Reactions of Some Ammonium Fluorometalates with Xef2

Total Page:16

File Type:pdf, Size:1020Kb

Reactions of Some Ammonium Fluorometalates with Xef2 Reactions of Some Ammonium Fluorometalates with XeF2 Jože Slivnik+*, Branko Družina, and Boris Žemva Jozef Stefan Institute and+Faculty for Natural Sciences and Technology, Edvard Kardelj University, Ljubljana, Yugoslavia Dedicated to Prof. Dr. Drs. h. c. Oskar Glemser on the occasion of his 70th birthday Z. Naturforsch. 36b, 1457-1460 (1981); received May 7, 1981 Xenon Difluoride Reactions, Ammonium Fluorometalates, Hydrazinium Fluorometalates The reactions between (NH^TiFe, (NH^ZrFe, (NfL^HfFe, (NELtfeVFe, (NH4)3CrF6, NH4MnF3, (NH4)3FeFe and excess xenon difluoride were investigated. The listed am- monium fluorometalates react with xenon difluoride to form corresponding xenon(II) fluorometalates, monoammonium fluorometalates with metal in the same oxidation state, and ammonium fluorometalates with metal in higher oxidation state, respectively. The reactions between binary fluorides and xenon following new compounds, not accessible by other difluoride or xenon hexafluoride, respectively, yield conventional methods, were isolated and charac- a series of xenon(II) or xenon(VI) fluorometalates. terized: XeFe • FeF3 [3], XeF6 • ZrF4, XeF6 • HfF4 We have investigated these reactions in detail [11], XeF6 • 2 AlFs and XeF6 • GaF3 [12]. This study succeeded to isolate and identify seven xenon(II) is still being continued. and thirteen xenon(VI) fluorometalates [1]. Following the same basic approach we extended Since in some cases the reaction between binary the investigations recently onto reactions between fluoride and xenon hexafluoride did not proceed at xenon difluoride or xenon hexafluoride and am- all under the applied reaction conditions, we monium fluorometalates. supposed that the binary fluoride is not reactive enough and that the reaction might proceed if the Experimental binary fluoride would be available in a more Materials reactive form. Highly reactive, pure binary fluorides Fluorine was prepared and purified in this labora- were prepared in this laboratory earlier by reacting tory as described elsewhere [13]. Its purity was 99 ± 0.5 vol%. Additional purification, mainly from hydrazinium fluorometalates with elemental fluo- oxygen, was performed by irradiation of liquefied rine [2]. fluorine with the near UV light at 77 K [14]. The It was expected, therefore, that the metal fluoride purity of so obtained fluorine was above 99.9 vol%. Xenon was supplied by l'Air Liquide (Paris, which is formed in situ during the reaction between France) in 99.5% purity (the balance was krypton). hydrazinium fluorometalates and xenon hexa- Xenon difluoride was prepared by photosynthesis fluoride should be in a highly reactive form and using near UV lamp [15]. The purity of xenon should consequently react immediately with excess difluoride was checked by IR spectrum of the xenon hexafluoride to form xenon(VI) fluoro- vapours and by the determination of its triple point. (NH4)2MF6 (M = Ti, Zr, Hf) were prepared by metalates. We checked our speculation in the reac- crystallization from the water solutions of cor- tion between N2HeFeF5 and xenon hexafluoride. responding fluorometallic acid and ammonium Indeed XeFö • FeF3 was isolated [3], a compound fluoride [16-18]. which could not be obtained by other, more conven- (NH4)3MF6 (M = V, Cr, Fe) were prepared by tional ways. This result encouraged us to initiate a crystallization of solutions obtained by dissolving of corresponding metal trifluoride trihydrate in water systematic study of the reactions between xenon solution of ammonium fluoride [19-21]. difluoride or xenon hexafluoride on one side and NH4MnF3 was prepared by reaction between hydrazinium(l -f) fluorometalates, hydrazinium- Mn(N03)2 • 4 H20 and ammonium fluoride in water (2-f) fluorometalates and metal fluoride adducts solution [22]. with hydrazine on the other side [4-10]. So far the General procedure Reactions were carried out in argon arc welded nickel or copper pressure and weighing vessels equipped with Teflon packed nickel valves. The volume of the reaction vessel was about 100 ml. Chemical analysis of the products: Compound Calcd [%] Found [%] NH4ZrF5 Zr 44.67 F 46.52 NIL* 8.81 Zr 43.9 F 46.0 NH4 8.5 NH4HfF5 Hf 61.23 F 32.59 XH4 6.18 Hf 61.7 F 31.9 NH4 5.9 (NH4)3VF8 V 19.82 F 59.16 NH4 21.02 V 19.6 F 55.4 NH4 20.3 NH4CrF4 Cr 35.62 F 52.05 NH4 12.33 Cr 34.4 F 50.2 NHi 10.2 NH4MnF4 Mn 36.89 F 51.03 NH4 12.08 Mn 35.7 F 50.5 NH4 11.8 NEUFeF4 Fe 37.27 F 50.72 NH4 12.01 Fe 37.1 F 50.5 NHj 11.3 They were tested hydrostatically up to 200 atm Mass spectra were recorded on a Nier type mass and were designed also for manipulating solid spectrometer with an inlet system for the analysis materials. All transfers of materials were carried out of gases. either in the atmosphere of a dry box or by distilla- tion under vacuum in a well dried apparatus. Results and Discussion In a typical run 3 to 6 mmoles of ammonium The reactions between (NH4)2TiF6, (NH4)2ZrF6, fluorometalate was weighed into reaction vessel and dried by pumping upon in a dynamic vacuum for (NH4)2HfF6, (NH4)3VF6, (NH4)3CrF6, NH4MnF4, 12 h. Then a corresponding amount of xenon di- (NH4)3FeFe and excessive xenon difluoride were fluoride was added by sublimation. The vessel was investigated. The listed ammonium fluorometalates then thermostated at predetermined temperature react with xenon difluoride in a three different for several hours. After the reaction was completed, modes as follows: the reaction products were separated by fractional sublimation, isolated and identified. Volatiles at 1. Ammonium fluorometalate is completely fluo- 77 K, 193 K, 233 K and at room temperature were rinated by xenon difluoride to corresponding characterized by mass spectrometry and infrared spectroscopy. Solids were identified by chemical binary fluoride which reacts further with excess analysis, X-ray powder diffraction patterns, infra- of xenon difluoride to form correspondings xenon- red and Raman spectroscopy and magnetic suscep- (II) fluorometalate. tibility measurements. The stoichiometry of the reactions was followed throughout of experiment by 2. Tri- or di-ammonium fluorometalate is only weighing of all reactants and products to ± 5 mg. partially fluorinated by xenon difluoride to form monoammonium fluorometalate with the metal General apparatus and techniques in the same oxidation state. Raman spectra were recorded using a Spex 1401 3. Only metal in ammonium fluorometalate is double monochromator. As exciting radiation, the oxidized while the rest of the compound does not 515.5 nm line of an Ar+ laser or 647.1 nm of a Kr+ laser (Coherent Radiation) were used. Powdered change. samples were loaded into quartz cappilaries in a dry The reaction between (NH4)2TiF6 and xenon box temporarily plugged with Kel-F grease and sealed off by a small flame outside the dry box. difluoride belongs to the first group: Raman spectrum of (NH4)3VF8: 612(100), 596(83), 453 K 490(9), 342(96), 310(57), 270(76), 216(11), 188(9) (NH4)2TiF6 + nXeFa cm-1. several hours IR spectra were recorded using Perkin Elmer 521 XeF2 • TiF4 + *N2 + 2(1—x)NF3 + and Zeiss UR-20 spectrometers over the range 400 to 4000 cm-1. The sample was finely powdered and 8 HF + 3(2—x)Xe + n-(7—3z)XeF2 dusted onto silver chloride plates sandwiched in a n > 10, a: >0.7. leak tight brass holder. The reaction between (NH4)2TiFe and xenon di- X-ray powder photographs were obtained by the Debye Scherrer method on ENRAF (Delft, Holland) fluoride starts somewhere around 413 K but is very using graphite monochromatized CuK<* radiation. slow. Even at 433 K with periodic pumping away In the case of known compounds X-ray powder of all volatile reaction products it takes several days, photographs were compared with the data from before the reaction is completed. Normally the ASTM