile al- transcription N ANKS3 pha motif domain containing 3 Nucleus regulator alanyl (membrane) Plasma AMPN_HUMAN ANPEP aminopeptidase Membrane peptidase ANXA6_HUMA Plasma N ANXA6 annexin A6 Membrane ion channel Plasma ANXA6 ANXA6 annexin A6 Membrane ion channel adaptor-related protein AP1B1_HUMAN AP1B1 complex 1, beta 1 subunit Cytoplasm transporter adaptor-related protein com- AP2A2_HUMAN AP2A2 plex 2, alpha 2 subunit Cytoplasm transporter adaptor-related protein Plasma AP2B1_HUMAN AP2B1 complex 2, beta 1 subunit Membrane transporter AP2M1_HUMA adaptor-related protein com- N AP2M1 plex 2, mu 1 subunit Cytoplasm transporter adaptor-related protein AP3D1_HUMAN AP3D1 complex 3, delta 1 subunit Cytoplasm transporter adaptor-related protein AP5S1_HUMAN AP5S1 complex 5, sigma 1 subunit Cytoplasm other aprataxin and PNKP like fac- APLF_HUMAN APLF tor Cytoplasm enzyme APOA5_HUMA Extracellul N APOA5 apolipoprotein A-V ar Space transporter 156

Extracellul APOD_HUMAN APOD apolipoprotein D ar Space transporter amyloid beta (A4) precursor Plasma A4_HUMAN APP protein Membrane other amyloid beta (A4) precursor Plasma A4_HUMAN APP protein Membrane other adenine APT_HUMAN APRT phosphoribosyltransferase Cytoplasm enzyme aquaporin 1 (Colton blood Plasma AQP1_HUMAN AQP1 group) Membrane transporter ARF4_HUMAN ARF4 ADP-ribosylation factor 4 Cytoplasm enzyme RHG01_HUMA Rho GTPase activating N ARHGAP1 protein 1 Cytoplasm other ARL8A_HUMAN ARL8A ADP-ribosylation factor-like 8A Cytoplasm enzyme ARC1A_HUMA actin related protein 2/3 com- Extracellul N ARPC1A plex, subunit 1A, 41kDa ar Space other ARPC2_HUMA actin related protein 2/3 com- N ARPC2 plex, subunit 2, 34kDa Cytoplasm other ARPC4_HUMA actin related protein 2/3 com- N ARPC4 plex, subunit 4, 20kDa Cytoplasm other actin related protein 2/3 com- ARPC5 ARPC5 plex, subunit 5, 16kDa Cytoplasm other A16L1_HUMAN ATG16L1 autophagy related 16-like 1 Cytoplasm enzyme 5-aminoimidazole-4- carboxamide ribonucleotide formyltransferase/IMP PUR9_HUMAN ATIC cyclohydrolase Cytoplasm enzyme ATPase, H+/K+ transporting, Plasma AT12A_HUMAN ATP12A nongastric, alpha polypeptide Membrane transporter ATPase, Na+/K+ transporting, Plasma AT1A1_HUMAN ATP1A1 alpha 1 polypeptide Membrane transporter ATPase, Na+/K+ transporting, Plasma AT1A2_HUMAN ATP1A2 alpha 2 polypeptide Membrane transporter ATPase, Na+/K+ transporting, Plasma AT1A3_HUMAN ATP1A3 alpha 3 polypeptide Membrane transporter ATPase, Na+/K+ transporting, Plasma AT1A4_HUMAN ATP1A4 alpha 4 polypeptide Membrane transporter ATPase, Na+/K+ transporting, Plasma AT1B1_HUMAN ATP1B1 beta 1 polypeptide Membrane transporter ATPase, Ca++ transporting, AT2A1_HUMAN ATP2A1 cardiac muscle, fast twitch 1 Cytoplasm transporter ATPase, Ca++ transporting, O14983 ATP2A1 cardiac muscle, fast twitch 1 Cytoplasm transporter ATPase, Ca++ transporting, AT2A2_HUMAN ATP2A2 cardiac muscle, slow twitch 2 Cytoplasm transporter ATPase, Ca++ transporting, Plasma AT2B1_HUMAN ATP2B1 plasma membrane 1 Membrane transporter ATPase, H+/K+ exchanging, Plasma ATP4A_HUMAN ATP4A alpha polypeptide Membrane transporter ATP synthase, H+ transport- ing, mitochondrial F1 complex, alpha subunit 1, cardiac mus- ATPA_HUMAN ATP5A1 cle Cytoplasm transporter

157

ATP synthase, H+ transporting, mitochondrial F1 ATPB_HUMAN ATP5B complex, beta polypeptide Cytoplasm transporter ATP synthase, H+ transporting, mitochondrial F1 ATP5B ATP5B complex, beta polypeptide Cytoplasm transporter ATP synthase, H+ transporting, mitochondrial F1 P06576 ATP5B complex, beta polypeptide Cytoplasm transporter ATP synthase, H+ transport- ing, mitochondrial F1 complex, ATPG_HUMAN ATP5C1 gamma polypeptide 1 Cytoplasm transporter ATP synthase, H+ transport- ing, mitochondrial F1 complex, P36542 ATP5C1 gamma polypeptide 1 Cytoplasm transporter ATP synthase, H+ transporting, mitochondrial F1 ATPD_HUMAN ATP5D complex, delta subunit Cytoplasm transporter ATP synthase, H+ transporting, mitochondrial F1 P30049 ATP5D complex, delta subunit Cytoplasm transporter ATP synthase, H+ transporting, mitochondrial Fo AT5F1_HUMAN ATP5F1 complex, subunit B1 Cytoplasm transporter ATP synthase, H+ transporting, mitochondrial Fo AT5F1_HUMAN ATP5F1 complex, subunit B1 Cytoplasm transporter ATP synthase, H+ transporting, mitochondrial Fo ATP5H ATP5H complex, subunit d Cytoplasm enzyme ATP synthase, H+ transporting, mitochondrial Fo ATPK_HUMAN ATP5J2 complex, subunit F2 Cytoplasm transporter ATP synthase, H+ transporting, mitochondrial Fo ATP5L_HUMAN ATP5L complex, subunit G Cytoplasm enzyme ATP synthase, H+ transporting, mitochondrial F1 ATPO_HUMAN ATP5O complex, O subunit Cytoplasm transporter ATPase, H+ transporting, VPP1_HUMAN ATP6V0A1 lysosomal V0 subunit a1 Cytoplasm transporter ATPase, H+ transporting, lysosomal 38kDa, V0 subunit VA0D1_HUMAN ATP6V0D1 d1 Cytoplasm transporter ATPase, H+ transporting, lysosomal 70kDa, V1 subunit Plasma VATA_HUMAN ATP6V1A A Membrane transporter ATPase, H+ transporting, lysosomal 70kDa, V1 subunit Plasma VATA_HUMAN ATP6V1A A Membrane transporter ATPase, H+ transporting, lysosomal 56/58kDa, V1 VATB2_HUMAN ATP6V1B2 subunit B2 Cytoplasm transporter

158

ATPase, H+ transporting, lysosomal 56/58kDa, V1 VATB2_HUMAN ATP6V1B2 subunit B2 Cytoplasm transporter ATPase, H+ transporting, lysosomal 56/58kDa, V1 ATP6V1B2 ATP6V1B2 subunit B2 Cytoplasm transporter ATPase, H+ transporting, lysosomal 56/58kDa, V1 P21281 ATP6V1B2 subunit B2 Cytoplasm transporter ATPase, H+ transporting, lysosomal 31kDa, V1 subunit VATE1_HUMAN ATP6V1E1 E1 Cytoplasm transporter ATPase, H+ transporting, lysosomal 14kDa, V1 subunit VATF_HUMAN ATP6V1F F Cytoplasm enzyme ATPase, H+ transporting, VATG1_HUMA lysosomal 13kDa, V1 subunit N ATP6V1G1 G1 Cytoplasm transporter ATPase, H+ transporting, VATG2_HUMA lysosomal 13kDa, V1 subunit N ATP6V1G2 G2 Cytoplasm transporter ATIF1_HUMAN ATPIF1 ATPase inhibitory factor 1 Cytoplasm other BCL2-associated athanogene BAG3_HUMAN BAG3 3 Cytoplasm other BASP1_HUMA brain abundant, membrane at- transcription N BASP1 tached signal protein 1 Nucleus regulator BH3 interacting domain death BID_HUMAN BID agonist Cytoplasm other baculoviral IAP repeat BIRC8_HUMAN BIRC8 containing 8 Cytoplasm other BMS1 ribosome biogenesis BMS1_HUMAN BMS1 factor Nucleus other BCL2/adenovirus E1B 19kDa SEC20_HUMAN BNIP1 interacting protein 1 Cytoplasm transporter BCL2/adenovirus E1B 19kDa BNIP3 BNIP3 interacting protein 3 Cytoplasm other open reading CS052_HUMAN C19orf52 frame 52 Other other C21orf33/LOC1027240 chromosome 21 open reading ES1_HUMAN 23 frame 33 Cytoplasm other Extracellul CO3_HUMAN C3 complement component 3 ar Space peptidase open reading CG033_HUMAN C7orf33 frame 33 Other other CABP5_HUMA N CABP5 calcium binding protein 5 Cytoplasm other CADM1_HUMA Plasma N CADM1 cell adhesion molecule 1 Membrane other CADM2_HUMA Plasma N CADM2 cell adhesion molecule 2 Membrane other CADM3_HUMA Plasma N CADM3 cell adhesion molecule 3 Membrane other CALCB_HUMA calcitonin-related polypeptide Extracellul N CALCB beta ar Space other

159

KCC2A_HUMA calcium/calmodulin-dependent N CAMK2A protein kinase II alpha Cytoplasm kinase KCC2A_HUMA calcium/calmodulin-dependent N CAMK2A protein kinase II alpha Cytoplasm kinase KCC2B_HUMA calcium/calmodulin-dependent N CAMK2B protein kinase II beta Cytoplasm kinase KCC2B_HUMA calcium/calmodulin-dependent N CAMK2B protein kinase II beta Cytoplasm kinase KCC2D_HUMA calcium/calmodulin-dependent N CAMK2D protein kinase II delta Cytoplasm kinase KCC2G_HUMA calcium/calmodulin-dependent N CAMK2G protein kinase II gamma Cytoplasm kinase KCC2G_HUMA calcium/calmodulin-dependent N CAMK2G protein kinase II gamma Cytoplasm kinase CAMKV_HUMA CaM kinase-like vesicle-asso- N CAMKV ciated Other kinase CAN5_HUMAN CAPN5 calpain 5 Cytoplasm peptidase CAN8_HUMAN CAPN8 calpain 8 Cytoplasm peptidase CATA_HUMAN CAT catalase Cytoplasm enzyme CATA_HUMAN CAT catalase Cytoplasm enzyme coiled-coil domain containing CC178_HUMAN CCDC178 178 Other other CCD57_HUMA coiled-coil domain containing N CCDC57 57 Other other CCD65_HUMA coiled-coil domain containing N CCDC65 65 Other other CCD66_HUMA coiled-coil domain containing N CCDC66 66 Other other chaperonin containing TCP1, P78371 CCT2 subunit 2 (beta) Cytoplasm kinase chaperonin containing TCP1, TCPE_HUMAN CCT5 subunit 5 (epsilon) Cytoplasm other chaperonin containing TCP1, TCPZ_HUMAN CCT6A subunit 6A (zeta 1) Cytoplasm other chaperonin containing TCP1, Q92526 CCT6B subunit 6B (zeta 2) Cytoplasm transporter MPIP3_HUMAN CDC25C cell division cycle 25C Nucleus phosphatase CDC37_HUMA N CDC37 cell division cycle 37 Cytoplasm other Plasma Q86UP0 CDH24 cadherin 24, type 2 Membrane other carcinoembryonic antigen-re- lated cell adhesion molecule transcription CEA16_HUMAN CEACAM16 16 Cytoplasm regulator cell cycle exit and neuronal CEND_HUMAN CEND1 differentiation 1 Other other CENPN_HUMA N CENPN centromere protein N Nucleus other COF1_HUMAN CFL1 cofilin 1 (non-muscle) Nucleus other Extracellul COF2_HUMAN CFL2 cofilin 2 (muscle) ar Space other carbohydrate (N- CHST9_HUMA acetylgalactosamine 4-0) N CHST9 sulfotransferase 9 Cytoplasm enzyme 160

