The Warped Ways of Cosmic Light

Total Page:16

File Type:pdf, Size:1020Kb

The Warped Ways of Cosmic Light BIOLOGIE & MEDIZIN_Infektionsbiologie “Around that area there are indeed numerous small nebulous patches so close together that, upon seeing the region, one is positively startled by the strange appearance of this ‘nebula cluster’.” This was the sentiment expressed by Heidelberg-based astronomer Max Wolf in 1901 about the galaxy cluster in the constellation Coma Berenices. The cluster Abell 2218 presents a similar appearance to the viewer today on this image from the Hubble Space Telescope. The “strange appearance” – the many blue and orange arcs – owes, in this case, to the effect of a gravitational lens. PHYSICS & ASTRONOMY_Gravitational Lenses The Warped Ways of Cosmic Light Albert Einstein predicted them, modern giant telescopes detected them – and Klaus Dolag simulates them on a computer: gravitational lenses. The academic staff member at the Max Planck Institute for Astrophysics in Garching and at the University Observatory Munich uses this physical phenomenon to such ends as weighing galaxy clusters and probing that ominous substance known as dark matter. TEXT HELMUT HORNUNG he sky over Principe was a total eclipse of the Sun. The test was More recent analyses of Eddington’s cloudy and the mood in the simple: if a massive object bends space, findings show that the values measured camp on the coconut plan- then the Sun must also cause the pass- at that time did, indeed, correspond to tation had hit rock bottom. ing light from stars to deviate from its the prediction, but that they are appar- Having set out from Eng- straight course. In other words, the ently the result of an instrument error T land, the men had been traveling for points of light in the immediate vicin- of, as it so happens, the very same mag- weeks to reach the volcanic island in ity of the black Sun should be shifted nitude. But the gravitational effect has the Gulf of Guinea. Their goal: to write ever so slightly with respect to their since been measured many times and scientific history. They wanted nothing true position in the sky. To check this, perfectly confirmed – not a doubt re- less than to prove a bold theory that a Eddington had recorded the star field mains. So Klaus Dolag doesn’t have to German physicist by the name of Albert six months earlier without any inter- concern himself with evidence of any Einstein had recently published. Ac- ference from the Sun, using the same sort. He simply works with the effect – cording to this theory, the gravity of a instruments that he now aimed impa- and applies the physical principle to massive object should bend space, sim- tiently at the cloud-covered, slowly weigh galaxy clusters or to track down ilar to the indentation made by a lead darkening Sun. the hidden matter in the universe. ball on a rubber blanket. If a marble is Moreover, the staff member at the Max then rolled toward the ball, the marble VIRTUAL TELESCOPES PEER Planck Institute for Astrophysics and at will deviate from its originally straight INTO SPACE the University Observatory Munich course and, depending on its initial ve- doesn’t even need a cloudless sky: Klaus locity, follow a more or less curved And the astronomer was rewarded for Dolag does his research with computer path. On this day, May 29, 1919, it his perseverance. During totality, the simulations, creating virtual telescopes. would be possible to test this prediction clouds parted for a few moments and To understand this, let us take an- of Einstein’s general theory of relativi- Eddington managed to capture two im- other detour through history. Because ty on the island of Principe. And then ages. “Lights All Askew in the Heavens” the Sun bends the path of starlight, Al- the weather turned out to be miserable! appeared on the front page of the New bert Einstein had speculated in the But the expedition led by astrono- York Times on November 10, 1919. The journal SCIENCE in 1936 that a star mer Arthur Stanley Eddington had nei- “shifted lights in the sky” proved that could diffract the light from an object ther a blanket nor a ball with them, but the general relativity theory was cor- behind it – which propagates in a rather a telescope and camera. The re- rect – and established Albert Einstein straight line in empty space – similar Photo: NASA, ESA, and Johan Richard (Caltech, USA) searchers wanted to use these to record as a legend. to a glass lens. In this way, the light 1 | 11 MaxPlanckResearch 65 Apparent location of the source GRAVITATIONAL FIELD Electromagnetic waves Object with large mass Actual position Observer of the source Apparent location of the source from this object should be amplified, the effect – and especially the ring that Take, for example, the galaxy cluster much like the Sun’s rays passing was named after him – was too small: Abell 2218, which is some two billion through a magnifying glass; and fur- “Of course we have no hope of observ- light-years away in the constellation thermore, multiple images of one and ing the phenomenon directly.” In Draco. On images from large tele- the same object might be created. 