tables. Finely powdered samples were sealed in 0.5 mm thin walled quartz capillaries as described reaction was carried out at 453 K. Obviously the under Raman spectra. related hydrazinium(2+) compound N2HeTiF6 is much more reactive. It reacts with xenon difluoride hedra of VF6-, appears at 660 cm-1 [25]. The already at 393 K forming XeF2 • TiF4. corresponding band in the Raman spectrum of our Interestingly enough, also some nitrogen tri- compound is at 612 cm-1 indicating higher coordina- fluoride was obtained during the reaction. This is, tion number of fluorine around vanadium than six. as far as we know, the first chemical reaction where The compound decomposes in X-ray beam and it nitrogen trifluoride was prepared by the reaction turns very quickly from a white colour with a pink with xenon difluoride. cast to a green colour. This behaviour also rules out The reactions in the analogous systems the potential possibility of having a mixture of (NH4)2ZrF6/XeF2 and (NH4)2HfF6/XeF2 belong to ammonium fluoride and NHiVFe as the reaction the second group: product. Both components are white and very stable in X-ray beams. Quite interesting is also 423 K (NH4)2MF6 + nXe F2 • the comparison with the analogous reaction of 36 h (N2H5)3VF6 and xenon difluoride. In this case NEUMFs + 0.5 N2 + 4 HF + 1.5 Xe + NH4VFe [25] was obtained besides of nitrogen, (n— 1.5)XeF2 hydrogen fluoride, xenon and excess of xenon di- n >6, M = Zr, Hf. fluoride. It should be mentioned here that in this case ammonium hexafluorovanadate(III) and hy- Also in this case the reaction proceeds at the tem- drazinium hexafluorovanadate(III) appear to be perature around 423 K but only to NH4ZrF5 [22] approximately equally stable. The reason for this is and NELiHfFs [23], respectively. Both formed com- that vanadium is in 3 + oxidation state what is not pounds are very stable and do not react further the stable oxidation state of vanadium in xenon(II) with excess of xenon difluoride even at 473 K.
Recommended publications
  • Nitrogen Trifluoride Hazard Summary Identification
    Common Name: NITROGEN TRIFLUORIDE CAS Number: 7783-54-2 RTK Substance number: 1380 DOT Number: UN 2451 Date: March 2001 ------------------------------------------------------------------------- ------------------------------------------------------------------------- HAZARD SUMMARY * Nitrogen Trifluoride can affect you when breathed in. * Exposure to hazardous substances should be routinely * Contact may irritate the skin and eyes. evaluated. This may include collecting personal and area * High levels can interfere with the ability of the blood to air samples. You can obtain copies of sampling results carry Oxygen causing headache, fatigue, dizziness, and a from your employer. You have a legal right to this blue color to the skin and lips (methemoglobinemia). information under OSHA 1910.1020. Higher levels can cause trouble breathing, collapse and * If you think you are experiencing any work-related health even death. problems, see a doctor trained to recognize occupational * Repeated high exposure can cause weakness, muscle diseases. Take this Fact Sheet with you. twitching, seizures and convulsions. * Nitrogen Trifluoride may damage the liver and kidneys. WORKPLACE EXPOSURE LIMITS * Repeated high exposure can cause deposits of Fluorides in OSHA: The legal airborne permissible exposure limit the bones and teeth, a condition called "Fluorosis." This (PEL) is 10 ppm averaged over an 8-hour can cause pain, disability and mottling of the teeth. workshift. * The above health effects do NOT occur at the level of Fluoride used in water for preventing cavities in teeth. NIOSH: The recommended airborne exposure limit is 10 ppm averaged over a 10-hour workshift. IDENTIFICATION Nitrogen Trifluoride is a colorless gas with a moldy odor. It ACGIH: The recommended airborne exposure limit is is used as a Fluorine source in the electronics industry and in 10 ppm averaged over an 8-hour workshift.