CISD1_HUMAN CISD1 CDGSH iron sulfur domain 1 Cytoplasm other KCRB_HUMAN CKB creatine kinase, brain Cytoplasm kinase KCRB_HUMAN CKB creatine kinase, brain Cytoplasm kinase creatine kinase, mitochondrial KCRS_HUMAN CKMT2 2 (sarcomeric) Cytoplasm kinase CLCA3_HUMA chloride channel accessory 3, Plasma N CLCA3P pseudogene Membrane ion channel Plasma CLD11_HUMAN CLDN11 claudin 11 Membrane other Plasma CLIC4_HUMAN CLIC4 chloride intracellular channel 4 Membrane ion channel Plasma CLCB_HUMAN CLTB clathrin, light chain B Membrane other Plasma CLH1_HUMAN CLTC clathrin, heavy chain (Hc) Membrane other Plasma CLH2_HUMAN CLTCL1 clathrin, heavy chain-like 1 Membrane other 2',3'-cyclic nucleotide 3' phos- CN37_HUMAN CNP phodiesterase Cytoplasm enzyme 2',3'-cyclic nucleotide 3' phos- CN37_HUMAN CNP phodiesterase Cytoplasm enzyme CNRP1_HUMA cannabinoid receptor Extracellul N CNRIP1 interacting protein 1 ar Space other CNTN1_HUMA Plasma N CNTN1 contactin 1 Membrane enzyme CNTN1_HUMA Plasma N CNTN1 contactin 1 Membrane enzyme Extracellul P02458 COL2A1 collagen, type II, alpha 1 ar Space other CO6A1_HUMA Extracellul N COL6A1 collagen, type VI, alpha 1 ar Space other CO9A1_HUMA Extracellul N COL9A1 collagen, type IX, alpha 1 ar Space other COMT_HUMAN COMT catechol-O-methyltransferase Cytoplasm enzyme COMT_HUMAN COMT catechol-O-methyltransferase Cytoplasm enzyme coatomer protein complex, COPE_HUMAN COPE subunit epsilon Cytoplasm transporter COR1A_HUMA coronin, actin binding protein, N CORO1A 1A Cytoplasm other COR1A_HUMA coronin, actin binding protein, N CORO1A 1A Cytoplasm other COX41_HUMA cytochrome c oxidase subunit N COX4I1 IV isoform 1 Cytoplasm enzyme COX5A_HUMA cytochrome c oxidase subunit N COX5A Va Cytoplasm enzyme COX5B_HUMA cytochrome c oxidase subunit N COX5B Vb Cytoplasm enzyme cytochrome c oxidase subunit CX6B1_HUMAN COX6B1 VIb polypeptide 1 (ubiquitous) Cytoplasm enzyme CBPA3_HUMA carboxypeptidase A3 (mast Extracellul N CPA3 cell) ar Space peptidase CPNE4_HUMA N CPNE4 copine IV Cytoplasm other CRIP2_HUMAN CRIP2 cysteine-rich protein 2 Nucleus other 161

collapsin response mediator DPYL1_HUMAN CRMP1 protein 1 Cytoplasm enzyme CRNL1_HUMA crooked neck pre-mRNA splic- N CRNKL1 ing factor 1 Nucleus other CRTAP_HUMA Extracellul N CRTAP cartilage associated protein ar Space other CRYAB_HUMA N CRYAB crystallin, alpha B Nucleus other CRYAB CRYAB crystallin, alpha B Nucleus other CISY_HUMAN CS citrate synthase Cytoplasm enzyme CISY_HUMAN CS citrate synthase Cytoplasm enzyme casein kinase 2, alpha prime CSK22_HUMAN CSNK2A2 polypeptide Cytoplasm kinase CTD (carboxy-terminal do- main, RNA polymerase II, pol- CTDP1_HUMA ypeptide A) phosphatase, sub- N CTDP1 unit 1 Nucleus phosphatase CTNB1_HUMA catenin (cadherin-associated transcription N CTNNB1 protein), beta 1, 88kDa Nucleus regulator CTNB1_HUMA catenin (cadherin-associated transcription N CTNNB1 protein), beta 1, 88kDa Nucleus regulator CUED2_HUMA Extracellul N CUEDC2 CUE domain containing 2 ar Space other CY561_HUMAN CYB561 cytochrome b561 Cytoplasm enzyme CY1_HUMAN CYC1 cytochrome c-1 Cytoplasm enzyme CYC_HUMAN CYCS cytochrome c, somatic Cytoplasm transporter cytochrome P450, family 20, CP20A_HUMAN CYP20A1 subfamily A, polypeptide 1 Other enzyme cytochrome P450, family 8, CP8B1_HUMAN CYP8B1 subfamily B, polypeptide 1 Cytoplasm enzyme CYH3_HUMAN CYTH3 cytohesin 3 Cytoplasm other DCTN2 DCTN2 dynactin 2 (p50) Cytoplasm other DDAH1_HUMA dimethylarginine N DDAH1 dimethylaminohydrolase 1 Cytoplasm enzyme dimethylarginine DDAH1 DDAH1 dimethylaminohydrolase 1 Cytoplasm enzyme dimethylarginine O94760 DDAH1 dimethylaminohydrolase 1 Cytoplasm enzyme DEAD (Asp-Glu-Ala-Asp) box DX39A_HUMAN DDX39A polypeptide 39A Nucleus enzyme DDX43_HUMA DEAD (Asp-Glu-Ala-Asp) box N DDX43 polypeptide 43 Other enzyme DEPD5_HUMA N DEPDC5 DEP domain containing 5 Cytoplasm other dihydrolipoamide S- ODP2_HUMAN DLAT acetyltransferase Cytoplasm enzyme dihydrolipoamide DLDH_HUMAN DLD dehydrogenase Cytoplasm enzyme dihydrolipoamide P09622 DLD dehydrogenase Cytoplasm enzyme discs, large homolog 2 Plasma DLG2_HUMAN DLG2 (Drosophila) Membrane kinase discs, large homolog 4 Plasma DLG4_HUMAN DLG4 (Drosophila) Membrane kinase 162

discs, large homolog 4 Plasma DLG4_HUMAN DLG4 (Drosophila) Membrane kinase dihydrolipoamide S- succinyltransferase (E2 component of 2-oxo-glutarate ODO2_HUMAN DLST complex) Cytoplasm enzyme DnaJ (Hsp40) homolog, sub- AUXI_HUMAN DNAJC6 family C, member 6 Cytoplasm other dynein, axonemal, light inter- IDLC_HUMAN DNALI1 mediate chain 1 Cytoplasm other DYN1_HUMAN DNM1 dynamin 1 Cytoplasm enzyme DNM1 DNM1 dynamin 1 Cytoplasm enzyme DNM1L_HUMA N DNM1L dynamin 1-like Cytoplasm enzyme Plasma DYN2_HUMAN DNM2 dynamin 2 Membrane enzyme DYN3_HUMAN DNM3 dynamin 3 Cytoplasm enzyme docking protein 1, 62kDa (downstream of tyrosine ki- Plasma DOK1_HUMAN DOK1 nase 1) Membrane kinase D4, zinc and double PHD fin- DPF1_HUMAN DPF1 gers family 1 Nucleus other DPPA3_HUMA developmental pluripotency N DPPA3 associated 3 Nucleus other DPYS_HUMAN DPYS dihydropyrimidinase Cytoplasm enzyme DPYL2_HUMAN DPYSL2 dihydropyrimidinase-like 2 Cytoplasm enzyme DPYSL2 DPYSL2 dihydropyrimidinase-like 2 Cytoplasm enzyme DPYL3_HUMAN DPYSL3 dihydropyrimidinase-like 3 Cytoplasm enzyme Q14195 DPYSL3 dihydropyrimidinase-like 3 Cytoplasm enzyme DNA replication and sister DCC1_HUMAN DSCC1 chromatid cohesion 1 Nucleus other DYL1_HUMAN DYNLL1 dynein, light chain, LC8-type 1 Cytoplasm other glutamyl-tRNA synthetase 2, SYEM_HUMAN EARS2 mitochondrial Cytoplasm enzyme endothelin converting enzyme Plasma ECE1_HUMAN ECE1 1 Membrane peptidase enoyl CoA hydratase, short ECHM_HUMAN ECHS1 chain, 1, mitochondrial Cytoplasm enzyme eukaryotic translation elonga- translation EF1A2_HUMAN EEF1A2 tion factor 1 alpha 2 Cytoplasm regulator EFHC1_HUMA EF-hand domain (C-terminal) N EFHC1 containing 1 Cytoplasm other eukaryotic translation initiation IF4A3_HUMAN EIF4A3 factor 4A3 Nucleus enzyme eukaryotic translation initiation translation IF5A1_HUMAN EIF5A factor 5A Cytoplasm regulator ELAV like neuron-specific ELAV2_HUMAN ELAVL2 RNA binding protein 2 Cytoplasm other transcription HME2_HUMAN EN2 engrailed homeobox 2 Nucleus regulator ENOA_HUMAN ENO1 enolase 1, (alpha) Cytoplasm enzyme ENO1 ENO1 enolase 1, (alpha) Cytoplasm enzyme ENOG_HUMAN ENO2 enolase 2 (gamma, neuronal) Cytoplasm enzyme

163

P09104 ENO2 enolase 2 (gamma, neuronal) Cytoplasm enzyme ENOB_HUMAN ENO3 enolase 3 (beta, muscle) Cytoplasm enzyme ENTP5_HUMA ectonucleoside triphosphate N ENTPD5 diphosphohydrolase 5 Cytoplasm enzyme erythrocyte membrane protein Plasma E41L3_HUMAN EPB41L3 band 4.1-like 3 Membrane other EPN3_HUMAN EPN3 epsin 3 Cytoplasm other ERMIN_HUMA Extracellul N ERMN ermin, ERM-like protein ar Space other ESTD_HUMAN ESD esterase D Cytoplasm enzyme electron-transfer-flavoprotein, ETFA_HUMAN ETFA alpha polypeptide Cytoplasm transporter fatty acid binding protein 2, in- FABPI_HUMAN FABP2 testinal Cytoplasm transporter fatty acid binding protein 5 FABP5_HUMAN FABP5 (psoriasis-associated) Cytoplasm transporter fatty acid binding protein 7, FABP7_HUMAN FABP7 brain Cytoplasm transporter FAHD1_HUMA fumarylacetoacetate N FAHD1 hydrolase domain containing 1 Cytoplasm enzyme family with sequence similarity FA46B_HUMAN FAM46B 46, member B Other other fetal and adult testis ex- FATE1_HUMAN FATE1 pressed 1 Cytoplasm other FBX2_HUMAN FBXO2 F-box protein 2 Cytoplasm enzyme FGOP2_HUMA N FGFR1OP2 FGFR1 oncogene partner 2 Cytoplasm other FUMH_HUMAN FH fumarate hydratase Cytoplasm enzyme fibronectin leucine rich trans- Plasma FLRT3_HUMAN FLRT3 membrane protein 3 Membrane other FNDC8_HUMA fibronectin type III domain N FNDC8 containing 8 Nucleus other fibroblast recep- Plasma FRS2_HUMAN FRS2 tor substrate 2 Membrane other FSCN1 FSCN1 fascin actin-bundling protein 1 Cytoplasm other FXYD6_HUMA FXYD domain containing ion Plasma N FXYD6 transport regulator 6 Membrane ion channel fizzy/cell division cycle 20 re- FZR_HUMAN FZR1 lated 1 Nucleus kinase polypeptide N- acetylgalactosaminyltransfera GLTL6_HUMAN GALNTL6 se-like 6 Other other Plasma NEUM_HUMAN GAP43 growth associated protein 43 Membrane other Plasma NEUM_HUMAN GAP43 growth associated protein 43 Membrane other glyceraldehyde-3-phosphate G3P_HUMAN GAPDH dehydrogenase Cytoplasm enzyme glyceraldehyde-3-phosphate dehydrogenase, G3PT_HUMAN GAPDHS spermatogenic Cytoplasm enzyme GAS2_HUMAN GAS2 growth arrest-specific 2 Cytoplasm other glioblastoma amplified Plasma NIPS2_HUMAN GBAS sequence Membrane other 164

