Noble Gas Bonding Interactions Involving Xenon Oxides and Fluorides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potential Ivvs.Gelbasedre
US010644304B2 ( 12 ) United States Patent ( 10 ) Patent No.: US 10,644,304 B2 Ein - Eli et al. (45 ) Date of Patent : May 5 , 2020 (54 ) METHOD FOR PASSIVE METAL (58 ) Field of Classification Search ACTIVATION AND USES THEREOF ??? C25D 5/54 ; C25D 3/665 ; C25D 5/34 ; ( 71) Applicant: Technion Research & Development HO1M 4/134 ; HOTM 4/366 ; HO1M 4/628 ; Foundation Limited , Haifa ( IL ) (Continued ) ( 72 ) Inventors : Yair Ein - Eli , Haifa ( IL ) ; Danny (56 ) References Cited Gelman , Haifa ( IL ) ; Boris Shvartsev , Haifa ( IL ) ; Alexander Kraytsberg , U.S. PATENT DOCUMENTS Yokneam ( IL ) 3,635,765 A 1/1972 Greenberg 3,650,834 A 3/1972 Buzzelli ( 73 ) Assignee : Technion Research & Development Foundation Limited , Haifa ( IL ) (Continued ) ( * ) Notice : Subject to any disclaimer , the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 CN 1408031 4/2003 U.S.C. 154 ( b ) by 56 days . EP 1983078 10/2008 (21 ) Appl. No .: 15 /300,359 ( Continued ) ( 22 ) PCT Filed : Mar. 31 , 2015 OTHER PUBLICATIONS (86 ) PCT No .: PCT/ IL2015 /050350 Hagiwara et al. in ( Acidic 1 - ethyl - 3 -methylimidazoliuum fluoride: a new room temperature ionic liquid in Journal of Fluorine Chem $ 371 (c ) ( 1 ), istry vol . 99 ( 1999 ) p . 1-3 ; ( Year: 1999 ). * (2 ) Date : Sep. 29 , 2016 (Continued ) (87 ) PCT Pub . No .: WO2015 / 151099 Primary Examiner — Jonathan G Jelsma PCT Pub . Date : Oct. 8 , 2015 Assistant Examiner Omar M Kekia (65 ) Prior Publication Data (57 ) ABSTRACT US 2017/0179464 A1 Jun . 22 , 2017 Disclosed is a method for activating a surface of metals , Related U.S. Application Data such as self- passivated metals , and of metal -oxide dissolu tion , effected using a fluoroanion -containing composition . -
Reactions of Some Ammonium Fluorometalates with Xef2
Reactions of Some Ammonium Fluorometalates with XeF2 Jože Slivnik+*, Branko Družina, and Boris Žemva Jozef Stefan Institute and+Faculty for Natural Sciences and Technology, Edvard Kardelj University, Ljubljana, Yugoslavia Dedicated to Prof. Dr. Drs. h. c. Oskar Glemser on the occasion of his 70th birthday Z. Naturforsch. 36b, 1457-1460 (1981); received May 7, 1981 Xenon Difluoride Reactions, Ammonium Fluorometalates, Hydrazinium Fluorometalates The reactions between (NH^TiFe, (NH^ZrFe, (NfL^HfFe, (NELtfeVFe, (NH4)3CrF6, NH4MnF3, (NH4)3FeFe and excess xenon difluoride were investigated. The listed am- monium fluorometalates react with xenon difluoride to form corresponding xenon(II) fluorometalates, monoammonium fluorometalates with metal in the same oxidation state, and ammonium fluorometalates with metal in higher oxidation state, respectively. The reactions between binary fluorides and xenon following new compounds, not accessible by other difluoride or xenon hexafluoride, respectively, yield conventional methods, were isolated and charac- a series of xenon(II) or xenon(VI) fluorometalates. terized: XeFe • FeF3 [3], XeF6 • ZrF4, XeF6 • HfF4 We have investigated these reactions in detail [11], XeF6 • 2 AlFs and XeF6 • GaF3 [12]. This study succeeded to isolate and identify seven xenon(II) is still being continued. and thirteen xenon(VI) fluorometalates [1]. Following the same basic approach we extended Since in some cases the reaction between binary the investigations recently onto reactions between fluoride and xenon hexafluoride did not proceed at xenon difluoride or xenon hexafluoride and am- all under the applied reaction conditions, we monium fluorometalates. supposed that the binary fluoride is not reactive enough and that the reaction might proceed if the Experimental binary fluoride would be available in a more Materials reactive form. -