1979, researchers discovered the first scopes, dozens of small arcs in differ- quasar whose light was split off into ent colors and shapes tell of galaxies EINSTEIN HIMSELF DIDN’T multiple images by the gravitational that lie more than six billion light- BELIEVE IT COULD BE PROVEN field of a galaxy lying on the line of years beyond Abell 2218 and that, sight with the Earth. Quasars are the without its effect, wouldn’t be visible In 1937, Swiss astronomer Fritz Zwicky active cores of young galaxies. Driven at all. In short, gravitational lenses act introduced the possibility of a galaxy by massive black holes, they have a as natural telescopes. The powerful acting as a lens that creates distorted very high energy output. magnifying effect of the Abell 1689 images of more distant galaxy systems The type and shape of the lensed cluster led, for instance, to the discov- lying beyond it. Different images are images follow the laws of optics and ery of one of the most distant galaxies created depending on the spatial orien- gravitation. Thus, similar to classical known to date. We see it today in the tation of observer, lens and object. If optics, it is possible to draw important light it emitted 700 million years after all three lie exactly in a line (the opti- conclusions from the cosmic images, the Big Bang. cal axis), a ring is formed. If they lie to about, for instance, the lens material one side of the optical axis, the images or the composition of the medium – TIME MACHINES SHOW THE of the background sources appear as that is, about how mass is distributed DEVELOPMENT OF THE GALAXIES more or less strongly curved arcs. It is within the galaxies, or the structure of not just individual objects such as gal- the space. Galaxy clusters are particu- Because the speed of light is finite, the axies that act as lenses, but frequently larly interesting for researchers like observation of distant objects is simul- galaxy clusters – accumulations of Klaus Dolag: “They are the largest sys- taneously a journey back in time. The enormous concentrations of matter tems in the universe that are bound to- universe has changed significantly that we observe as many, relatively gether by gravity. That is why they since its birth 13.7 billion years ago. tightly clustered galaxy systems. have especially marked gravitational The galaxies, for example, have since Regarding the practical proof of the lensing effects.” This also explains developed in a certain way. Because gravitational lensing effect, Albert Ein- why they benefit science in so many telescopes (and gravitational lenses) stein remained skeptical. He said that ways. And just what is the benefit? act like time machines, they offer as- Graphic: designergold, based on original material from Horst Frank 66 MaxPlanckResearch 1 | 11 PHYSICS & ASTRONOMY_Gravitational Lenses left side: A gravitational lens functions essentially according to laws similar to those that apply in optics. In this case, however, the “glass” is a large mass – such as a galaxy or a galaxy cluster. left: Experimenting with space on the computer: Astrophysicist Klaus Dolag. tronomers outstanding insights into ing as a lens. For example, it quickly be described with physical laws. Ac- the evolution of space. becomes apparent that the visible mass cording to the model, at the age of 10-35 In the case of Abell 2218, massive contained in galaxies is not even close seconds, the cosmos expanded by 50 elliptical galaxies crowd together in the to being sufficient to hold together orders of magnitude, from the diame- center; photos show, a bit outside of the such a gigantic cluster as Abell 2218, ter of a proton to that of an orange. middle, a further small cluster core. Ap- with its several hundred members. Fur- That moment, known as inflation, in- parently two galaxy clusters are merg- thermore, the visible matter is not creased the bubbling in the quantum ing together. This fact alone is an im- nearly adequate to produce the multi- soup to macroscopic dimensions. portant indication for astronomers that ple arc-shaped images of the objects ly- These structures are visible in the baby such mergers shape the appearance of ing beyond it. After all, the optical photos of space, in the light of micro- space. It seems that a particularly large properties of a gravitational lens are de- waves, as color-coded spots having amount of luminous arcs appear when termined by its surface density.