golgi brefeldin A resistant gua- nine nucleotide exchange fac- GBF1_HUMAN GBF1 tor 1 Cytoplasm other GRIP and coiled-coil domain GCC1_HUMAN GCC1 containing 1 Cytoplasm other GUAD_HUMAN GDA guanine deaminase Cytoplasm enzyme GDAP1_HUMA ganglioside induced differenti- N GDAP1 ation associated protein 1 Cytoplasm other GFAP_HUMAN GFAP glial fibrillary acidic protein Cytoplasm other GFAP_HUMAN GFAP glial fibrillary acidic protein Cytoplasm other GFAP_HUMAN GFAP glial fibrillary acidic protein Cytoplasm other GFAP GFAP glial fibrillary acidic protein Cytoplasm other LGUL_HUMAN GLO1 glyoxalase I Cytoplasm enzyme GLSK_HUMAN GLS glutaminase Cytoplasm enzyme DHE3_HUMAN GLUD1 glutamate dehydrogenase 1 Cytoplasm enzyme DHE4_HUMAN GLUD2 glutamate dehydrogenase 2 Cytoplasm enzyme GLNA_HUMAN GLUL glutamate-ammonia ligase Cytoplasm enzyme GMFB GMFB glia maturation factor, beta Cytoplasm growth factor guanine nucleotide binding GNA11_HUMA protein (G protein), alpha 11 Plasma N GNA11 (Gq class) Membrane enzyme guanine nucleotide binding protein (G protein), alpha acti- Plasma GNAO_HUMAN GNAO1 vating activity polypeptide O Membrane enzyme guanine nucleotide binding protein (G protein), alpha GNAT2_HUMA transducing activity polypep- Plasma N GNAT2 tide 2 Membrane enzyme guanine nucleotide binding protein (G protein), beta poly- Plasma GBB1_HUMAN GNB1 peptide 1 Membrane enzyme guanine nucleotide binding protein (G protein), beta poly- Plasma GBB1_HUMAN GNB1 peptide 1 Membrane enzyme guanine nucleotide binding protein (G protein), beta poly- Plasma GBB2_HUMAN GNB2 peptide 2 Membrane enzyme guanine nucleotide binding protein (G protein), beta poly- Plasma GBB4_HUMAN GNB4 peptide 4 Membrane enzyme guanine nucleotide binding Plasma GBG3_HUMAN GNG3 protein (G protein), gamma 3 Membrane enzyme glutamic-oxaloacetic AATC_HUMAN GOT1 transaminase 1, soluble Cytoplasm enzyme glutamic-oxaloacetic AATM_HUMAN GOT2 transaminase 2, mitochondrial Cytoplasm enzyme Plasma GEPH_HUMAN GPHN gephyrin Membrane enzyme GPM6A_HUMA Plasma N GPM6A glycoprotein M6A Membrane ion channel GPX1_HUMAN GPX1 glutathione peroxidase 1 Cytoplasm enzyme GPX1_HUMAN GPX1 glutathione peroxidase 1 Cytoplasm enzyme GPX7_HUMAN GPX7 glutathione peroxidase 7 Cytoplasm enzyme 165

glutamate receptor, ionotropic, Plasma GRIA1_HUMAN GRIA1 AMPA 1 Membrane ion channel glutamate receptor, ionotropic, Plasma GRIA1_HUMAN GRIA1 AMPA 1 Membrane ion channel glutamate receptor, ionotropic, Plasma GRIA2_HUMAN GRIA2 AMPA 2 Membrane ion channel glutamate receptor, ionotropic, Plasma GRIA2_HUMAN GRIA2 AMPA 2 Membrane ion channel glutamate receptor, ionotropic, Plasma GRIA3_HUMAN GRIA3 AMPA 3 Membrane ion channel glutamate receptor, ionotropic, Plasma GRIA3_HUMAN GRIA3 AMPA 3 Membrane ion channel NMDZ1_HUMA glutamate receptor, ionotropic, Plasma N GRIN1 N-methyl D-aspartate 1 Membrane ion channel NMDZ1_HUMA glutamate receptor, ionotropic, Plasma N GRIN1 N-methyl D-aspartate 1 Membrane ion channel G protein-coupled receptor ki- Plasma GRK6_HUMAN GRK6 nase 6 Membrane kinase G protein-coupled receptor ki- GRK7_HUMAN GRK7 nase 7 Other kinase GSK3A_HUMA glycogen synthase kinase 3 N GSK3A alpha Nucleus kinase GSK3B_HUMA glycogen synthase kinase 3 N GSK3B beta Nucleus kinase GSK3B_HUMA glycogen synthase kinase 3 N GSK3B beta Nucleus kinase GSTM2_HUMA glutathione S-transferase mu N GSTM2 2 (muscle) Cytoplasm enzyme GSTM4_HUMA glutathione S-transferase mu N GSTM4 4 Cytoplasm enzyme GSTP1 GSTP1 glutathione S-transferase pi 1 Cytoplasm enzyme GT2D1_HUMA GTF2I repeat domain transcription N GTF2IRD1 containing 1 Nucleus regulator H2BFS_HUMA H2B histone family, member S N H2BFS (pseudogene) Nucleus other HPLN2_HUMA hyaluronan and proteoglycan Extracellul N HAPLN2 link protein 2 ar Space other HAUS8_HUMA HAUS augmin-like complex, N HAUS8 subunit 8 Cytoplasm other HBB_HUMAN HBB hemoglobin, beta Cytoplasm transporter HBD_HUMAN HBD hemoglobin, delta Other transporter HBD_HUMAN HBD hemoglobin, delta Other transporter HBG2_HUMAN HBG2 hemoglobin, gamma G Cytoplasm other hypoxia inducible factor 1, al- HIF1N_HUMAN HIF1AN pha subunit inhibitor Nucleus enzyme H11_HUMAN HIST1H1A histone cluster 1, H1a Nucleus other H2B1B_HUMAN HIST1H2BB histone cluster 1, H2bb Nucleus other H2B1H_HUMA N HIST1H2BH histone cluster 1, H2bh Nucleus other H2B1J_HUMAN HIST1H2BJ histone cluster 1, H2bj Nucleus other H2B1K_HUMAN HIST1H2BK histone cluster 1, H2bk Nucleus other H2B1L_HUMAN HIST1H2BL histone cluster 1, H2bl Nucleus other H2B1N_HUMA N HIST1H2BN histone cluster 1, H2bn Nucleus other 166

H2B1O_HUMA N HIST1H2BO histone cluster 1, H2bo Nucleus other H2B3B_HUMAN HIST3H2BB histone cluster 3, H2bb Nucleus other HXK1_HUMAN HK1 hexokinase 1 Cytoplasm kinase heterogeneous nuclear ribo- nucleoprotein D (AU-rich ele- HNRPD_HUMA ment RNA binding protein 1, transcription N HNRNPD 37kDa) Nucleus regulator HNRPF_HUMA heterogeneous nuclear N HNRNPF ribonucleoprotein F Nucleus other heterogeneous nuclear ribo- HNRPU_HUMA nucleoprotein U (scaffold at- N HNRNPU tachment factor A) Nucleus transporter HNRL2_HUMA heterogeneous nuclear ribo- N HNRNPUL2 nucleoprotein U-like 2 Nucleus other HORM2_HUMA N HORMAD2 HORMA domain containing 2 Nucleus other HXC10_HUMA transcription N HOXC10 homeobox C10 Nucleus regulator transcription HXC6_HUMAN HOXC6 homeobox C6 Nucleus regulator transcription HXC9_HUMAN HOXC9 homeobox C9 Nucleus regulator HPCL1_HUMA N HPCAL1 hippocalcin-like 1 Cytoplasm other hydroxyprostaglandin PGDH_HUMAN HPGD dehydrogenase 15-(NAD) Cytoplasm enzyme hypoxanthine HPRT_HUMAN HPRT1 phosphoribosyltransferase 1 Cytoplasm enzyme UK114_HUMAN HRSP12 heat-responsive protein 12 Cytoplasm enzyme hydroxysteroid (17-beta) HCD2_HUMAN HSD17B10 dehydrogenase 10 Cytoplasm enzyme heat shock protein 90kDa al- pha (cytosolic), class A mem- HS90A_HUMAN HSP90AA1 ber 1 Cytoplasm enzyme heat shock protein 90kDa al- pha (cytosolic), class A mem- HSP90AA1 HSP90AA1 ber 1 Cytoplasm enzyme heat shock protein 90kDa al- pha (cytosolic), class A mem- HS905_HUMAN HSP90AA5P ber 5, pseudogene Other other heat shock protein 90kDa al- pha (cytosolic), class B mem- HS90B_HUMAN HSP90AB1 ber 1 Cytoplasm enzyme heat shock protein 90kDa al- pha (cytosolic), class B mem- H90B2_HUMAN HSP90AB2P ber 2, pseudogene Cytoplasm other heat shock protein 90kDa al- pha (cytosolic), class B mem- H90B3_HUMAN HSP90AB3P ber 3, pseudogene Cytoplasm other heat shock protein 90kDa al- pha (cytosolic), class B mem- H90B4_HUMAN HSP90AB4P ber 4, pseudogene Other other

167

heat shock protein 90kDa beta ENPL_HUMAN HSP90B1 (Grp94), member 1 Cytoplasm other HS12A_HUMAN HSPA12A heat shock 70kDa protein 12A Cytoplasm other heat shock 70kDa protein 1- HS71L_HUMAN HSPA1L like Cytoplasm other heat shock 70kDa protein 5 GRP78_HUMA (glucose-regulated protein, N HSPA5 78kDa) Cytoplasm enzyme heat shock 70kDa protein 6 HSP76_HUMAN HSPA6 (HSP70B') Nucleus enzyme HSP7C_HUMA N HSPA8 heat shock 70kDa protein 8 Cytoplasm enzyme HSPA8 HSPA8 heat shock 70kDa protein 8 Cytoplasm enzyme GRP75_HUMA heat shock 70kDa protein 9 N HSPA9 (mortalin) Cytoplasm other heat shock 70kDa protein 9 P38646 HSPA9 (mortalin) Cytoplasm other heat shock 60kDa protein 1 CH60_HUMAN HSPD1 (chaperonin) Cytoplasm enzyme CH10_HUMAN HSPE1 heat shock 10kDa protein 1 Cytoplasm enzyme intestinal cell (MAK-like) ki- ICK_HUMAN ICK nase Cytoplasm kinase isocitrate dehydrogenase 1 IDHC_HUMAN IDH1 (NADP+), soluble Cytoplasm enzyme isocitrate dehydrogenase 3 P50213 IDH3A (NAD+) alpha Cytoplasm enzyme IFT43_HUMAN IFT43 intraflagellar transport 43 Cytoplasm other immunoglobulin heavy con- Extracellul IGHG1_HUMAN IGHG1 stant gamma 1 (G1m marker) ar Space other immunoglobulin kappa Extracellul IGKC_HUMAN IGKC constant ar Space other Plasma transmembran IL2RB_HUMAN IL2RB interleukin 2 receptor, beta Membrane e receptor internexin neuronal intermedi- INA INA ate filament protein, alpha Cytoplasm other internexin neuronal intermedi- Q16352 INA ate filament protein, alpha Cytoplasm other IPO5_HUMAN IPO5 importin 5 Nucleus transporter iron-responsive element bind- translation IREB2_HUMAN IREB2 ing protein 2 Cytoplasm regulator isochorismatase domain ISOC2_HUMAN ISOC2 containing 2 Cytoplasm enzyme Plasma transmembran ITA6_HUMAN ITGA6 integrin, alpha 6 Membrane e receptor integrin, alpha E (antigen CD103, human mucosal lym- phocyte antigen 1; alpha poly- Plasma ITAE_HUMAN ITGAE peptide) Membrane other Plasma ITM2B_HUMAN ITM2B integral membrane protein 2B Membrane other junctional sarcoplasmic JSPR1_HUMAN JSRP1 reticulum protein 1 Cytoplasm other KANK3_HUMA KN motif and ankyrin repeat N KANK3 domains 3 Cytoplasm other 168