    [Show full text]
  • Nitrogen Trifluoride
    Nitrogen trifluoride (CAS No: 7783-54-2) Health-based Reassessment of Administrative Occupational Exposure Limits Committee on Updating of Occupational Exposure Limits, a committee of the Health Council of the Netherlands No. 2000/15OSH/125, The Hague, June 8, 2004 Preferred citation: Health Council of the Netherlands: Committee on Updating of Occupational Exposure Limits. Nitrogen trifluoride; Health-based Reassessment of Administrative Occupational Exposure Limits. The Hague: Health Council of the Netherlands, 2004; 2000/15OSH/125. all rights reserved 1 Introduction The present document contains the assessment of the health hazard of nitrogen trifluoride by the Committee on Updating of Occupational Exposure Limits, a committee of the Health Council of the Netherlands. The first draft of this document was prepared by MA Maclaine Pont, M.Sc. (Wageningen University and Research Centre, Wageningen, the Netherlands). In November 1999, literature was searched in the databases Toxline, Medline, and Chemical Abstracts, starting from 1981, 1966, and 1937, respectively, and using the following key words: nitrogen trifluoride, nitrogen fluoride (NF3), and 7783-54-2. In February 2001, the President of the Health Council released a draft of the document for public review. No comments were received. An additional search in Toxline and Medline in January 2004 did not result in information changing the committee’s conclusions. 2Identity name : nitrogen trifluoride synonyms : nitrogen fluoride; trifluoroamine; trifluoroammonia; perfluoroammonia molecular formula : NF3 CAS number : 7783-54-2 3 Physical and chemical properties molecular weight : 71.0 boiling point : -129oC melting point : -208.5oC flash point : - vapour pressure : at 20°C: >100 kPa solubility in water : very slightly soluble log Poctanol/water : -1.60 conversion factors : at 20°C, 101.3 kPa: 1 mg/m3 = 0.34 ppm 1 ppm = 2.96 mg/m3 Data from ACG91, NLM04, http://esc.syrres.com.
    [Show full text]
  • Problems for Chapter 17
    Molecular Modeling Problems Chapter 17 1. Argon Compounds? One of the major advantages of calculation over experiment is that “reality does not get in the way”. It is no harder to investigate the properties of labile compounds that may be difficult to isolate and characterize experimentally than it is to investigate those of stable compounds. In fact, it is possible to say whether experimental characterization can ever be achieved, that is, if the molecule of interest is actually an energy minimum. Noble gas compounds illustrate this. While xenon compounds are now numerous and a few compounds of krypton have now been reported, no argon compounds have been isolated or characterized. Do argon analogues of known xenon and krypton compounds actually exist (in the sense that they represent energy minima)? If so, do they exhibit similar geometries and charge distribution as their analogues? Obtain equilibrium geometries for argon difluoride, krypton difluoride and xenon difluoride using the Hartree-Fock 3-21G model. Start from bent structures even though. KrF2 and XeF2 are known to be linear (and ArF2 might very well be assumed to be linear as well). While the geometry optimization is able to move from a non-linear to a linear structure, it cannot do the reverse. Follow each optimization by an infrared spectrum calculation to tell you whether or not the structure is actually an energy minimum. Are KrF2 and XeF2 linear molecules? Is the calculated Kr-F bond distance in reasonable accord with the experimental value of 1.89Ǻ (the bond distance in XeF2 linear is not known)? Is ArF2 an energy minimum? Is it linear? If ArF2 is an energy minimum, is dissociation to Ar and F2 endothermic or exothermic? Are the corresponding dissociations of KrF2 and XeF2 endothermic or exothermic? Obtain electrostatic potential maps for the three compounds and display side by side on screen (and on the same scale).