Recommended publications
  • Using Concrete Scales: a Practical Framework for Effective Visual Depiction of Complex Measures Fanny Chevalier, Romain Vuillemot, Guia Gali
    Using Concrete Scales: A Practical Framework for Effective Visual Depiction of Complex Measures Fanny Chevalier, Romain Vuillemot, Guia Gali To cite this version: Fanny Chevalier, Romain Vuillemot, Guia Gali. Using Concrete Scales: A Practical Framework for Effective Visual Depiction of Complex Measures. IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2013, 19 (12), pp.2426-2435. 10.1109/TVCG.2013.210. hal-00851733v1 HAL Id: hal-00851733 https://hal.inria.fr/hal-00851733v1 Submitted on 8 Jan 2014 (v1), last revised 8 Jan 2014 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Using Concrete Scales: A Practical Framework for Effective Visual Depiction of Complex Measures Fanny Chevalier, Romain Vuillemot, and Guia Gali a b c Fig. 1. Illustrates popular representations of complex measures: (a) US Debt (Oto Godfrey, Demonocracy.info, 2011) explains the gravity of a 115 trillion dollar debt by progressively stacking 100 dollar bills next to familiar objects like an average-sized human, sports fields, or iconic New York city buildings [15] (b) Sugar stacks (adapted from SugarStacks.com) compares caloric counts contained in various foods and drinks using sugar cubes [32] and (c) How much water is on Earth? (Jack Cook, Woods Hole Oceanographic Institution and Howard Perlman, USGS, 2010) shows the volume of oceans and rivers as spheres whose sizes can be compared to that of Earth [38].
    [Show full text]
  • 23 Minor Planet Bulletin 41
    23 observation interval. The overall form of the lightcurve did not of the other observatories. To make the large number of data points change perceptibly with phase angle or viewing aspect. in the segments of the lightcurve included by Organ Mesa observations more legible, those data have been binned in sets of Further evidence against the double period near 72.6 hours is five points with a maximum of ten minutes between points. provided by Schober et al. (1993). They draw a composite bimodal lightcurve phased to 36.0 hours based on data from 6 consecutive References nights with about 60% phase coverage. Overlapping sessions on this lightcurve centered near 1989 Nov 30.3 and Dec 3.3 each Behrend, R. (2005). Observatoire de Geneve web site. show a small rise followed by a fall greater than 0.4 magnitudes in http://obswww.unige.ch/~behrend/page_cou.html about 6 hours. This sets a lower limit in their data for the amplitude. An amplitude as large as 0.4 magnitudes is possible Higgins, D.J., Menke, J., Pozzoli, V., Sheridan, E., and Dymock, only for a bimodal lightcurve. R. (2004). “Lightcurve and Period Determination for 582 Olympia.” Minor Planet Bull. 31, 12. Independently, Franco drew an H-G plot based only on sparse data from the U.S. Naval Observatory (USNO), i.e., not including any JPL (2013). http://ssd.jpl.nasa.gov/sbdb.cgi of the new photometry. These data contain no correction for rotational variation and in include the inherent scatter in the USNO Menke, J. (2011). Menke Scientific, Ltd.