Problems for Chapter 17
Molecular Modeling Problems Chapter 17 1. Argon Compounds? One of the major advantages of calculation over experiment is that “reality does not get in the way”. It is no harder to investigate the properties of labile compounds that may be difficult to isolate and characterize experimentally than it is to investigate those of stable compounds. In fact, it is possible to say whether experimental characterization can ever be achieved, that is, if the molecule of interest is actually an energy minimum. Noble gas compounds illustrate this. While xenon compounds are now numerous and a few compounds of krypton have now been reported, no argon compounds have been isolated or characterized. Do argon analogues of known xenon and krypton compounds actually exist (in the sense that they represent energy minima)? If so, do they exhibit similar geometries and charge distribution as their analogues? Obtain equilibrium geometries for argon difluoride, krypton difluoride and xenon difluoride using the Hartree-Fock 3-21G model. Start from bent structures even though. KrF2 and XeF2 are known to be linear (and ArF2 might very well be assumed to be linear as well). While the geometry optimization is able to move from a non-linear to a linear structure, it cannot do the reverse. Follow each optimization by an infrared spectrum calculation to tell you whether or not the structure is actually an energy minimum. Are KrF2 and XeF2 linear molecules? Is the calculated Kr-F bond distance in reasonable accord with the experimental value of 1.89Ǻ (the bond distance in XeF2 linear is not known)? Is ArF2 an energy minimum? Is it linear? If ArF2 is an energy minimum, is dissociation to Ar and F2 endothermic or exothermic? Are the corresponding dissociations of KrF2 and XeF2 endothermic or exothermic? Obtain electrostatic potential maps for the three compounds and display side by side on screen (and on the same scale). -
Chemistry of the Noble Gases*
CHEMISTRY OF THE NOBLE GASES* By Professor K. K. GREE~woon , :.\I.Sc., sc.D .. r".lU.C. University of N ewca.stle 1tpon Tyne The inert gases, or noble gases as they are elements were unsuccessful, and for over now more appropriately called, are a remark 60 years they epitomized chemical inertness. able group of elements. The lightest, helium, Indeed, their electron configuration, s2p6, was recognized in the gases of the sun before became known as 'the stable octet,' and this it was isolated on ea.rth as its name (i]A.tos) fotmed the basis of the fit·st electronic theory implies. The first inert gas was isolated in of valency in 1916. Despite this, many 1895 by Ramsay and Rayleigh; it was named people felt that it should be possible to induce argon (apy6s, inert) and occurs to the extent the inert gases to form compounds, and many of 0·93% in the earth's atmosphere. The of the early experiments directed to this end other gases were all isolated before the turn have recently been reviewed.l of the century and were named neon (v€ov, There were several reasons why chemists new), krypton (KpVn'TOV, hidden), xenon believed that the inert gases might form ~€vov, stmnger) and radon (radioactive chemical compounds under the correct con emanation). Though they occur much less ditions. For example, the ionization poten abundantly than argon they cannot strictly tial of xenon is actually lower than those of be called rare gases; this can be illustrated hydrogen, nitrogen, oxygen, fl uorine and by calculating the volumes occupied a.t s.t.p. -