    [Show full text]
  • Noble Gas Bonding Interactions Involving Xenon Oxides and Fluorides
    molecules Review Noble Gas Bonding Interactions Involving Xenon Oxides and Fluorides Antonio Frontera Department of Chemistry, Universitat de les Illes Balears, Crta de valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain; [email protected] Academic Editor: Felice Grandinetti Received: 17 July 2020; Accepted: 27 July 2020; Published: 28 July 2020 Abstract: Noble gas (or aerogen) bond (NgB) can be outlined as the attractive interaction between an electron-rich atom or group of atoms and any element of Group-18 acting as an electron acceptor. The IUPAC already recommended systematic nomenclature for the interactions of groups 17 and 16 (halogen and chalcogen bonds, respectively). Investigations dealing with noncovalent interactions involving main group elements (acting as Lewis acids) have rapidly grown in recent years. They are becoming acting players in essential fields such as crystal engineering, supramolecular chemistry, and catalysis. For obvious reasons, the works devoted to the study of noncovalent Ng-bonding interactions are significantly less abundant than halogen, chalcogen, pnictogen, and tetrel bonding. Nevertheless, in this short review, relevant theoretical and experimental investigations on noncovalent interactions involving Xenon are emphasized. Several theoretical works have described the physical nature of NgB and their interplay with other noncovalent interactions, which are discussed herein. Moreover, exploring the Cambridge Structural Database (CSD) and Inorganic Crystal Structure Database (ICSD), it is demonstrated that NgB interactions are crucial in governing the X-ray packing of xenon derivatives. Concretely, special attention is given to xenon fluorides and xenon oxides, since they exhibit a strong tendency to establish NgBs. Keywords: noble gas interactions; noncovalent interactions; crystal packing; xenon 1.
    [Show full text]
  • Chemistry of the Noble Gases*
    CHEMISTRY OF THE NOBLE GASES* By Professor K. K. GREE~woon , :.\I.Sc., sc.D .. r".lU.C. University of N ewca.stle 1tpon Tyne The inert gases, or noble gases as they are elements were unsuccessful, and for over now more appropriately called, are a remark­ 60 years they epitomized chemical inertness. able group of elements. The lightest, helium, Indeed, their electron configuration, s2p6, was recognized in the gases of the sun before became known as 'the stable octet,' and this it was isolated on ea.rth as its name (i]A.tos) fotmed the basis of the fit·st electronic theory implies. The first inert gas was isolated in of valency in 1916. Despite this, many 1895 by Ramsay and Rayleigh; it was named people felt that it should be possible to induce argon (apy6s, inert) and occurs to the extent the inert gases to form compounds, and many of 0·93% in the earth's atmosphere. The of the early experiments directed to this end other gases were all isolated before the turn have recently been reviewed.l of the century and were named neon (v€ov, There were several reasons why chemists new), krypton (KpVn'TOV, hidden), xenon believed that the inert gases might form ~€vov, stmnger) and radon (radioactive chemical compounds under the correct con­ emanation). Though they occur much less ditions. For example, the ionization poten­ abundantly than argon they cannot strictly tial of xenon is actually lower than those of be called rare gases; this can be illustrated hydrogen, nitrogen, oxygen, fl uorine and by calculating the volumes occupied a.t s.t.p.