    [Show full text]
  • Trojan Search at ESO E
    Lf) provide an effective method (a) to dis­ Kron and A Renzini, (Dordrecht: Reidel), o criminate galaxy morphology, (b) to p.61. evaluate their intrinsic evolution and (c) Buzzoni, A: 1988, in preparation. Butcher, H. and Oemler, A.: 1984, Ap. J., 285, to estimate redshift with an accuracy of 426. 0.05. We emphasize that two main ± Coleman, G.D., Wu, C. C. and Weedman, ...--...0 requirements have to be fulfilled in order Q() D. W.: 1980, Ap. J. Supp., 43, 393. <\l to reach such a fair resolution in explor­ Couch, W.J. and Newell, E. B.: 1984, Ap. J., E ing the universe at large distances: 56,143. '-' <J Lf) (i) we need to observe clusters instead Couch, W.J., Ellis, R.S., Godwin, J. and Car­ o o of field galaxies to be able to recognize ter, 0.: 1983, MN.R.A.S., 205,1287. them with high statistical confidence; Ellis, R. S., Couch, W. J., Maclaren, I. and (ii) we need a combined comparison Koo, D.C.: 1985, MN.R.A.S., 217, 239. 2158+0351 Gunn, J. E., Hoessel, I. G. and Oke, J. B.: with evolutionary models, in order to 1986, Ap. J., 306, 30. properly account for the intrinsic photo­ Koo, D. C.: 1981, Ap. J. (Lett), 251, L 75. 0.4 0.5 metric properties as we use galaxies as Loh, E.D. and Spillar, E.J.: 1986, Ap. J., 303, REDSHI8 T standard candles in the cosmological 154. Figure 8: The photometrie determination of framework. Maclaren, 1., Ellis, R.S. and Couch, W.J.: the redshift of the cluster 2158 + 0351.
    [Show full text]
  • Shining the Spotlight on Movie Microbes
    THE MICROSCOPE • Vol. 61:2, pp 63–73 (2013) C R I T I C A L FOCUS Brian J. Ford Shining the Spotlight on Movie Microbes arilyn Monroe Spielberg who created the “M was a confused, Movie stars don’t have to be human to be most unusual film stars of sweet angel,” said our visi- memorable. The microscopic realm offers all: microbes. His epic tor, as the sun sparkled on movie “War of the Worlds” his crystal glass of orange the most exciting images for filmmakers, features free-swimming juice. “And Cary — did but almost everyone ignores it. microorganisms in the you know he was born in opening scenes. We zoom Britain? Cary Grant was out from the nucleus of a so muddled in his mind. He and I became such good ciliated microbe to find a water droplet on a leaf that is friends. Archibald Leach, he was called originally. Poor swarming with protists swimming eagerly about. It chap ran away to become a performer when his mother is a memorable scene. The film, released in 2005, is one was locked up in a mental institution in Bristol and of the few to show microbes as part of the story. nobody told him about it. It’s strange what makes In narrating the closing moments of the film, Mor- people into movie stars.” My dear friend Charles gan Freeman muses that “humans have suffered bil- Bennett had been born in 1899, and stayed with us in lions of lives to earn the right to live with these tiny Cambridgeshire when he was 94.
    [Show full text]
  • The Internal Structure of the Asteroids
    **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** **NAMES OF EDITORS** The internal structure of the asteroids V.Celebonovi´cˇ Inst.of Physics,Pregrevica 118,11080 Zemun-Beograd,Serbia Abstract. Knowledge of the internal structure of the asteroids is rather poorly developed,mainly due to lack of reliable data (masses or densities and radii). This contribution has two aims: to review the basics of existing knowledge and explore the possibility of advancing the field by introducing and using in it some well known ideas from solid state physics. 1. Introduction The largest part of astronomical research directly relies on data taken at various kinds of telescopes of variable size - from those having mirrors of 8 or 10 meters in diameter to backyard amateur telescopes. However,serious comlications arise when one attempts to gain information on the internal structure of any kind of celestial bodies. The reason for these complications is simple: the interiors of any kind of objects are unobservable. For example, nobody has ever gone (and nobody ever will) into the center of Jupiter to measure the temperature there. Surfaces of many kinds of objects are observable. However, the ”state” of a surface of any given object is a consequence of at least two factors: processes occuring in the interior of the object but also of any possible external influences. The aim of this lecture is to discuss to some extent one particular ”subfield” within the field of modelling of the internal structure of celestial objects - the internal structure of the asteroids. Apart from the introduction,this contribution has three more parts.