Mole Ratio Problems
Name: Answer Key Period: ______ Date: __________ Chem B Problems 1 – 6 for HW, the rest for extra practice/review WS 4.6: Mole Ratio Problems Directions: Solve the Following Problems. Show all work on a separate sheet of paper and box your final answer. 1) How many moles of Nitrogen Dioxide will be made from the reaction of 5.5 moles of Dinitrogen Tetraoxide? N2O4(g) → 2 NO2(g) 11 mol NO2 2) How many moles of NH3 will be produced when 13 moles of H2 reacts? N2(g) + 3 H2(g) → 2 NH3(g) 8.7 mol NH3 3) How many moles of NH3 will be produced when 7.0 moles of N2 reacts? N2(g) + 3 H2(g) → 2 NH3(g) 14 mol NH3 4) How many moles of Technetium(VII) Oxide will can be produced from 3.8 moles of Technetium? 4 Tc + 7 O2 → 2 Tc2O7 1.9 mol Tc2O7 5) Given the reaction below, how many moles of Vandium(II) Chloride will form when 3.22 moles of Hydrogen gas reacts? 2 VCl3 + H2 → 2 VCl2 + 2 HCl 6.44 mol VCl2 6) If 12 moles C8H18 burns in excess oxygen, how many moles of Carbon Dioxide will enter the atmosphere and further contribute to global warming? 2 C8H18(l) + 25 O2(g) → 16 CO2(g) + 18 H2O(g) 96 mol CO2 7) If 45.0 moles of CH4 reacts, how many moles of water will be produce? CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g) 90.0 mol H2O 8) How many moles of lead can be extracted if 50 moles of Carbon are used? 2 PbO + C → 2 Pb + CO2 100 mol Pb 9) For the reaction below, determine how many moles of S2Cl2 formed when 7.80 moles of Sulfur reacts? S8 + 4 Cl2 → 4 S2Cl2 31.2 mol S2Cl2 10) How many moles of Bismuth(III) Sulfate “Bi2(SO4)3” will can be produced if 25.0 moles -
The Noble Gases
The Noble Gases The Noble Gases (inert gases, Group 0, Group 18 or the helium group) are notoriously unreactive elements (‘noble’ means unreactive in chemistry) and in their elemental state they exist as monoatomic gases – gases whose ‘molecules’ are single atoms of the element, since the atoms are reluctant to react with anything, including one-another. This inertness is due to the fact that they have stable outer electron shells, with stable octets of electrons (full s and p subshells) except helium, which has a stable full inner shell. The electronic configurations are: Helium (He): 1s2 Neon (Ne): 1s2 2s2 2p6 Argon (Ar): [Ne] 3s2 3p6 Krypton (Kr): [Ar] 3d10 4s2 4p6 Xenon (Xe): [Kr] 4d10 5s2 5p6 Radon (Rn): [Xe] 5d10 6s2 6p6 Nevertheless, this group does have some interesting chemistry and also exhibit interesting physical properties. Reactivity increases down the group. Often helium is included as the first member of the group. Helium (He) Helium is chemically a highly unreactive element. It only forms transient species when electric discharges are passed through a mixture of helium gas and another gaseous element. for example, passing an electric discharge through a mixture of helium and hydrogen forms the transient molecule HHe, which has a very short half-life. HHeF is metastable. Neon (Ne) Neon is chemically the most unreactive element. It forms no true compounds, and no neutral molecules. Ionic molecules are known, e.g. (NeAr)+, (NeH)+, (HeNe)+ and Ne+. Argon (Ar) The unstable argon fluorohydride, HArF, is known. Ar also forms clathrates (see krypton) with water and highly unstable ArH+ and ArF are known. -
5.157 TABLE 5.29 Van Der Waals' Constants for Gases the Van Der