    [Show full text]
  • 5.157 TABLE 5.29 Van Der Waals' Constants for Gases the Van Der
    DEAN #37261 (McGHP) RIGHT INTERACTIVE top of rh PHYSICAL PROPERTIES 5.157 base of rh cap height TABLE 5.29 Van der Waals’ Constants for Gases base of text The van der Waals’ equation of state for a real gas is: na2 ͩͪP ϩ (V Ϫ nb) ϭ nRT for n moles V2 where P is the pressure, V the volume (in liters per mole ϭ 0.001 m3 per mole in the SI system), T the temperature (in degrees Kelvin), n the amount of substance (in moles), and R the gas constant. To use the values of a and b in the table, P must be expressed in the same units as in the gas constant. Thus, the pressure of a standard atmosphere may be expressed in the SI system as follows: 1 atm ϭ 101,325 N · mϪ2 ϭ 101,325 Pa ϭ 1.01325 bar The appropriate value for the gas constant is: 0.083 144 1 L · bar · KϪ1 · molϪ1 or 0.082 056 L · atm · KϪ1 · molϪ1 The van der Waals’ constants are related to the critical temperature and pressure, tc and Pc, in Table 6.5 by: 27 RT22 RT a ϭ ccand b ϭ 64 Pcc8 P Substance a,L2 · bar · molϪ2 b,L·molϪ1 Acetaldehyde 11.37 0.08695 Acetic acid 17.71 0.1065 Acetic anhydride 26.8 0.157 Acetone 16.02 0.1124 Acetonitrile 17.89 0.1169 Acetyl chloride 12.80 0.08979 Acetylene 4.516 0.05218 Acrylic acid 19.45 0.1127 Acrylonitrile 18.37 0.1222 Allene 8.235 0.07467 Allyl alcohol 15.17 0.1036 Aluminum trichloride 42.63 0.2450 2-Aminoethanol 7.616 0.0431 Ammonia 4.225 0.03713 Ammonium chloride 2.380 0.00734 Aniline 29.14 0.1486 Antimony tribromide 42.08 0.1658 Argon 1.355 0.03201 Arsenic trichloride 17.23 0.1039 Arsine 6.327 0.06048 Benzaldehyde 30.30 0.1553 Benzene 18.82
    [Show full text]
  • The Noble Gases
    INTERCHAPTER K The Noble Gases When an electric discharge is passed through a noble gas, light is emitted as electronically excited noble-gas atoms decay to lower energy levels. The tubes contain helium, neon, argon, krypton, and xenon. University Science Books, ©2011. All rights reserved. www.uscibooks.com Title General Chemistry - 4th ed Author McQuarrie/Gallogy Artist George Kelvin Figure # fig. K2 (965) Date 09/02/09 Check if revision Approved K. THE NOBLE GASES K1 2 0 Nitrogen and He Air P Mg(ClO ) NaOH 4 4 2 noble gases 4.002602 1s2 O removal H O removal CO removal 10 0 2 2 2 Ne Figure K.1 A schematic illustration of the removal of O2(g), H2O(g), and CO2(g) from air. First the oxygen is removed by allowing the air to pass over phosphorus, P (s) + 5 O (g) → P O (s). 20.1797 4 2 4 10 2s22p6 The residual air is passed through anhydrous magnesium perchlorate to remove the water vapor, Mg(ClO ) (s) + 6 H O(g) → Mg(ClO ) ∙6 H O(s), and then through sodium hydroxide to remove 18 0 4 2 2 4 2 2 the carbon dioxide, NaOH(s) + CO2(g) → NaHCO3(s). The gas that remains is primarily nitrogen Ar with about 1% noble gases. 39.948 3s23p6 36 0 The Group 18 elements—helium, K-1. The Noble Gases Were Kr neon, argon, krypton, xenon, and Not Discovered until 1893 83.798 radon—are called the noble gases 2 6 4s 4p and are noteworthy for their rela- In 1893, the English physicist Lord Rayleigh noticed 54 0 tive lack of chemical reactivity.