    [Show full text]
  • Butterflies Are Free to Fly
    BUTTERFLIES ARE FREE TO FLY A New and Radical Approach To Spiritual Evolution By Stephen Davis Smashwords Edition, License Notes Thank you for downloading this free ebook. You are welcome to share it with your friends. This book may be reproduced, copied and distributed for non-commercial purposes, provided the book remains in its complete original form. Copyright 2010 by L & G Productions, LLC Table of Contents Chapter 0 – Introduction PART ONE – The Movie Theater Metaphor Preface to Part One Chapter 1 – Plato‟s Cave Chapter 2 – Joining Together Chapter 3 – What‟s Wrong with This Picture? Chapter 4 – The Library Chapter 5 – The Field Chapter 6 – The Hologram Chapter 7 – There is No “Out There” Out There Chapter 8 – The Breakout PART TWO – Inside the Cocoon Preface to Part Two Chapter 9 – The Consciousness Model Chapter 10 – The Player Model Chapter 11 – The Human Game Model Chapter 12 – The Two Halves Chapter 13 – The Process Chapter 14 – Spiritual Autolysis Chapter 15 – Detaching & “Desirelessness” Chapter 16 – Judgment Chapter 17 – Beliefs & Opinions Chapter 18 – Resistance Chapter 19 – Fear Chapter 20 – Who Am I? Chapter 21 – On Becoming a Butterfly PART THREE – Questions & Answers Preface to Part Three Chapter 22 – One Big Hologram? Chapter 23 – Other People Chapter 24 – The “Earth Environment” Template Chapter 25 – Are We All One? Chapter 26 – One Player per Infinite I? Chapter 27 – Past Lives? Chapter 28 – Karma, Cause & Effect Chapter 29 – Trust Chapter 30 – Money Chapter 31 – The Ego Chapter 32 – Compassion Chapter 33 – Robert Scheinfeld Chapter 34 – Jed McKenna Chapter 35 – U.G. Krishnamurti Chapter 36 – The Future You are invited to write a book review, or offer comments, or download the free audio book version of this ebook by visiting: ButterfliesFree.com CHAPTER 0 INTRODUCTION Back to the Table of Contents Sweet freedom whispered in my ear You're a butterfly And butterflies are free to fly Fly away, high away, bye bye ~ from Someone Saved my Life Tonight, music by Elton John, lyrics by Bernie Taupin George had a problem.
    [Show full text]
  • Founded in 1939 Under the Aegis of Scotsman John Grierson, Pioneering Theorist and Practitioner of the Documentary Form, The
    Founded in 1939 under the aegis of Scotsman John Grierson , pioneering theorist and practitioner of the documentary form, the National Film Board was initially put in the service of war propaganda. Two years later, the addition to its ranks of Grierson’s countryman Norman McLaren would instigate the NFB’s second elemental thrust: technically adventurous, audaciously whimsical animation. These two interwoven threads have permeated the Film Board’s productions ever since, giving us formally innovative works that nonetheless edify. NFB films are fun, entertaining, and favor the dramatic over the didactic. We present, drawn from the shelves of Oddball Archives, what can only pretend at a cross-section of NFB’s voluminous output: explorations from the subatomic to the outer reaches of space, with a dose of human-scale drama and sheer flights of fancy. Pas de deux (1968) B+W 13 min. by Norman McLaren Set against a black ground, two graceful dancers become pure embodiments of light. Using optical superimposition, McLaren multiplies the figures, transforming live action into his own brand of kinetics. Beautifully choreographed and shot, hauntingly scored (featuring the United Folk Orchestra of Romania ), hypnotic and unforgettable. Cosmic Zoom (1968) Color 8 min. by Eva Szasz A fantastic, “continuous” voyage from a rowboat on the Ottawa river, upward and outward to a grand view of galactic flotsam, then back inwards through a rivulet of blood in the tip of a mosquito’s proboscis, to examine an atomic nucleus. Remade a decade later by Charles and Ray Eames (Powers of Ten ) with narration (and its jumping-off point moved to Chicago), then again as an Imax movie ( Cosmic Voyage ) with Morgan Freeman , Cosmic Zoom is where it all began.