DEAN #37261 (McGHP) RIGHT INTERACTIVE top of rh PHYSICAL PROPERTIES 5.157 base of rh cap height TABLE 5.29 Van der Waals’ Constants for Gases base of text The van der Waals’ equation of state for a real gas is: na2 ͩͪP ϩ (V Ϫ nb) ϭ nRT for n moles V2 where P is the pressure, V the volume (in liters per mole ϭ 0.001 m3 per mole in the SI system), T the temperature (in degrees Kelvin), n the amount of substance (in moles), and R the gas constant. To use the values of a and b in the table, P must be expressed in the same units as in the gas constant. Thus, the pressure of a standard atmosphere may be expressed in the SI system as follows: 1 atm ϭ 101,325 N · mϪ2 ϭ 101,325 Pa ϭ 1.01325 bar The appropriate value for the gas constant is: 0.083 144 1 L · bar · KϪ1 · molϪ1 or 0.082 056 L · atm · KϪ1 · molϪ1 The van der Waals’ constants are related to the critical temperature and pressure, tc and Pc, in Table 6.5 by: 27 RT22 RT a ϭ ccand b ϭ 64 Pcc8 P Substance a,L2 · bar · molϪ2 b,L·molϪ1 Acetaldehyde 11.37 0.08695 Acetic acid 17.71 0.1065 Acetic anhydride 26.8 0.157 Acetone 16.02 0.1124 Acetonitrile 17.89 0.1169 Acetyl chloride 12.80 0.08979 Acetylene 4.516 0.05218 Acrylic acid 19.45 0.1127 Acrylonitrile 18.37 0.1222 Allene 8.235 0.07467 Allyl alcohol 15.17 0.1036 Aluminum trichloride 42.63 0.2450 2-Aminoethanol 7.616 0.0431 Ammonia 4.225 0.03713 Ammonium chloride 2.380 0.00734 Aniline 29.14 0.1486 Antimony tribromide 42.08 0.1658 Argon 1.355 0.03201 Arsenic trichloride 17.23 0.1039 Arsine 6.327 0.06048 Benzaldehyde 30.30 0.1553 Benzene 18.82 -
The Noble Gases
INTERCHAPTER K The Noble Gases When an electric discharge is passed through a noble gas, light is emitted as electronically excited noble-gas atoms decay to lower energy levels. The tubes contain helium, neon, argon, krypton, and xenon. University Science Books, ©2011. All rights reserved. www.uscibooks.com Title General Chemistry - 4th ed Author McQuarrie/Gallogy Artist George Kelvin Figure # fig. K2 (965) Date 09/02/09 Check if revision Approved K. THE NOBLE GASES K1 2 0 Nitrogen and He Air P Mg(ClO ) NaOH 4 4 2 noble gases 4.002602 1s2 O removal H O removal CO removal 10 0 2 2 2 Ne Figure K.1 A schematic illustration of the removal of O2(g), H2O(g), and CO2(g) from air. First the oxygen is removed by allowing the air to pass over phosphorus, P (s) + 5 O (g) → P O (s). 20.1797 4 2 4 10 2s22p6 The residual air is passed through anhydrous magnesium perchlorate to remove the water vapor, Mg(ClO ) (s) + 6 H O(g) → Mg(ClO ) ∙6 H O(s), and then through sodium hydroxide to remove 18 0 4 2 2 4 2 2 the carbon dioxide, NaOH(s) + CO2(g) → NaHCO3(s). The gas that remains is primarily nitrogen Ar with about 1% noble gases. 39.948 3s23p6 36 0 The Group 18 elements—helium, K-1. The Noble Gases Were Kr neon, argon, krypton, xenon, and Not Discovered until 1893 83.798 radon—are called the noble gases 2 6 4s 4p and are noteworthy for their rela- In 1893, the English physicist Lord Rayleigh noticed 54 0 tive lack of chemical reactivity. -
Crystal Structure Transformations in Binary Halides
1 A UNITED STATES DEPARTMENT OF A111D3 074^50 IMMERCE JBLICAT10N NSRDS—NBS 41 HT°r /V\t Co^ NSRDS r #C£ DM* ' Crystal Structure Transformations in Binary Halides u.s. ARTMENT OF COMMERCE National Bureau of -QC*-| 100 US73 ho . 4 1^ 72. NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation’s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation’s physical measure- ment system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scien- tific community, industry, and commerce. The Institute consists of a Center for Radia- tion Research, an Office of Measurement Services and the following divisions: Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation 2—Nuclear Radiation 2—Applied Radiation 2—Quantum Electronics 3— Electromagnetics 3—Time and Frequency 3—Laboratory Astrophysics 3—Cryo- 3 genics . -