    [Show full text]
  • Safety Data Sheet Nitrogen Trifluoride
    Safety Data Sheet Nitrogen Trifluoride Section 1: Product and Company Identification Middlesex Gases & Technologies 292 Second Street P.O. Box 490249 Everett, MA 02149 (617) 387-5050 (800) 649-6704 Fax (617) 387-3537 http://www.middlesexgases.com/ Product Code: Nitrogen Trifluoride Section 2: Hazards Identification Warning Hazard Classification: Gases Under Pressure Hazard Statements: Contains gas under pressure; may explode if heated Precautionary Statements Storage: Protect from sunlight. Store in well-ventilated place. Section 3: Composition/Information on Ingredients CAS # 7783-54-2 Middlesex Gases & Technologies page 1 of 4 Generated by the SDS Manager from AsteRisk, LLC. All Rights Reserved Generated: 06/01/2015 Chemical Chemical Trade Names Substance Family Nitrogen Trifluoride inorganic halide Nitrogen fluoride, trifluoroamine, trifluoroammonia, Perfluoroammonia; NF3; UN 2451; N,N,N- Trifluoroamine Section 4: First Aid Measures Skin Contact Eye Contact Ingestion Inhalation Note to Physicians Flush skin with plenty of water for 15 Flush eyes with plenty of Not likely Remove victim to fresh air. Provide Consider minutes. Remove contaminated clothing water for 15 minutes. Get route of artificial respiration if breathing is oxygen. and shoes, wash before reuse. Get medical attention exposure. difficult. Consider oxygen. Contact medical attention immediately. immediately. medical personnel immediately. Section 5: Fire Fighting Measures Suitable Extinguishing Media Products of Protection of Firefighters Combustion Non-flammable. Use extinguishing media suitable for Non-flammable § Wear self-contained breathing apparatus. surrounding fire. Section 6: Accidental Release Measures Personal Precautions Environmental Precautions Methods for Containment Isolate area. Contact emergency personnel. Eliminate ignition Avoid contact with soil, waterways, drains Shut off flow if possible sources if it is safe to do so.
    [Show full text]
  • Safety Data Sheet Material Name: Autoclean SDS ID: 00231763 (SINGAPORE)
    Safety Data Sheet Material Name: AutoClean SDS ID: 00231763 (SINGAPORE) SECTION 1: Identification Product identifier Material Name AutoClean Synonyms XENON DIFLUORIDE; XENON FLUORIDE (XeF2); XENON(II) FLUORIDE (F2Xe); F2Xe Chemical Family fluoride, inorganic Product Use semiconductor manufacture, general synthetic chemical Restrictions on Use None known. Details of the supplier of the safety data sheet Entegris, Inc. 129 Concord Road Building 2 Billerica, MA 01821 USA Telephone Number: +1-952-556-4181 Telephone Number: +1-800-394-4083 (toll free within North America) Supplier Entegris Singapore Pte. Ltd. 30A Kallang Place, #13-01 Singapore 339213 Telephone: +65-6745-2422 Fax: +65-6745-4477 Emergency # 800-101-2201 (CHEMTREC Toll Free in country) +(65)-31581349 (CHEMTREC local in country) 1-703-527-3887 (CHEMTREC International) E-mail: [email protected] SECTION 2: Hazards identification Singapore Standard SS 586-2:2014 Oxidizing Solids - Category 2 Acute Toxicity - Oral - Category 3 Acute Toxicity - Inhalation - Dust/Mist - Category 2 Skin Corrosion/Irritation - Category 1 Serious Eye Damage/Eye Irritation - Category 1 Specific Target Organ Toxicity - Single Exposure - Category 3 ( respiratory system ) Label elements ____________________________________________________________ Page 1 of 11 Issue date: 2020-05-13 Revision 3.3 Print date: 2020-05-13 Safety Data Sheet Material Name: AutoClean SDS ID: 00231763 (SINGAPORE) Hazard symbols Signal word Danger Hazard statements H272 May intensify fire; oxidizer. H330 Fatal if inhaled. H301 Toxic if swallowed. H314 Causes severe skin burns and eye damage. H335 May cause respiratory irritation. Precautionary statements Prevention P210 Keep away from heat. P220 Keep/Store away from clothing/combustible materials. P221 Take any precaution to avoid mixing with combustibles.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title TAUTOMERISM IN XENON HEXAFLUORIDE: AN INVESTIGATION OF XENON HEXAFLUORIDE AND ITS COMPLEXES BY RAMAN SPECTROSCOPY Permalink https://escholarship.org/uc/item/4t37825s Authors Adams, Chris J. Bartlett, Neil. Publication Date 1977-12-01 eScholarship.org Powered by the California Digital Library University of California · Submitted to Israel Journal of Chemistry (In Press) LBL-3136 }- Preprint .. · U!:-'::: i!\1-lY A"'l.J i.JOCUl·tiZ.l'-:.TS £2CTION TAUI'OMERI~ IN XENON HEXAFLUORIDE: AN INVESTIGATION OF XENON HEXAFLUORIDE AND ITS C(M>LEXES BY RAM\N SPECTROSCOPY Chris J. Adams and Neil Bartlett December 1977 Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48 TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Dioision, Ext. 5716 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of · California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California.