    [Show full text]
  • Frank Schlesinger 1871-1943
    NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XXIV THIRD MEMOIR BIOGRAPHICAL MEMOIR OF FRANK SCHLESINGER 1871-1943 BY DIRK BROUWER PRESENTED TO THE ACADEMY AT THE ANNUAL MEETING, 1945 FRANK SCHLESINGER 1871-1943 BY DIRK BROUWER Frank Schlesinger was born in New York City on May n, 1871. His father, William Joseph Schlesinger (1836-1880), and his mother, Mary Wagner Schlesinger (1832-1892), both natives of the German province of Silesia, had emigrated to the United States. In Silesia they had lived in neighboring vil- lages, but they did not know each other until they met in New York, in 1855, at the home of Mary's cousin. They were mar- ried in 1857 and had seven children, all of whom grew to maturity. Frank was the youngest and, after 1939, the last survivor. His father's death, in 1880, although it brought hardships to the family, was not permitted to interfere with Frank's educa- tion. He attended public school in New York City, and eventually entered the College of the City of New York, receiv- ing the degree of Bachelor of Science in 1890. His aptitude for mathematical science, already evident in grammar school, be- came more marked in the higher stages of his education when he began to show a preference for applied mathematics. Upon completing his undergraduate work it was not possible for him to continue with graduate studies. He had to support himself, and his health at that time made it desirable for him to engage in outdoor activities.
    [Show full text]
  • Harold Knox-Shaw and the Helwan Observatory
    1 Harold Knox-Shaw and the Helwan Observatory Jeremy Shears & Ashraf Ahmed Shaker Abstract Harold Knox-Shaw (1885-1970) worked at the Helwan Observatory in Egypt from 1907 to 1924. The Observatory was equipped with a 30-inch (76 cm) reflector that was financed and constructed by the Birmingham industrialist, John Reynolds (1874- 1949), to benefit from the clearer skies and more southerly latitude compared with Britain. Knox-Shaw obtained the first photograph of Halley’s Comet on its 1910 perihelion passage. He also carried out morphological studies on nebulae and may have been the first to identify what later became to be known as elliptical galaxies as a distinct class of object. Photographic analysis of the variable nebula NGC 6729 in Corona Australis enabled him to conclude that the changes in brightness and shape were correlated with the light travel time from the illuminating star, R CrA. Introduction By the beginning of the twentieth century fundamental changes in astronomy were well-advanced, with a move from a traditional positional and descriptive approach to the new science of astrophysics. This was driven by the development of two new tools: spectroscopy and photography. In Great Britain the chief practitioners of the science were no longer the self-taught individuals of independent wealth, the Grand Amateurs of the Victorian age, but increasingly they were University-trained scientists employed by professional research institutions (1). Across the Atlantic, the United States was making great strides in the development of the new astronomy. Here, in the first two decades of the twentieth century increasingly large telescopes were being built to generate astrophysical data, such as the giant reflectors on Mount Wilson which benefitted from the clear skies and southerly latitudes of California.