KTNA1_HUMA katanin p60 (ATPase contain- N KATNA1 ing) subunit A 1 Cytoplasm enzyme potassium channel, voltage KCAB2_HUMA gated subfamily A regulatory Plasma N KCNAB2 beta subunit 2 Membrane ion channel Kv channel interacting protein Plasma KCIP1_HUMAN KCNIP1 1 Membrane ion channel KCQ1D_HUMA KCNQ1 downstream neighbor N KCNQ1DN (non-protein coding) Other other KDM4B_HUMA lysine (K)-specific demethyl- N KDM4B ase 4B Nucleus enzyme KI16B_HUMAN KIF16B family member 16B Cytoplasm enzyme KIF5C_HUMAN KIF5C kinesin family member 5C Cytoplasm other killer cell immunoglobulin-like receptor, two domains, long Plasma KI2L1_HUMAN KIR2DL1/KIR2DL3 cytoplasmic tail, 3 Membrane other Q9H0B6 KLC2 kinesin light chain 2 Cytoplasm other Kirsten rat sarcoma viral onco- RASK_HUMAN KRAS gene homolog Cytoplasm enzyme K1C17_HUMAN KRT17 , type I Cytoplasm other K22E_HUMAN KRT2 keratin 2, type II Cytoplasm other K1C20_HUMAN KRT20 , type I Cytoplasm other K2C7_HUMAN KRT7 , type II Cytoplasm other K2C71_HUMAN KRT71 keratin 71, type II Cytoplasm other Extracellul K2C79_HUMAN KRT79 keratin 79, type II ar Space other KRT83_HUMAN KRT83 keratin 83, type II Cytoplasm other KRT84_HUMAN KRT84 keratin 84, type II Cytoplasm other KRT86_HUMAN KRT86 keratin 86, type II Cytoplasm other LACTB_HUMA N LACTB lactamase, beta Cytoplasm other LANC1_HUMA LanC lantibiotic synthetase Plasma N LANCL1 component C-like 1 (bacterial) Membrane other AMPL_HUMAN LAP3 leucine aminopeptidase 3 Cytoplasm peptidase P28838 LAP3 leucine aminopeptidase 3 Cytoplasm peptidase LDHA_HUMAN LDHA lactate dehydrogenase A Cytoplasm enzyme LDH6A_HUMA lactate dehydrogenase A-like N LDHAL6A 6A Cytoplasm enzyme LDHB_HUMAN LDHB lactate dehydrogenase B Cytoplasm enzyme LDHC_HUMAN LDHC lactate dehydrogenase C Cytoplasm enzyme lectin, galactoside-binding, Extracellul LGALS1 LGALS1 soluble, 1 ar Space other LEGL_HUMAN LGALSL lectin, galactoside-binding-like Other other transcription LHX2_HUMAN LHX2 LIM homeobox 2 Nucleus regulator LMNA_HUMAN LMNA A/C Nucleus other LMNB1_HUMA N LMNB1 Nucleus other LMNB2_HUMA N LMNB2 Nucleus other LOC102724788/PROD proline dehydrogenase PROD_HUMAN H (oxidase) 1 Cytoplasm enzyme

169

LOC102724788/PROD proline dehydrogenase PROD_HUMAN H (oxidase) 1 Cytoplasm enzyme BACHL_HUMA acyl-CoA thioesterase 7 N LOC344967 pseudogene Cytoplasm other LONM_HUMAN LONP1 lon peptidase 1, mitochondrial Cytoplasm peptidase Extracellul LOXL2_HUMAN LOXL2 lysyl oxidase-like 2 ar Space enzyme LSAMP_HUMA limbic system-associated Plasma N LSAMP membrane protein Membrane other LSAMP_HUMA limbic system-associated Plasma N LSAMP membrane protein Membrane other MLP3A_HUMA microtubule-associated pro- N MAP1LC3A tein 1 light chain 3 alpha Cytoplasm other mitogen-activated protein ki- MAP2K1 MAP2K1 nase kinase 1 Cytoplasm kinase MP2K2_HUMA mitogen-activated protein ki- N MAP2K2 nase kinase 2 Cytoplasm kinase microtubule-associated MAP6_HUMAN MAP6 protein 6 Cytoplasm other MA6D1_HUMA N MAP6D1 MAP6 domain containing 1 Cytoplasm other mitogen-activated protein MK01_HUMAN MAPK1 kinase 1 Cytoplasm kinase mitogen-activated protein MK01_HUMAN MAPK1 kinase 1 Cytoplasm kinase mitogen-activated protein MK10_HUMAN MAPK10 kinase 10 Cytoplasm kinase mitogen-activated protein MK03_HUMAN MAPK3 kinase 3 Cytoplasm kinase mitogen-activated protein MK03_HUMAN MAPK3 kinase 3 Cytoplasm kinase MARE2_HUMA microtubule-associated pro- N MAPRE2 tein, RP/EB family, member 2 Cytoplasm other microtubule-associated Plasma TAU_HUMAN MAPT protein tau Membrane other MARCS_HUMA myristoylated alanine-rich pro- Plasma N MARCKS tein kinase C substrate Membrane other MARCS_HUMA myristoylated alanine-rich pro- Plasma N MARCKS tein kinase C substrate Membrane other Extracellul MBP_HUMAN MBP myelin basic protein ar Space other Extracellul MBP_HUMAN MBP myelin basic protein ar Space other MCMBP_HUMA minichromosome mainte- N MCMBP nance complex binding protein Nucleus other malate dehydrogenase 1, MDHC_HUMAN MDH1 NAD (soluble) Cytoplasm enzyme malate dehydrogenase 2, MDHM_HUMAN MDH2 NAD (mitochondrial) Cytoplasm enzyme malate dehydrogenase 2, MDHM_HUMAN MDH2 NAD (mitochondrial) Cytoplasm enzyme MEPCE_HUMA methylphosphate capping N MEPCE enzyme Other enzyme MAP2_HUMAN METAP2 methionyl aminopeptidase 2 Cytoplasm peptidase

170

MET10_HUMA N METTL10 methyltransferase like 10 Other other METL9_HUMA N METTL9 methyltransferase like 9 Other other Plasma MGLL_HUMAN MGLL monoglyceride lipase Membrane enzyme MGST3_HUMA microsomal glutathione S- N MGST3 transferase 3 Cytoplasm enzyme TRIM1_HUMAN MID2 midline 2 Cytoplasm other MIDN_HUMAN MIDN midnolin Nucleus other mitochondrial intermediate MIPEP_HUMAN MIPEP peptidase Cytoplasm peptidase myelin oligodendrocyte Extracellul MOG_HUMAN MOG glycoprotein ar Space other myelin oligodendrocyte Extracellul MOG_HUMAN MOG glycoprotein ar Space other mitochondrial pyruvate carrier Plasma MPC2_HUMAN MPC2 2 Membrane other PERM_HUMAN MPO myeloperoxidase Cytoplasm enzyme membrane protein, pal- mitoylated 6 (MAGUK p55 Plasma MPP6_HUMAN MPP6 subfamily member 6) Membrane kinase mitochondrial ribosomal RM03_HUMAN MRPL3 protein L3 Cytoplasm other mitochondrial ribosomal RM37_HUMAN MRPL37 protein L37 Cytoplasm enzyme membrane-spanning 4-do- mains, subfamily A, member M4A13_HUMAN MS4A13 13 Other other Plasma MOES_HUMAN MSN moesin Membrane other cytochrome c oxidase subunit COX1_HUMAN MT-CO1 I Cytoplasm enzyme cytochrome c oxidase subunit COX2_HUMAN MT-CO2 II Cytoplasm enzyme transcription MTA1_HUMAN MTA1 metastasis associated 1 Nucleus regulator MTCH2_HUMA N MTCH2 mitochondrial carrier 2 Cytoplasm other mechanistic target of rapamy- MTOR_HUMAN MTOR cin (serine/threonine kinase) Nucleus kinase mechanistic target of rapamy- MTOR_HUMAN MTOR cin (serine/threonine kinase) Nucleus kinase transcription MTPN MTPN myotrophin Nucleus regulator MYADM_HUMA myeloid-associated N MYADM differentiation marker Nucleus other binding protein 2, E3 O75592 MYCBP2 ubiquitin protein ligase Nucleus enzyme MYH10_HUMA myosin, heavy chain 10, non- N MYH10 muscle Cytoplasm other myosin, heavy chain 9, non- MYH9_HUMAN MYH9 muscle Cytoplasm enzyme

171

myosin, light chain 12A, regu- ML12A_HUMAN MYL12A latory, non-sarcomeric Cytoplasm other myosin, light chain 6, alkali, smooth muscle and non-mus- MYL6_HUMAN MYL6 cle Cytoplasm other MYO1D_HUMA Plasma N MYO1D myosin ID Membrane other myocilin, trabecular meshwork inducible glucocorticoid re- MYOC_HUMAN MYOC sponse Cytoplasm other N(alpha)-acetyltransferase 50, NAA50_HUMAN NAA50 NatE catalytic subunit Cytoplasm enzyme nuclear apoptosis inducing NAIF1 NAIF1 factor 1 Nucleus other nucleosome assembly protein NP1L4_HUMAN NAP1L4 1-like 4 Cytoplasm other N-ethylmaleimide-sensitive factor attachment protein, al- SNAA_HUMAN NAPA pha Cytoplasm transporter N-ethylmaleimide-sensitive SNAB_HUMAN NAPB factor attachment protein, beta Cytoplasm transporter N-ethylmaleimide-sensitive NAPB NAPB factor attachment protein, beta Cytoplasm transporter N-ethylmaleimide-sensitive factor attachment protein, SNAG_HUMAN NAPG gamma Cytoplasm transporter NBPFF_HUMA NBPF15 (includes neuroblastoma breakpoint N others) family, member 15 Other other NCAM1_HUMA neural cell adhesion molecule Plasma N NCAM1 1 Membrane other NCAM1_HUMA neural cell adhesion molecule Plasma N NCAM1 1 Membrane other NCAM1_HUMA neural cell adhesion molecule Plasma N NCAM1 1 Membrane other NCDN_HUMAN NCDN neurochondrin Cytoplasm other NCDN_HUMAN NCDN neurochondrin Cytoplasm other NCOA1_HUMA transcription N NCOA1 nuclear receptor coactivator 1 Nucleus regulator NCOA3_HUMA transcription N NCOA3 nuclear receptor coactivator 3 Nucleus regulator NCS1_HUMAN NCS1 neuronal calcium sensor 1 Cytoplasm other NDRG4_HUMA Plasma N NDRG4 NDRG family member 4 Membrane other NADH dehydrogenase NDUAC_HUMA (ubiquinone) 1 alpha N NDUFA12 subcomplex, 12 Cytoplasm enzyme NADH dehydrogenase NDUAD_HUMA (ubiquinone) 1 alpha N NDUFA13 subcomplex, 13 Cytoplasm enzyme NADH dehydrogenase NDUA2_HUMA (ubiquinone) 1 alpha N NDUFA2 subcomplex, 2, 8kDa Cytoplasm enzyme NDUA4_HUMA NDUFA4, mitochondrial N NDUFA4 complex associated Cytoplasm enzyme