    [Show full text]
  • New Approaches to the Nitrogen Fluoride Synthesis
    Journal contents New approaches to the nitrogen fluoride synthesis Message 2. Fluorination of some hydroxylamines. V..M. Andrushin In the monograph [1] the hydroxylamines fluorination process is not mentioned at all as nitrogen fluorides obtaining method, that’s why we have made an attempt to study the opportunity of nitrogen fluoride and oxyfluoride using the example of interaction of fluorine with sulfuric hydroxylamine and hydroxylamine-o-sulpho-acid (HASA). Hydroxylamine-o-sulpho-acid in our opinion is a convenient model reagent, which is able to delocalize the charge in molecule and thus is more resistant to different destructive processes. In other literature the works regarding the obtaining of nitrogen fluorides and oxyfluorides by fluorination of hydroxylamines are absent. In the work [2] it is informed that at fluorination of hydroxylamine hydrochlorides and o-methylhydroxylamine the interaction products were only nitrous oxide (yield up to 60%) and anhydrous hydrogen fluoride. At fluorination of o- methylhydroxylamine the formation of some nitrogen fluoride is also noted. In the article [2] the reaction has been studied only in heterogeneous conditions and its results indicate the fact that heterogeneuos fluorination of hydroxylamines passes according to the scheme of cross-linking fluorination with formation of intermediate unstable derivatives of hydrazine and azo-compounds like it takes place at heterogeneous fluorination of urea and other amines and imines [3]. Heterogeneous fluorination of hydroxylamine-o-sulpho-acid was carried out in nickel autoclave or in stainless steel flow reactor separately as well as in mixtures with sodium fluoride. The carrying out conditions of the experiments and the combination of reaction gaseous products are listed in the table.
    [Show full text]
  • United States Patent Office Patented June 29, 1965
    3,192,016 United States Patent Office Patented June 29, 1965 2 3,192,016 used before for the processing of uranium compounds, XENON HEXAFLUORDE AND METHOD and its pipe lines contained some lower uranium fluorides. OF MAKING After the xenon hexafluoride had been stored in the ap John G. Maim, Naperville, Irving Sheft, Oak Park, paratus for about an hour, all uranium had disappeared Howard H. Claassen, Wheaton, and Cedric L. Chernick, from the pipelines. It had been converted to the volatile River Forest, E., assignors to the United States of uranium hexafluoride by the Xenon hexafluoride. America as represented by the United States Atomic In the following, an example is given to illustrate the Energy Commission No Drawing. Fied Dec. 18, 1962, Ser. No. 245,951 process of producing xenon hexafluoride. 7 Claims. (C. 23-205) O Example This invention deals with xenon hexafluoride, a method of making this novel compound, and it also deals with 5.25 millinoles of xenon and 110 millimoles of fluorine fluorination processes using Xenon hexafluoride. gas were introduced into and sealed in an 87-cc. nickel It has been found that a mixture containing Xenon and container. The gas mixture was heated in this container an excess of fluorine over the amount required for the pro 5 at about 300° C. for 16 hours, whereby a pressure of duction of xenon hexafluoride, when heated in a her about 60 atmospheres built up. After this heating period, metically sealed container, reacts to form xenon hexa the nickel container was cooled to room temperature, fluoride.
    [Show full text]