    [Show full text]
  • VNIR Spectral Properties of Five G-Class Asteroids: Implications for Mineralogy and Geologic Evolution
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2021 VNIR Spectral Properties Of Five G-Class Asteroids: Implications For Mineralogy And Geologic Evolution Justin Todd Germann Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Germann, Justin Todd, "VNIR Spectral Properties Of Five G-Class Asteroids: Implications For Mineralogy And Geologic Evolution" (2021). Theses and Dissertations. 3927. https://commons.und.edu/theses/3927 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. VNIR SPECTRAL PROPERTIES OF FIVE G-CLASS ASTEROIDS: IMPLICATIONS FOR MINERALOGY AND GEOLOGIC EVOLUTION by Justin Todd Germann Bachelor of Science, University of North Dakota, 2017 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota May 2021 ii DocuSign Envelope ID: FACAE050-8099-49F3-B21B-B535F8B6B93E Justin Germann Name: Degree: Master of Science This document, submitted in partial fulfillment of the requirements for the degree from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. ____________________________________ Dr. Sherry Fieber-Beyer ____________________________________ Dr. Michael Gaffey ____________________________________ Dr. Wayne Barkhouse ____________________________________ ____________________________________ ____________________________________ This document is being submitted by the appointed advisory committee as having met all the requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved.
    [Show full text]
  • Near-Earth Asteroid Search Programs 45
    Stokes et al.: Near-Earth Asteroid Search Programs 45 Near-Earth Asteroid Search Programs Grant H. Stokes and Jenifer B. Evans Massachusetts Institute of Technology Lincoln Laboratory Stephen M. Larson University of Arizona The discovery of the potentially hazardous near-Earth asteroid (NEA) component of the minor-planet population has been enhanced by better detecting and computing technology. A government mandate to quantify the terrestrial impact hazard and to detect 90% of all NEAs larger than 1 km can be realistically addressed. The characteristics, capabilities, and strategies of the major search programs illustrate the challenges and solutions toward meeting the Spaceguard goal. This chapter reviews the historical context of early asteroid detection and of the current and anticipated search programs. It describes the search systems and discusses challenges in maximizing the NEA detection rate. 1. INTRODUCTION AND BACKGROUND the first few hundred asteroids, to film-based observations in the 1890s. The first asteroid discovered by photography, The past decade has witnessed an explosion in the num- (323) Brucia, was discovered by Max Wolf in 1891. The ber of cataloged asteroids. Of the more than 35,000 num- most common photographic-based search methods were bered asteroids discovered in the last 200 years, 62% of either (1) to take a single long exposure and visually inspect these were found in the past decade. Similarly, of the 1785 the plate or film for trails as the asteroid moved during the NEAs that are now known, 89% have been discovered in exposure, or (2) to take two successive exposures and visu- the past 10 years.
    [Show full text]
  • Guide for Educators
    Educational Services Department National Air and Space Museum Smithsonian Institution Presented By The Smithsonian Institution’s National Air and Space Museum and the Motorola Foundation Produced by Cosmic Voyage Incorporated with additional support from the National Science Foundation. Cosmic Voyage A Travel Guide for Educators Educational Services Department National Air and Space Museum Smithsonian Institution Washington,DC Cosmic Voyage is presented as a public service for the advancement of science education by the National Air and Space Museum and the Motorola Foundation with additional support from the National Science Foundation.The film is a production of Cosmic Voyage, Inc. and is distributed by Imax Corporation. Cosmic Voyage, which premiered in the summer of 1996, is a special commemo- rative program of the Smithsonian Institution’s 150th and the National Air and Space Museum’s 20th anniversaries. The film was shown at the Museum’s Samuel P.Langley Theater (renamed the Lockheed-Martin IMAX Theater) and is being shown in other IMAX/IMAX Dome (OMNIMAX) theaters worldwide. To locate an IMAX format theater near you log on to http://www.imax.com Enter the site and go to theaters. To find a listing of large-format non-IMAX theaters showing Cosmic Voyage con- tact MacGillivary-Freemen Films at (949) 494 1055. Cosmic Voyage:A Travel Guide for Educators was produced in conjunction with the film to provide educators with information and activities to enhance the educational content of the film. It was developed by the Educational Services Department of the National Air and Space Museum, For more information about educational programs at the Museum visit: http://www.nasm.si.edu Author: Maureen Kerr Production Editor: Jo Hinkel NASM Editor: Helen Morrill Design: Don Schaaf & Friends, Inc.
    [Show full text]