172

NADH dehydrogenase (ubiquinone) 1, alpha/beta ACPM_HUMAN NDUFAB1 subcomplex, 1, 8kDa Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Fe-S protein 1, NDUS1_HUMA 75kDa (NADH-coenzyme Q N NDUFS1 reductase) Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Fe-S protein 1, NDUS1_HUMA 75kDa (NADH-coenzyme Q N NDUFS1 reductase) Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Fe-S protein 2, NDUS2_HUMA 49kDa (NADH-coenzyme Q N NDUFS2 reductase) Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Fe-S protein 3, NDUS3_HUMA 30kDa (NADH-coenzyme Q N NDUFS3 reductase) Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Fe-S protein 5, NDUS5_HUMA 15kDa (NADH-coenzyme Q N NDUFS5 reductase) Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Fe-S protein 8, NDUS8_HUMA 23kDa (NADH-coenzyme Q N NDUFS8 reductase) Cytoplasm enzyme NADH dehydrogenase NDUV1_HUMA (ubiquinone) flavoprotein 1, N NDUFV1 51kDa Cytoplasm enzyme neurofilament, light NFL_HUMAN NEFL polypeptide Cytoplasm other neurofilament, light NFL_HUMAN NEFL polypeptide Cytoplasm other neurofilament, light NEFL NEFL polypeptide Cytoplasm other neurofilament, medium Plasma NFM_HUMAN NEFM polypeptide Membrane other neurofilament, medium Plasma NEFM NEFM polypeptide Membrane other neurofilament, medium Plasma P07197 NEFM polypeptide Membrane other NEGR1_HUMA Plasma N NEGR1 neuronal growth regulator 1 Membrane other NFASC_HUMA Plasma N NFASC neurofascin Membrane other nipsnap homolog 1 (C. NIPS1_HUMAN NIPSNAP1 elegans) Cytoplasm enzyme NPS3A_HUMA nipsnap homolog 3A (C. ele- N NIPSNAP3A gans) Nucleus other NME/NM23 nucleoside diphosphate kinase 2 NDK8_HUMAN NME2P1 pseudogene 1 Nucleus other nicotinamide nucleotide NNTM_HUMAN NNT transhydrogenase Cytoplasm enzyme 173

nitric oxide synthase 1 NOS1_HUMAN NOS1 (neuronal) Cytoplasm enzyme nitric oxide synthase 2, NOS2_HUMAN NOS2 inducible Cytoplasm enzyme nitric oxide synthase interact- NOSIP_HUMAN NOSIP ing protein Cytoplasm other NPTX1_HUMA Extracellul N NPTX1 neuronal pentraxin I ar Space other NAD(P)H dehydrogenase, NQO2_HUMAN NQO2 quinone 2 Cytoplasm enzyme NAD(P)H dehydrogenase, NQO2 NQO2 quinone 2 Cytoplasm enzyme NRCAM_HUMA neuronal cell adhesion Plasma N NRCAM molecule Membrane other NRX3A_HUMA N NRXN3 neurexin 3 Other transporter N-ethylmaleimide-sensitive NSF_HUMAN NSF factor Cytoplasm transporter NTRK2_HUMA neurotrophic tyrosine kinase, Plasma N NTRK2 receptor, type 2 Membrane kinase NTRK2_HUMA neurotrophic tyrosine kinase, Plasma N NTRK2 receptor, type 2 Membrane kinase NVL_HUMAN NVL nuclear VCP-like Nucleus other OGDHL_HUMA oxoglutarate dehydrogenase- N OGDHL like Other enzyme OLFM4_HUMA Extracellul N OLFM4 olfactomedin 4 ar Space other G-protein oligodendrocyte myelin Plasma coupled OMGP_HUMAN OMG glycoprotein Membrane receptor optic atrophy 1 (autosomal OPA1_HUMAN OPA1 dominant) Cytoplasm enzyme oligodendrocytic myelin par- OPALI_HUMAN OPALIN anodal and inner loop protein Cytoplasm other opioid binding protein/cell ad- Plasma OPCM_HUMAN OPCML hesion molecule-like Membrane other G-protein OR7C2_HUMA olfactory receptor, family 7, Plasma coupled N OR7C2 subfamily C, member 2 Membrane receptor osteosarcoma amplified 9, OS9_HUMAN OS9 endoplasmic reticulum lectin Nucleus other OSBL1_HUMA oxysterol binding protein-like N OSBPL1A 1A Cytoplasm other prolyl 4-hydroxylase, beta PDIA1_HUMAN P4HB polypeptide Cytoplasm enzyme PACN1_HUMA protein kinase C and casein N PACSIN1 kinase substrate in neurons 1 Cytoplasm kinase platelet-activating factor acetylhydrolase 1b, catalytic PAFAH1B3 PAFAH1B3 subunit 3 (29kDa) Cytoplasm enzyme PARK7_HUMA N PARK7 parkinson protein 7 Nucleus enzyme PARK7_HUMA N PARK7 parkinson protein 7 Nucleus enzyme

174

PARK7 PARK7 parkinson protein 7 Nucleus enzyme PARP1_HUMA poly (ADP-ribose) polymerase N PARP1 1 Nucleus enzyme PRKC, apoptosis, WT1, transcription PAWR_HUMAN PAWR regulator Nucleus regulator PCDGG_HUMA protocadherin gamma N PCDHGB4 subfamily B, 4 Other other PCDGH_HUMA protocadherin gamma N PCDHGB5 subfamily B, 5 Cytoplasm other proprotein convertase subtil- NEC1_HUMAN PCSK1 isin/kexin type 1 Cytoplasm peptidase pyruvate dehydrogenase ODPB_HUMAN PDHB (lipoamide) beta Cytoplasm enzyme pyridoxal (pyridoxine, vitamin PDXK_HUMAN PDXK B6) kinase Cytoplasm kinase PDZD7_HUMA Extracellul N PDZD7 PDZ domain containing 7 ar Space other phosphoprotein enriched in PEA15_HUMAN PEA15 astrocytes 15 Cytoplasm transporter phosphoprotein enriched in PEA15_HUMAN PEA15 astrocytes 15 Cytoplasm transporter PEBP1_HUMA phosphatidylethanolamine N PEBP1 binding protein 1 Cytoplasm other 6-phosphofructo-2- kinase/fructose-2,6- F262_HUMAN PFKFB2 biphosphatase 2 Cytoplasm kinase PGAM1_HUMA phosphoglycerate mutase 1 N PGAM1 (brain) Cytoplasm phosphatase phosphogluconate 6PGD_HUMAN PGD dehydrogenase Cytoplasm enzyme PGK1_HUMAN PGK1 phosphoglycerate kinase 1 Cytoplasm kinase PGK1_HUMAN PGK1 phosphoglycerate kinase 1 Cytoplasm kinase transcription PHB_HUMAN PHB prohibitin Nucleus regulator transcription PHB PHB prohibitin Nucleus regulator transcription PHB2_HUMAN PHB2 prohibitin 2 Cytoplasm regulator phosphoglycerate O43175 PHGDH dehydrogenase Cytoplasm enzyme Q8TCD6 PHOSPHO2 phosphatase, orphan 2 Other other protein inhibitor of activated transcription PIAS2_HUMAN PIAS2 STAT, 2 Nucleus regulator phosphatidylinositol-4,5- PK3CG_HUMA bisphosphate 3-kinase, cata- N PIK3CG lytic subunit gamma Cytoplasm kinase phosphoinositide-3-kinase, P55G_HUMAN PIK3R3 regulatory subunit 3 (gamma) Cytoplasm kinase peptidylprolyl cis/trans PIN1_HUMAN PIN1 isomerase, NIMA-interacting 1 Nucleus enzyme phosphatidylinositol-5-phos- PI42A_HUMAN PIP4K2A phate 4-kinase, type II, alpha Cytoplasm kinase pyruvate kinase, liver and KPYR_HUMAN PKLR RBC Cytoplasm kinase 175

KPYM_HUMAN PKM pyruvate kinase, muscle Cytoplasm kinase PKHA6_HUMA pleckstrin homology domain N PLEKHA6 containing, family A member 6 Other other pleckstrin homology domain PKHB1_HUMA containing, family B (evectins) N PLEKHB1 member 1 Cytoplasm other Plasma MYPR_HUMAN PLP1 proteolipid protein 1 Membrane other Plasma MYPR_HUMAN PLP1 proteolipid protein 1 Membrane other transcription PMF1_HUMAN PMF1/PMF1-BGLAP polyamine-modulated factor 1 Nucleus regulator peptidase (mitochondrial O75439 PMPCB processing) beta Cytoplasm peptidase PMVK_HUMAN PMVK phosphomevalonate kinase Cytoplasm kinase DPOLN_HUMA N POLN polymerase (DNA directed) nu Nucleus enzyme POTEE_HUMA POTE ankyrin domain family, Extracellul N POTEE/POTEF member F ar Space other POTEF_HUMA POTE ankyrin domain family, Extracellul N POTEE/POTEF member F ar Space other POTE ankyrin domain family, Extracellul POTEI_HUMAN POTEI member I ar Space other POTEJ_HUMA POTE ankyrin domain family, Extracellul N POTEJ member J ar Space other ACTBM_HUMA POTE ankyrin domain family, N POTEKP member K, pseudogene Cytoplasm other Q15181 PPA1 pyrophosphatase (inorganic) 1 Cytoplasm enzyme peptidylprolyl isomerase A PPIA_HUMAN PPIA (cyclophilin A) Cytoplasm enzyme peptidylprolyl isomerase H PPIH_HUMAN PPIH (cyclophilin H) Nucleus enzyme peptidylprolyl isomerase PPIL6_HUMAN PPIL6 (cyclophilin)-like 6 Other enzyme protein phosphatase 1, cata- PP1A_HUMAN PPP1CA lytic subunit, alpha isozyme Cytoplasm phosphatase protein phosphatase 1, cata- PP1B_HUMAN PPP1CB lytic subunit, beta isozyme Cytoplasm phosphatase protein phosphatase 1, cata- PP1G_HUMAN PPP1CC lytic subunit, gamma isozyme Nucleus phosphatase protein phosphatase 1, regula- PP14A_HUMAN PPP1R14A tory (inhibitor) subunit 14A Cytoplasm phosphatase protein phosphatase 2, regula- 2AAA_HUMAN PPP2R1A tory subunit A, alpha Cytoplasm phosphatase protein phosphatase 2, regula- Plasma 2AAB_HUMAN PPP2R1B tory subunit A, beta Membrane phosphatase PP2BB_HUMA protein phosphatase 3, cata- Plasma N PPP3CB lytic subunit, beta isozyme Membrane phosphatase PP2BB_HUMA protein phosphatase 3, cata- Plasma N PPP3CB lytic subunit, beta isozyme Membrane phosphatase PP2BC_HUMA protein phosphatase 3, cata- N PPP3CC lytic subunit, gamma isozyme Cytoplasm phosphatase CANB1_HUMA protein phosphatase 3, regula- N PPP3R1 tory subunit B, alpha Cytoplasm phosphatase

176

CANB1_HUMA protein phosphatase 3, regula- N PPP3R1 tory subunit B, alpha Cytoplasm phosphatase PRDX1 PRDX1 peroxiredoxin 1 Cytoplasm enzyme PRDX2_HUMA N PRDX2 peroxiredoxin 2 Cytoplasm enzyme P32119 PRDX2 peroxiredoxin 2 Cytoplasm enzyme PRDX3_HUMA N PRDX3 peroxiredoxin 3 Cytoplasm enzyme PRDX3_HUMA N PRDX3 peroxiredoxin 3 Cytoplasm enzyme P30041 PRDX6 peroxiredoxin 6 Cytoplasm enzyme AAKB2_HUMA protein kinase, AMP-activated, N PRKAB2 beta 2 non-catalytic subunit Cytoplasm kinase KAPCB_HUMA protein kinase, cAMP-depend- N PRKACB ent, catalytic, beta Cytoplasm kinase KPCB_HUMAN PRKCB protein kinase C, beta Cytoplasm kinase KPCB_HUMAN PRKCB protein kinase C, beta Cytoplasm kinase KPCG_HUMAN PRKCG protein kinase C, gamma Cytoplasm kinase KPCG_HUMAN PRKCG protein kinase C, gamma Cytoplasm kinase KPCL_HUMAN PRKCH protein kinase C, eta Cytoplasm kinase pre-mRNA processing factor PRP19_HUMAN PRPF19 19 Nucleus enzyme PRPS2_HUMA phosphoribosyl N PRPS2 pyrophosphate synthetase 2 Cytoplasm kinase PR14L_HUMAN PRR14L proline rich 14-like Other enzyme PRRT2_HUMA proline-rich transmembrane N PRRT2 protein 2 Other other Extracellul SAP_HUMAN PSAP prosaposin ar Space other proteasome 26S subunit, non- PSDE_HUMAN PSMD14 ATPase 14 Cytoplasm peptidase psoriasis susceptibility 1 PS1C1_HUMAN PSORS1C1 candidate 1 Other other proline-serine-threonine phos- PPIP1_HUMAN PSTPIP1 phatase interacting protein 1 Cytoplasm other PTGDS_HUMA prostaglandin D2 synthase N PTGDS 21kDa (brain) Cytoplasm enzyme parathyroid hormone-like Extracellul PTHR_HUMAN PTHLH hormone ar Space other PTOV1_HUMA prostate tumor overexpressed N PTOV1 1 Nucleus other purine-rich element binding transcription PURA_HUMAN PURA protein A Nucleus regulator purine-rich element binding transcription PURA_HUMAN PURA protein A Nucleus regulator PVALB PVALB parvalbumin Cytoplasm other phosphorylase, glycogen; PYGB_HUMAN PYGB brain Cytoplasm enzyme phosphorylase, glycogen, PYGM_HUMAN PYGM muscle Cytoplasm enzyme RAB10, member RAS onco- RAB10_HUMAN RAB10 gene family Cytoplasm enzyme RAB12, member RAS onco- RAB12_HUMAN RAB12 gene family Cytoplasm enzyme 177

RAB13, member RAS onco- Plasma RAB13_HUMAN RAB13 gene family Membrane enzyme RAB1A_HUMA RAB1A, member RAS onco- N RAB1A gene family Cytoplasm enzyme RAB1B_HUMA RAB1B, member RAS onco- N RAB1B gene family Cytoplasm other RAB39B, member RAS onco- Plasma RB39B_HUMAN RAB39B gene family Membrane enzyme RAB3A_HUMA RAB3A, member RAS onco- N RAB3A gene family Cytoplasm enzyme RAB3B_HUMA RAB3B, member RAS onco- N RAB3B gene family Cytoplasm enzyme RAB40A, member RAS onco- Plasma RB40A_HUMAN RAB40A gene family Membrane enzyme RAB43, member RAS onco- RAB43_HUMAN RAB43 gene family Cytoplasm enzyme RAB44, member RAS onco- RAB44_HUMAN RAB44 gene family Other other RAB5B_HUMA RAB5B, member RAS onco- N RAB5B gene family Cytoplasm enzyme RAB8A_HUMA RAB8A, member RAS onco- Plasma N RAB8A gene family Membrane enzyme RAB8B_HUMA RAB8B, member RAS onco- N RAB8B gene family Cytoplasm enzyme ras-related C3 botulinum toxin substrate 1 (rho family, small Plasma RAC1_HUMAN RAC1 GTP binding protein Rac1) Membrane enzyme RANG_HUMAN RANBP1 RAN binding protein 1 Nucleus other RANG_HUMAN RANBP1 RAN binding protein 1 Nucleus other RNB3L_HUMA N RANBP3L RAN binding protein 3-like Other other RAP1B, member of RAS on- RP1BL_HUMAN RAP1BL cogene family pseudogene Other other RAP2A_HUMA RAP2A, member of RAS on- Plasma N RAP2A cogene family Membrane enzyme RAP2B_HUMA RAP2B, member of RAS on- Plasma N RAP2B cogene family Membrane enzyme RBM25_HUMA N RBM25 RNA binding motif protein 25 Nucleus other RBM41_HUMA N RBM41 RNA binding motif protein 41 Other other RBPS2_HUMA RNA binding protein with mul- N RBPMS2 tiple splicing 2 Other other RAS-like, estrogen-regulated, RERG_HUMAN RERG growth inhibitor Nucleus enzyme RHOB_HUMAN RHOB ras homolog family member B Cytoplasm enzyme Plasma RHOC_HUMAN RHOC ras homolog family member C Membrane enzyme Plasma RHOQ_HUMAN RHOQ ras homolog family member Q Membrane enzyme receptor (TNFRSF)-interacting Plasma RIPK1_HUMAN RIPK1 serine-threonine kinase 1 Membrane kinase BRE1A_HUMA ring finger protein 20, E3 ubiq- N RNF20 uitin protein ligase Nucleus enzyme

178

ring finger protein 8, E3 ubiq- RNF8_HUMAN RNF8 uitin protein ligase Nucleus enzyme RL18A_HUMAN RPL18A ribosomal protein L18a Cytoplasm other RL22_HUMAN RPL22 ribosomal protein L22 Nucleus other RLA1_HUMAN RPLP1 ribosomal protein, large, P1 Cytoplasm other RS3A_HUMAN RPS3A ribosomal protein S3A Nucleus other RS3A_HUMAN RPS3A ribosomal protein S3A Nucleus other ribosomal protein S6 kinase, KS6C1_HUMAN RPS6KC1 52kDa, polypeptide 1 Cytoplasm kinase related RAS viral (r-ras) RRAS_HUMAN RRAS oncogene homolog Cytoplasm enzyme RTN1_HUMAN RTN1 reticulon 1 Cytoplasm other RTN4_HUMAN RTN4 reticulon 4 Cytoplasm other RUFY2_HUMA RUN and FYVE domain con- N RUFY2 taining 2 Nucleus other RUND1_HUMA N RUNDC1 RUN domain containing 1 Other other SBSN_HUMAN SBSN suprabasin Cytoplasm other SCND1_HUMA transcription N SCAND1 SCAN domain containing 1 Nucleus regulator SCD5_HUMAN SCD5 stearoyl-CoA desaturase 5 Cytoplasm enzyme SCRN1_HUMA N SCRN1 secernin 1 Cytoplasm other Q12765 SCRN1 secernin 1 Cytoplasm other SDCB1_HUMA syndecan binding protein Plasma N SDCBP (syntenin) Membrane enzyme sema domain, immunoglobulin domain (Ig), short basic do- SEM3A_HUMA main, secreted, (semaphorin) Extracellul N SEMA3A 3A ar Space other SEP11_HUMAN SEPT11 septin 11 Nucleus other Q9NVA2 SEPT11 septin 11 Nucleus other Q9NVA2 SEPT11 septin 11 Nucleus other SEPT11 SEPT11 septin 11 Nucleus other SEPT11 SEPT11 septin 11 Nucleus other SEP14_HUMAN SEPT14 septin 14 Cytoplasm other SEPT2_HUMAN SEPT2 septin 2 Cytoplasm enzyme SEPT3_HUMAN SEPT3 septin 3 Cytoplasm enzyme SEPT5_HUMAN SEPT5 septin 5 Cytoplasm enzyme SEPT5_HUMAN SEPT5 septin 5 Cytoplasm enzyme Q99719 SEPT5 septin 5 Cytoplasm enzyme Q14141 SEPT6 septin 6 Cytoplasm other SEPT7_HUMAN SEPT7 septin 7 Cytoplasm other SEPT9_HUMAN SEPT9 septin 9 Cytoplasm enzyme serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), Extracellul A1AT_HUMAN SERPINA1 member 1 ar Space other serpin peptidase inhibitor, clade B (ovalbumin), member Extracellul SPB5_HUMAN SERPINB5 5 ar Space other 1433S_HUMAN SFN Stratifin Cytoplasm other 179

SFXN1_HUMA N SFXN1 sideroflexin 1 Cytoplasm transporter SFXN3_HUMA N SFXN3 sideroflexin 3 Cytoplasm transporter SH3G1_HUMA N SH3GL1 SH3-domain GRB2-like 1 Cytoplasm other SH3G2_HUMA Plasma N SH3GL2 SH3-domain GRB2-like 2 Membrane enzyme SH3G3_HUMA N SH3GL3 SH3-domain GRB2-like 3 Cytoplasm other SHAN3_HUMA SH3 and multiple ankyrin re- Plasma N SHANK3 peat domains 3 Membrane other SHAN3_HUMA SH3 and multiple ankyrin re- Plasma N SHANK3 peat domains 3 Membrane other sialic acid binding Ig-like lectin Plasma SIG14_HUMAN SIGLEC14 14 Membrane other SHPS1_HUMA Plasma N SIRPA signal-regulatory protein alpha Membrane phosphatase signal-regulatory protein beta Plasma SIRBL_HUMAN SIRPB1 1 Membrane other transcription SIR2_HUMAN SIRT2 sirtuin 2 Nucleus regulator transcription SIX1_HUMAN SIX1 SIX homeobox 1 Nucleus regulator solute carrier family 1 (glial high affinity glutamate trans- Plasma EAA2_HUMAN SLC1A2 porter), member 2 Membrane transporter solute carrier family 25 (mito- chondrial carrier; citrate trans- TXTP_HUMAN SLC25A1 porter), member 1 Other transporter solute carrier family 25 (mito- chondrial carrier; citrate trans- TXTP_HUMAN SLC25A1 porter), member 1 Other transporter solute carrier family 25 (mito- chondrial carrier; oxoglutarate M2OM_HUMAN SLC25A11 carrier), member 11 Cytoplasm transporter solute carrier family 25 (aspar- tate/glutamate carrier), mem- CMC1_HUMAN SLC25A12 ber 12 Cytoplasm transporter solute carrier family 25 (mito- chondrial carrier; phosphate MPCP_HUMAN SLC25A3 carrier), member 3 Cytoplasm transporter solute carrier family 25 (mito- chondrial carrier; adenine nu- cleotide translocator), member ADT4_HUMAN SLC25A31 31 Cytoplasm transporter solute carrier family 25 (mito- chondrial carrier; adenine nu- cleotide translocator), member ADT1_HUMAN SLC25A4 4 Cytoplasm transporter solute carrier family 25 (mito- chondrial carrier; adenine nu- cleotide translocator), member ADT2_HUMAN SLC25A5 5 Cytoplasm transporter

180

solute carrier family 25 (mito- chondrial carrier; adenine nu- cleotide translocator), member ADT3_HUMAN SLC25A6 6 Cytoplasm transporter solute carrier family 4 (anion exchanger), member 1 (Diego Plasma B3AT_HUMAN SLC4A1 blood group) Membrane transporter SWI/SNF related, matrix asso- ciated, actin dependent regu- SMRD3_HUMA lator of chromatin, subfamily transcription N SMARCD3 d, member 3 Nucleus regulator SMC1B_HUMA structural maintenance of N SMC1B 1B Nucleus transporter synaptosomal-associated Plasma SNP25_HUMAN SNAP25 protein, 25kDa Membrane transporter synaptosomal-associated Plasma SNAP25 SNAP25 protein, 25kDa Membrane transporter synaptosomal-associated Plasma SNP47_HUMAN SNAP47 protein, 47kDa Membrane other synaptosomal-associated Plasma AP180_HUMAN SNAP91 protein, 91kDa Membrane other synaptosomal-associated Plasma AP180_HUMAN SNAP91 protein, 91kDa Membrane other synuclein, gamma (breast O76070 SNCG cancer-specific protein 1) Cytoplasm other superoxide dismutase 1, SODC_HUMAN SOD1 soluble Cytoplasm enzyme superoxide dismutase 1, SOD1 SOD1 soluble Cytoplasm enzyme superoxide dismutase 2, SODM_HUMAN SOD2 mitochondrial Cytoplasm enzyme SORCN_HUMA N SRI Sorcin Cytoplasm transporter src-related kinase lacking C- terminal regulatory tyrosine and N-terminal myristylation SRMS_HUMAN SRMS sites Cytoplasm kinase single-stranded DNA binding SSBP_HUMAN SSBP1 protein 1, mitochondrial Cytoplasm other stress-induced STIP1 STIP1 phosphoprotein 1 Cytoplasm other STMN1 STMN1 stathmin 1 Cytoplasm other Plasma STX11_HUMAN STX11 syntaxin 11 Membrane transporter STX1A_HUMAN STX1A syntaxin 1A (brain) Cytoplasm transporter Plasma STX1B_HUMAN STX1B syntaxin 1B Membrane other STXB1_HUMAN STXBP1 syntaxin binding protein 1 Cytoplasm transporter STXB1_HUMAN STXBP1 syntaxin binding protein 1 Cytoplasm transporter SUCB2_HUMA succinate-CoA ligase, GDP- N SUCLG2 forming, beta subunit Cytoplasm enzyme synaptic vesicle glycoprotein SV2A_HUMAN SV2A 2A Cytoplasm transporter