844AR ESD Safe Coating for Plastic
844AR ESD Safe Coating for Plastic MG Chemicals UK Limited Version No: A-1.00 Issue Date: 02/07/2021 Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758 Revision Date: 02/07/2021 L.REACH.GB.EN SECTION 1 Identification of the substance / mixture and of the company / undertaking 1.1. Product Identifier Product name 844AR Synonyms SDS Code: 844AR-Liquid; 844AR-900ML, 844AR-3.78L | UFI:JFR0-202H-V006-0AJ1 Other means of identification ESD Safe Coating for Plastic 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Static protection for electronic components Uses advised against Not Applicable 1.3. Details of the supplier of the safety data sheet Registered company name MG Chemicals UK Limited MG Chemicals (Head office) Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Address 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada Kingdom Telephone +(44) 1663 362888 +(1) 800-201-8822 Fax Not Available +(1) 800-708-9888 Website Not Available www.mgchemicals.com Email [email protected] [email protected] 1.4. Emergency telephone number Association / Organisation Verisk 3E (Access code: 335388) Emergency telephone +(44) 20 35147487 numbers Other emergency telephone +(0) 800 680 0425 numbers SECTION 2 Hazards identification 2.1. Classification of the substance or mixture Classified according to GB-CLP Regulation, UK SI H336 - Specific target organ toxicity - single exposure Category 3 (narcotic effects), H225 - Flammable Liquid Category 2, H318 - Serious Eye 2019/720 and UK SI 2020/1567 Damage/Eye Irritation Category 1, H351 - Carcinogenicity Category 2 [1] Legend: 1. -
Safety Data Sheet Material Name: Autoclean SDS ID: 00231763 (SINGAPORE)
Safety Data Sheet Material Name: AutoClean SDS ID: 00231763 (SINGAPORE) SECTION 1: Identification Product identifier Material Name AutoClean Synonyms XENON DIFLUORIDE; XENON FLUORIDE (XeF2); XENON(II) FLUORIDE (F2Xe); F2Xe Chemical Family fluoride, inorganic Product Use semiconductor manufacture, general synthetic chemical Restrictions on Use None known. Details of the supplier of the safety data sheet Entegris, Inc. 129 Concord Road Building 2 Billerica, MA 01821 USA Telephone Number: +1-952-556-4181 Telephone Number: +1-800-394-4083 (toll free within North America) Supplier Entegris Singapore Pte. Ltd. 30A Kallang Place, #13-01 Singapore 339213 Telephone: +65-6745-2422 Fax: +65-6745-4477 Emergency # 800-101-2201 (CHEMTREC Toll Free in country) +(65)-31581349 (CHEMTREC local in country) 1-703-527-3887 (CHEMTREC International) E-mail: [email protected] SECTION 2: Hazards identification Singapore Standard SS 586-2:2014 Oxidizing Solids - Category 2 Acute Toxicity - Oral - Category 3 Acute Toxicity - Inhalation - Dust/Mist - Category 2 Skin Corrosion/Irritation - Category 1 Serious Eye Damage/Eye Irritation - Category 1 Specific Target Organ Toxicity - Single Exposure - Category 3 ( respiratory system ) Label elements ____________________________________________________________ Page 1 of 11 Issue date: 2020-05-13 Revision 3.3 Print date: 2020-05-13 Safety Data Sheet Material Name: AutoClean SDS ID: 00231763 (SINGAPORE) Hazard symbols Signal word Danger Hazard statements H272 May intensify fire; oxidizer. H330 Fatal if inhaled. H301 Toxic if swallowed. H314 Causes severe skin burns and eye damage. H335 May cause respiratory irritation. Precautionary statements Prevention P210 Keep away from heat. P220 Keep/Store away from clothing/combustible materials. P221 Take any precaution to avoid mixing with combustibles. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride