Mission to the Trojan Asteroids: lessons learned during a JPL Planetary Science Summer School mission design exercise Serina Diniegaa, Kunio M. Sayanagib,c,d,Jeffrey Balcerskie, Bryce Carandef, Ricardo A Diaz- Silvag, Abigail A Fraemanh, Scott D Guzewichi, Jennifer Hudsonj,k, Amanda L. Nahml, Sally Potter-McIntyrem, Matthew Routen, Kevin D Urbano, Soumya Vasishtp, Bjoern Bennekeq, Stephanie Gilq, Roberto Livir, , Brian Williamsa, Charles J Budneya, Leslie L Lowesa aJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, bUniversity of California, Los Angeles, CA, cCalifornia Institute of Technology, Pasadena, CA, dCurrent Affilliation: Hampton University, Hampton, VA, eCase Western Reserve University, Cleveland, OH, fArizona State University, Tempe, AZ, gUniversity of California, Davis, CA, hWashington University in Saint Louis, Saint Louis, MO, iJohns Hopkins University, Baltimore, MD, jUniversity of Michigan, Ann Arbor, MI, kCurrent affiliation: Western Michigan University, Kalamazoo, MI, lUniversity of Texas at El Paso, El Paso, TX, mThe University of Utah, Salt Lake City, UT, nPennsylvania State University, University Park, PA, oCenter for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ, pUniversity of Washington, Seattle, WA, qMassachusetts Institute of Technology, Cambridge, MA, rUniversity of Texas at San Antonio, San Antonio, TX Email:
[email protected] Published in Planetary and Space Science submitted 21 April 21 2012; accepted 29 November 2012; available online 29 December 2012 doi:10.1016/j.pss.2012.11.011 ABSTRACT The 2013 Planetary Science Decadal Survey identified a detailed investigation of the Trojan asteroids occupying Jupiter’s L4 and L5 Lagrange points as a priority for future NASA missions. Observing these asteroids and measuring their physical characteristics and composition would aid in identification of their source and provide answers about their likely impact history and evolution, thus yielding information about the makeup and dynamics of the early Solar System.