181

Plasma SYN1_HUMAN SYN1 synapsin I Membrane transporter Plasma SYN2_HUMAN SYN2 synapsin II Membrane other synaptotagmin binding, cyto- HNRPQ_HUMA plasmic RNA interacting pro- N SYNCRIP tein Nucleus other Plasma SNG1_HUMAN SYNGR1 synaptogyrin 1 Membrane transporter SYNPO_HUMA N SYNPO synaptopodin Cytoplasm other SYPH_HUMAN SYP synaptophysin Cytoplasm transporter SYT1_HUMAN SYT1 synaptotagmin I Cytoplasm transporter TALDO_HUMA N TALDO1 transaldolase 1 Cytoplasm enzyme Tax1 (human T-cell leukemia TAXB1_HUMAN TAX1BP1 virus type I) binding protein 1 Cytoplasm other P17987 TCP1 t-complex 1 Cytoplasm other TEKT4_HUMAN TEKT4 4 Nucleus transporter TEKT5_HUMAN TEKT5 tektin 5 Nucleus other Extracellul TRFE_HUMAN TF transferrin ar Space transporter Extracellul P02787 TF transferrin ar Space transporter transcription factor AP-4 (acti- vating enhancer binding pro- transcription TFAP4_HUMAN TFAP4 tein 4) Nucleus regulator TGFR2_HUMA transforming growth factor, Plasma N TGFBR2 beta receptor II (70/80kDa) Membrane kinase TY3H_HUMAN TH tyrosine hydroxylase Cytoplasm enzyme Plasma THY1_HUMAN THY1 Thy-1 cell surface antigen Membrane other translocase of inner mitochon- drial membrane 44 homolog TIM44_HUMAN TIMM44 (yeast) Cytoplasm transporter TMCC2_HUMA transmembrane and coiled- Extracellul N TMCC2 coil domain family 2 ar Space other TMOD3_HUMA N TMOD3 (ubiquitous) Cytoplasm other tankyrase 1 binding protein 1, TB182_HUMAN TNKS1BP1 182kDa Nucleus other TNNI3_HUMAN TNNI3 I type 3 (cardiac) Cytoplasm transporter target of myb1 like 2 mem- TM1L2_HUMAN TOM1L2 brane trafficking protein Cytoplasm transporter translocase of outer TOM70_HUMA mitochondrial membrane 70 N TOMM70A homolog A (S. cerevisiae) Cytoplasm transporter TPIS_HUMAN TPI1 triosephosphate isomerase 1 Cytoplasm enzyme TPIS_HUMAN TPI1 triosephosphate isomerase 1 Cytoplasm enzyme tubulin polymerization TPPP_HUMAN TPPP promoting protein Cytoplasm other TNF receptor-associated TRAF3_HUMAN TRAF3 factor 3 Cytoplasm other

182

TRAK2_HUMA trafficking protein, kinesin Plasma N TRAK2 binding 2 Membrane transporter TRI13_HUMAN TRIM13 tripartite motif containing 13 Cytoplasm enzyme TRI42_HUMAN TRIM42 tripartite motif containing 42 Other other tRNA methyltransferase 11-2 TR112_HUMAN TRMT112 homolog (S. cerevisiae) Cytoplasm enzyme tetratricopeptide repeat TTC25_HUMAN TTC25 domain 25 Cytoplasm other tetratricopeptide repeat Extracellul TT30B_HUMAN TTC30B domain 30B ar Space other TBA1A_HUMAN TUBA1A tubulin, alpha 1a Cytoplasm other TBA1B_HUMAN TUBA1B tubulin, alpha 1b Cytoplasm other P68363 TUBA1B tubulin, alpha 1b Cytoplasm other TBA4A_HUMAN TUBA4A tubulin, alpha 4a Cytoplasm other TBA4B_HUMAN TUBA4B tubulin, alpha 4b Cytoplasm other TBAL3_HUMAN TUBAL3 tubulin, alpha-like 3 Other enzyme TBB5_HUMAN TUBB tubulin, beta class I Cytoplasm other TBB5_HUMAN TUBB tubulin, beta class I Cytoplasm other TUBB TUBB tubulin, beta class I Cytoplasm other Q9H4B7 TUBB1 tubulin, beta 1 class VI Cytoplasm other TBB2A_HUMAN TUBB2A tubulin, beta 2A class IIa Cytoplasm other TBB3_HUMAN TUBB3 tubulin, beta 3 class III Cytoplasm other TBB4A_HUMAN TUBB4A tubulin, beta 4A class IVa Cytoplasm other TBB8_HUMAN TUBB8 tubulin, beta 8 class VIII Cytoplasm other THIO_HUMAN TXN thioredoxin Cytoplasm enzyme ubiquitin A-52 residue riboso- RL40_HUMAN UBA52 mal protein fusion product 1 Cytoplasm enzyme UBX11_HUMAN UBXN11 UBX domain protein 11 Cytoplasm other ubiquitin carboxyl-terminal UCHL1_HUMA esterase L1 (ubiquitin N UCHL1 thiolesterase) Cytoplasm peptidase ubiquinol-cytochrome c reductase, complex III subunit Q9UDW1 UQCR10 X Cytoplasm enzyme ubiquinol-cytochrome c QCR1_HUMAN UQCRC1 reductase core protein I Cytoplasm enzyme ubiquinol-cytochrome c P31930 UQCRC1 reductase core protein I Cytoplasm enzyme ubiquinol-cytochrome c QCR2_HUMAN UQCRC2 reductase core protein II Cytoplasm enzyme UBP22_HUMAN USP22 ubiquitin specific peptidase 22 Nucleus peptidase VAMP2_HUMA vesicle-associated membrane Plasma N VAMP2 protein 2 (synaptobrevin 2) Membrane other Plasma VAT1_HUMAN VAT1 vesicle amine transport 1 Membrane transporter TERA_HUMAN VCP valosin containing protein Cytoplasm enzyme VDAC1_HUMA voltage-dependent anion N VDAC1 channel 1 Cytoplasm ion channel VDAC1_HUMA voltage-dependent anion N VDAC1 channel 1 Cytoplasm ion channel VDAC2_HUMA voltage-dependent anion N VDAC2 channel 2 Cytoplasm ion channel

183

VDAC3_HUMA voltage-dependent anion N VDAC3 channel 3 Cytoplasm ion channel VIME_HUMAN VIM Vimentin Cytoplasm other VIM VIM Vimentin Cytoplasm other VISL1_HUMAN VSNL1 visinin-like 1 Cytoplasm other WDR20_HUMA N WDR20 WD repeat domain 20 Other other WDR37_HUMA N WDR37 WD repeat domain 37 Other other WDR47_HUMA N WDR47 WD repeat domain 47 Other other WDR5B_HUMA N WDR5B WD repeat domain 5B Other other tyrosine 3-monooxygen- ase/tryptophan 5-monooxy- genase activation protein, ep- 1433E_HUMAN YWHAE silon Cytoplasm other tyrosine 3-monooxygen- ase/tryptophan 5-monooxy- genase activation protein, ep- YWHAE YWHAE silon Cytoplasm other tyrosine 3-monooxygen- ase/tryptophan 5-monooxy- genase activation protein, 1433G_HUMAN YWHAG gamma Cytoplasm other tyrosine 3-monooxygen- ase/tryptophan 5-monooxy- transcription 1433F_HUMAN YWHAH genase activation protein, eta Cytoplasm regulator tyrosine 3-monooxygen- ase/tryptophan 5-monooxy- genase activation protein, 1433T_HUMAN YWHAQ theta Cytoplasm other tyrosine 3-monooxygen- ase/tryptophan 5-monooxy- 1433Z_HUMAN YWHAZ genase activation protein, zeta Cytoplasm enzyme tyrosine 3-monooxygen- ase/tryptophan 5-monooxy- YWHAZ YWHAZ genase activation protein, zeta Cytoplasm enzyme zinc finger CCCH-type con- ZC12A_HUMAN ZC3H12A taining 12A Cytoplasm other ZC3HD_HUMA zinc finger CCCH-type con- Extracellul N ZC3H13 taining 13 ar Space other ZN114_HUMAN ZNF114 zinc finger protein 114 Cytoplasm other transcription ZN445_HUMAN ZNF445 zinc finger protein 445 Nucleus regulator ZN648_HUMAN ZNF648 zinc finger protein 648 Other other ZNF66_HUMAN ZNF66 zinc finger protein 66 Other other

184

ANEXO IV

ID Symbol Entrez Gene Name Location Type(s) Q9NPJ3 ACOT13 acyl-CoA thioesterase 13 Cytoplasm enzyme actinin, alpha 3 Plasma Q08043 ACTN3 (gene/pseudogene) Membrane other P14621 ACYP2 acylphosphatase 2, muscle type Cytoplasm enzyme alanine-glyoxylate P21549 AGXT aminotransferase Cytoplasm enzyme P00568 AK1 adenylate kinase 1 Cytoplasm kinase Extracellular P02768 ALB Albumin Space transporter aldehyde dehydrogenase 2 family P05091 ALDH2 (mitochondrial) Cytoplasm enzyme P04075 ALDOA aldolase A, fructose-bisphosphate Cytoplasm enzyme aldolase C, fructose- P09972 ALDOC bisphosphate Cytoplasm enzyme Plasma P49418 AMPH Amphiphysin Membrane other adaptor-related protein complex O94973 AP2A2 2, alpha 2 subunit Cytoplasm transporter adipocyte plasma membrane Plasma Q9HDC9 APMAP associated protein Membrane enzyme Extracellular P02649 APOE apolipoprotein E Space transporter ADP-ribosylation factor related Q13795 ARFRP1 protein 1 Cytoplasm enzyme Plasma Q9NVJ2 ARL8B ADP-ribosylation factor-like 8B Membrane enzyme ATPase, Na+/K+ transporting, Plasma P05023 ATP1A1 alpha 1 polypeptide Membrane transporter ATPase, Na+/K+ transporting, Plasma P13637 ATP1A3 alpha 3 polypeptide Membrane transporter ATPase, Ca++ transporting, Plasma Q01814 ATP2B2 plasma membrane 2 Membrane transporter ATP synthase, H+ transporting, mitochondrial F1 complex, beta P06576 ATP5B polypeptide Cytoplasm transporter ATP synthase, H+ transporting, mitochondrial Fo complex, P56385 ATP5I subunit E Cytoplasm transporter ATP synthase, H+ transporting, mitochondrial Fo complex, O75964 ATP5L subunit G Cytoplasm enzyme ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit P21281 ATP6V1B2 B2 Cytoplasm transporter ATPase, H+ transporting, P21283 ATP6V1C1 lysosomal 42kDa, V1 subunit C1 Cytoplasm transporter breast carcinoma amplified Plasma O75363 BCAS1 sequence 1 Membrane other

185

Plasma P35613 BSG basigin (Ok blood group) Membrane transporter chromosome 9 open reading A6NHY6 C9orf118 frame 118 Other other P00915 CA1 carbonic anhydrase I Cytoplasm enzyme P00918 CA2 carbonic anhydrase II Cytoplasm enzyme cullin-associated and neddylation- transcription Q86VP6 CAND1 dissociated 1 Cytoplasm regulator P17655 CAPN2 calpain 2, (m/II) large subunit Cytoplasm peptidase P16152 CBR1 carbonyl reductase 1 Cytoplasm enzyme Q6PK04 CCDC137 coiled-coil domain containing 137 Nucleus other chaperonin containing TCP1, P49368 CCT3 subunit 3 (gamma) Cytoplasm other chaperonin containing TCP1, Q99832 CCT7 subunit 7 (eta) Cytoplasm other Plasma P10966 CD8B CD8b molecule Membrane other P60953 CDC42 cell division cycle 42 Cytoplasm enzyme Q9NZ45 CISD1 CDGSH iron sulfur domain 1 Cytoplasm other Extracellular P02452 COL1A1 collagen, type I, alpha 1 Space other cytochrome c oxidase subunit IV P13073 COX4I1 isoform 1 Cytoplasm enzyme P10606 COX5B cytochrome c oxidase subunit Vb Cytoplasm enzyme cytochrome c oxidase subunit P14406 COX7A2 VIIa polypeptide 2 (liver) Cytoplasm enzyme P16870 CPE carboxypeptidase E Cytoplasm peptidase collapsin response mediator Q14194 CRMP1 protein 1 Cytoplasm enzyme O75390 CS citrate synthase Cytoplasm enzyme Extracellular P01034 CST3 cystatin C Space other P04080 CSTB cystatin B (stefin B) Cytoplasm peptidase P07339 CTSD cathepsin D Cytoplasm peptidase cutA divalent cation tolerance O60888 CUTA homolog (E. coli) Cytoplasm other P99999 CYCS cytochrome c, somatic Cytoplasm transporter DEAD (Asp-Glu-Ala-Asp) box O00571 DDX3X helicase 3, X-linked Cytoplasm enzyme P17661 DES Cytoplasm other Q16555 DPYSL2 dihydropyrimidinase-like 2 Cytoplasm enzyme Q14195 DPYSL3 dihydropyrimidinase-like 3 Cytoplasm enzyme destrin (actin depolymerizing P60981 DSTN factor) Cytoplasm other eukaryotic translation initiation translation Q14240 EIF4A2 factor 4A2 Cytoplasm regulator echinoderm microtubule associ- Q6ZMW3 EML6 ated protein like 6 Other other P21550 ENO3 enolase 3 (beta, muscle) Cytoplasm enzyme erythrocyte membrane protein Plasma Q9Y2J2 EPB41L3 band 4.1-like 3 Membrane other fatty acid binding protein 3, mus- P05413 FABP3 cle and heart Cytoplasm transporter 186

O15540 FABP7 fatty acid binding protein 7, brain Cytoplasm transporter Q9UK22 FBXO2 F-box protein 2 Cytoplasm enzyme P26885 FKBP2 FK506 binding protein 2, 13kDa Cytoplasm enzyme fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid- P22083 FUT4 specific) Cytoplasm enzyme FXYD domain containing ion Plasma Q9H0Q3 FXYD6 transport regulator 6 Membrane ion channel GABA(A) receptor-associated P60520 GABARAPL2 protein like 2 Cytoplasm other Plasma P17677 GAP43 growth associated protein 43 Membrane other P31150 GDI1 GDP dissociation inhibitor 1 Cytoplasm other P14136 GFAP glial fibrillary acidic protein Cytoplasm other glutamine--fructose-6-phosphate Q06210 GFPT1 transaminase 1 Cytoplasm enzyme P15104 GLUL glutamate-ammonia ligase Cytoplasm enzyme guanine nucleotide binding pro- tein (G protein), beta polypeptide Plasma P62873 GNB1 1 Membrane enzyme guanine nucleotide binding pro- Plasma Q9UBI6 GNG12 tein (G protein), gamma 12 Membrane enzyme Q9H4A5 GOLPH3L golgi phosphoprotein 3-like Cytoplasm other glutamate receptor, ionotropic, Plasma P42262 GRIA2 AMPA 2 Membrane ion channel Plasma Q4V328 GRIPAP1 GRIP1 associated protein 1 Membrane other glutathione S-transferase omega P78417 GSTO1 1 Cytoplasm enzyme O75367 H2AFY H2A histone family, member Y Nucleus other Q16775 HAGH hydroxyacylglutathione hydrolase Cytoplasm enzyme hexosaminidase B (beta P07686 HEXB polypeptide) Cytoplasm enzyme histidine triad nucleotide binding P49773 HINT1 protein 1 Nucleus enzyme Q96QV6 HIST1H2AA histone cluster 1, H2aa Nucleus other P58876 HIST1H2BD histone cluster 1, H2bd Nucleus other O60814 HIST1H2BK histone cluster 1, H2bk Nucleus other holocarboxylase synthetase (biotin-(proprionyl-CoA- carboxylase (ATP-hydrolysing)) P50747 HLCS ligase) Cytoplasm enzyme heterogeneous nuclear P09651 HNRNPA1 ribonucleoprotein A1 Nucleus other heterogeneous nuclear P51991 HNRNPA3 ribonucleoprotein A3 Nucleus other heterogeneous nuclear transcription P61978 HNRNPK ribonucleoprotein K Nucleus regulator P52758 HRSP12 heat-responsive protein 12 Cytoplasm enzyme P54652 HSPA2 heat shock 70kDa protein 2 Cytoplasm other heat shock 105kDa/110kDa pro- Q92598 HSPH1 tein 1 Cytoplasm other

187

immunoglobulin heavy constant Extracellular P01860 IGHG3 gamma 3 (G3m marker) Space other immunoglobulin heavy constant Extracellular P01861 IGHG4 gamma 4 (G4m marker) Space other immunoglobulin lambda constant Extracellular P0CG05 IGLC2 2 (Kern-Oz- marker) Space other Extracellular Q14005 IL16 interleukin 16 Space cytokine internexin neuronal intermediate Q16352 INA filament protein, alpha Cytoplasm other Q9H9V9 JMJD4 jumonji domain containing 4 Other other transcription Q92993 KAT5 K(lysine) acetyltransferase 5 Nucleus regulator Plasma P35968 KDR kinase insert domain receptor Membrane kinase Q96M94 KLHL15 kelch-like family member 15 Other other O95678 KRT75 keratin 75, type II Cytoplasm other lectin, galactoside-binding, solu- Plasma transmembrane Q08380 LGALS3BP ble, 3 binding protein Membrane receptor phospholysine phosphohistidine inorganic pyrophosphate phos- Q9H008 LHPP phatase Cytoplasm phosphatase Q6ZSN1 LOC440896 uncharacterized LOC440896 Other other microtubule-associated protein 1 Q9H492 MAP1LC3A light chain 3 alpha Cytoplasm other Q96EZ8 MCRS1 microspherule protein 1 Nucleus other malate dehydrogenase 2, NAD P40926 MDH2 (mitochondrial) Cytoplasm enzyme Plasma O15394 NCAM2 neural cell adhesion molecule 2 Membrane other neutrophil cytosolic factor 4, Q15080 NCF4 40kDa Cytoplasm enzyme NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, Q86Y39 NDUFA11 11, 14.7kDa Cytoplasm enzyme NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, Q9P0J0 NDUFA13 13 Cytoplasm enzyme NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, O43678 NDUFA2 2, 8kDa Cytoplasm enzyme NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, P56556 NDUFA6 6, 14kDa Cytoplasm enzyme NADH dehydrogenase (ubiquinone) 1 beta subcomplex, Q9NX14 NDUFB11 11, 17.3kDa Cytoplasm enzyme NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa (NADH-coenzyme Q O43920 NDUFS5 reductase) Cytoplasm enzyme NADH dehydrogenase (ubiquinone) flavoprotein 3, P56181 NDUFV3 10kDa Cytoplasm enzyme 188

neurogranin (protein kinase C Q92686 NRGN substrate, RC3) Other other nuclear receptor interacting transcription P48552 NRIP1 protein 1 Nucleus regulator OTU deubiquitinase, ubiquitin Q96FW1 OTUB1 aldehyde binding 1 Cytoplasm enzyme Q6GQQ9 OTUD7B OTU deubiquitinase 7B Cytoplasm peptidase P55809 OXCT1 3-oxoacid CoA transferase 1 Cytoplasm enzyme platelet-activating factor acetylhy- drolase 1b, regulatory subunit 1 P43034 PAFAH1B1 (45kDa) Cytoplasm enzyme translation Q15365 PCBP1 poly(rC) binding protein 1 Nucleus regulator P07737 PFN1 Cytoplasm other P35080 PFN2 profilin 2 Cytoplasm other P36871 PGM1 phosphoglucomutase 1 Cytoplasm enzyme protein phosphatase 2, catalytic P62714 PPP2CB subunit, beta isozyme Cytoplasm phosphatase P30048 PRDX3 peroxiredoxin 3 Cytoplasm enzyme Extracellular P35030 PRSS3 protease, serine, 3 Space peptidase P25789 PSMA4 proteasome subunit alpha 4 Cytoplasm peptidase P06737 PYGL phosphorylase, glycogen, liver Cytoplasm enzyme RAB13, member RAS oncogene Plasma P51153 RAB13 family Membrane enzyme RAB1C, member RAS oncogene Q92928 RAB1C family pseudogene Other other RAB2A, member RAS oncogene P61019 RAB2A family Cytoplasm enzyme RAB4A, member RAS oncogene P20338 RAB4A family Cytoplasm enzyme RAB6A, member RAS oncogene P20340 RAB6A family Cytoplasm enzyme RAB7A, member RAS oncogene P51149 RAB7A family Cytoplasm enzyme RAP1B, member of RAS onco- P61224 RAP1B gene family Cytoplasm enzyme P35241 RDX Radixin Cytoplasm other P61586 RHOA ras homolog family member A Cytoplasm enzyme Plasma P08134 RHOC ras homolog family member C Membrane enzyme P39023 RPL3 ribosomal protein L3 Nucleus other P04843 RPN1 ribophorin I Cytoplasm enzyme radial spoke head 9 homolog Q9H1X1 RSPH9 (Chlamydomonas) Other other secretion associated, Ras related Q9NR31 SAR1A GTPase 1A Cytoplasm enzyme transcription Q9UPW6 SATB2 SATB homeobox 2 Nucleus regulator sodium channel and clathrin Plasma Q96NL6 SCLT1 linker 1 Membrane transporter Q9H9S3 SEC61A2 Sec61 translocon alpha 2 subunit Cytoplasm transporter Q6ZU15 SEPT14 septin 14 Cytoplasm other 189

Extracellular Q92599 SEPT8 septin 8 Space other Extracellular Q86VW0 SESTD1 SEC14 and spectrin domains 1 Space other P31947 SFN stratifin Cytoplasm other solute carrier family 1 (glial high affinity glutamate transporter), Plasma P43003 SLC1A3 member 3 Membrane transporter synaptosomal-associated protein, Plasma P60880 SNAP25 25kDa Membrane transporter synuclein, alpha (non A4 compo- P37840 SNCA nent of amyloid precursor) Cytoplasm other synuclein, gamma (breast cancer- O76070 SNCG specific protein 1) Cytoplasm other Q56A73 SPIN4 spindlin family, member 4 Other other P30626 SRI sorcin Cytoplasm transporter serine/arginine-rich splicing factor Q07955 SRSF1 1 Nucleus other single-stranded DNA binding pro- Q04837 SSBP1 tein 1, mitochondrial Cytoplasm other Q6ZMT1 STAC2 SH3 and cysteine rich domain 2 Other other P31948 STIP1 stress-induced phosphoprotein 1 Cytoplasm other Plasma P61266 STX1B syntaxin 1B Membrane other succinate-CoA ligase, alpha P53597 SUCLG1 subunit Cytoplasm enzyme Q01995 TAGLN transgelin Cytoplasm other P37802 TAGLN2 transgelin 2 Cytoplasm other Extracellular Q9UI15 TAGLN3 transgelin 3 Space other Q96BZ9 TBC1D20 TBC1 domain family, member 20 Nucleus other transcription elongation factor A transcription P23193 TCEA1 (SII), 1 Nucleus regulator Q8N4U5 TCP11L2 t-complex 11, testis-specific-like 2 Other other Extracellular P01033 TIMP1 TIMP metallopeptidase inhibitor 1 Space cytokine Plasma Q92752 TNR tenascin R Membrane other Q9BRZ2 TRIM56 tripartite motif containing 56 Cytoplasm enzyme Extracellular P02766 TTR transthyretin Space transporter P68363 TUBA1B tubulin, alpha 1b Cytoplasm other Q9H853 TUBA4B tubulin, alpha 4b Cytoplasm other Q9NY65 TUBA8 tubulin, alpha 8 Cytoplasm other ubiquitin-like modifier activating P22314 UBA1 enzyme 1 Cytoplasm enzyme ubiquitin-conjugating enzyme Q8WVN8 UBE2Q2 E2Q family member 2 Other enzyme ubiquitin carboxyl-terminal esterase L1 (ubiquitin P09936 UCHL1 thiolesterase) Cytoplasm peptidase ubiquinol-cytochrome c reductase P31930 UQCRC1 core protein I Cytoplasm enzyme 190

ubiquinol-cytochrome c reduc- tase, Rieske iron-sulfur polypep- P47985 UQCRFS1 tide 1 Cytoplasm enzyme ubiquinol-cytochrome c reduc- tase, Rieske iron-sulfur polypep- P0C7P4 UQCRFS1P1 tide 1 pseudogene 1 Cytoplasm other valosin containing protein (p97)/p47 complex interacting Q96JH7 VCPIP1 protein 1 Cytoplasm peptidase transcription Q8N8G2 VGLL2 vestigial-like family member 2 Nucleus regulator tyrosine 3-monooxygenase/tryp- tophan 5-monooxygenase activa- P27348 YWHAQ tion protein, theta Cytoplasm other Plasma Q7Z2W4 ZC3HAV1 zinc finger CCCH-type, antiviral 1 Membrane other

191

ANEXO V

192

ANEXO VI

193