Amphibian Diversity in Amazonian Flooded Forests of Peru

Total Page:16

File Type:pdf, Size:1020Kb

Amphibian Diversity in Amazonian Flooded Forests of Peru Amphibian diversity in Amazonian flooded forests of Peru Kathleen Anne Upton A thesis submitted for the degree of Doctor of Philosophy from the Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent. December 2015 Word Count: 44,448 Abstract Global biodiversity is currently facing the sixth mass extinction, with extinction rates at least 100 times higher than background levels. The Amazon Basin has the richest amphibian fauna in South America, but there remain significant gaps in our knowledge of the drivers of diversity in this region and how amphibian assemblages are responding to environmental change. Surveys were conducted in the Pacaya-Samiria National Reserve (PSNR) in Amazonian Peru, with a view to (1) comparing assemblage structure on floating meadows and adjacent terrestrial habitats; (2) determining the predictors of diversity in these habitats; and (3) exploring the effects of disturbance and seasonal flooding on diversity measures. Eighty-one species of amphibians have been recorded in these habitats since 1996 representing 11 families and three orders. In 2012-2013 22 anuran species used the floating meadow habitat, of which 10 were floating meadow specialists. These specialists were predominantly hylids which breed on floating meadows all the year round. Floating meadows therefore host an assemblage of species which is different to that found in adjacent terrestrial areas which are subject to seasonal flooding. Floating meadows enhance the amphibian diversity of the region, and rafts of vegetation that break away and disperse frogs downstream may explain the wide distribution of hylids within the Amazon Basin. Fourteen different reproductive modes were represented within the 54 anuran species observed. The number of reproductive modes present was influenced by localised disturbance and seasonal flooding. Diversity increased in the low water period, with hylids breeding in temporary pools. When the forest is inundated most species disperse away from the flood waters. Disturbance, habitat change, emerging diseases and climate change would likely lead to changes in species composition and assemblage structure rather than wholescale extinctions. However, further studies are needed to evaluate long-term consequences of synergistic environmental change. KEY WORDS: Amazonian amphibians; floating meadows; climate change; flooding; reproductive modes i Acknowledgements My PhD began as an idea while undertaking my undergraduate research project in the Amazon; I must thank Peter Bennett who planted this initial thought in my mind! Without this encouragement my PhD would never have taken shape. Of course many others deserve thanks for the constant support and help I have received throughout my research and write up. Firstly my supervisor, Richard Griffiths, who has given support, advice, encouragement and red pen to shape my work and help me grow as a researcher. Richard Bodmer, without whom my fieldwork would not have been possible, for his support and guidance in the field. I am grateful to the organisations that made data collection possible: AmazonEco, the Wildlife Conservation Society (WCS), FundAmazonia and the reserve authority. Also the many students and volunteers from DICE, Operation Wallace and Earthwatch, as well as the many local guides, cooks and biologists who helped with data collection and general jungle life. Financially I am forever grateful to the many alumni of the university who donated to my scholarship and the amazing ladies in the scholarship office who have helped me throughout, and always shown interest in my research and frog photos. Finally special thanks to Hannah & Jess (for all the phone calls), Emma, Elli & Izzy (for their invaluable help), Pip (for the title page drawings), Jamie, Lilly, my wonderful family, parents and especially Sophie for putting up with the third ‘person’ in our relationship for the last four years!! I couldn’t have done it without you all around me. ii Table of Contents Abstract.………………………………………………………………………………………………………………….....i Acknowledgements………………………………………………..…………………………………………………..ii Table of Contents…………………………………………………….………………………………………………..iii List of Figures………………………………………………………………………………………………………….vii List of Tables.…………………………………………………………………………………………………………..ix Chapter 1 - Introduction 1 1.2 Global biodiversity conservation 2 1.3 Global amphibian declines 3 1.4 Amphibian diversity and distribution 6 1.5 South American diversity, distribution and conservation 7 1.6 Thesis overview 10 References 12 Chapter 2 - Study site and general methods 17 2.1 Study site 18 2.2 Floating meadows method 25 2.3 Terrestrial transect method 32 References 34 Chapter 3 - Amphibian species richness in the Pacaya-Samiria National Reserve, Peru 36 3. Abstract 37 3.1 Introduction 38 3.2 Methods 40 3.2.1 Data collection (2003 – 2013) 40 3.2.2 Rarefaction curves 42 3.3 Results 43 3.3.1 Terrestrial vs floating meadow 46 3.3.2 Floating meadow rarefaction 48 3.3.3 Terrestrial rarefaction 51 3.4 Discussion 53 iii 3.5 Conclusions 56 References 57 Chapter 4 - Floating meadows as an amphibian habitat in the Amazon Basin 60 4. Abstract 61 4.1 Introduction 62 4.1.1 Floating meadows 65 4.2 Methods 67 4.2.1 Floating meadow survey 67 4.2.2 Identification 68 4.2.3 Statistical analysis 69 4.3 Results 73 4.3.1 Summary statistics 74 4.3.2 Floating meadow GLMM predictors of abundance 76 4.3.3 Floating meadow GLMM predictors of species richness 79 4.3.4 Water level, macrohabitat and location 80 4.4 Discussion 85 4.4.1 Predictors of anuran abundance 87 4.4.2 Predictors of anuran richness 89 4.4.3 Macrohabitat and site 90 4.4.4 Hylidae distribution 93 4.5 Conclusion 95 References 96 Appendix 4.1 – 4.7 101 Chapter 5 - Comparison of amphibian assemblage structure between floating meadows and terrestrial habitats 108 5. Abstract 109 5.1 Introduction 110 5.2 Methods 112 5.2.1 Floating meadows 112 5.2.2 Terrestrial 112 5.2.3 Survey method differences 113 iv 5.2.4 Bromeliad survey methods 113 5.2.5 Statistical analysis 114 5.2.6 Species diversity 114 5.2.7 Species richness 114 5.2.8 Habitat generalists and specialists 115 5.3 Results 117 5.3.1 Species lists for all sites 117 5.3.2 Individual density 120 5.3.3 Species richness estimates 120 5.3.4 Bromeliad anurans 121 5.3.5 Species diversity 122 5.3.6 Habitat generalist and specialist 123 5.4 Discussion 125 5.5 Conclusion 132 References 133 Chapter 6 - Predictors of anuran reproductive modes in a Peruvian flooded forest 135 6. Abstract 136 6.1 Introduction 137 6.2 Methods 140 6.2.1 Disturbance 140 6.2.2 Reproductive modes 141 6.2.3 Statistical analysis 144 6.3 Results 147 6.3.1 Low water reproductive modes 151 6.3.2 Low water reproductive mode predictors 152 6.3.3 PV2 reproductive modes 153 6.3.4 PV2 reproductive mode predictors 154 6.3.5 Modelling summary 156 6.4 Discussion 157 6.4.1 Reproductive mode predictors 159 6.5 Conclusion 162 v References 163 Chapter 7 - The impacts of seasonal flooding on amphibian diversity in a Peruvian lowland flooded forest 167 7. Abstract 168 7.1 Introduction 169 7.2 Methods 172 7.2.1 Flooding 172 7.2.2 Statistical analysis 173 7.2.3 Species diversity 174 7.2.4 Generalist and specialist 174 7.3 Results 176 7.3.1 Water level impact on diversity and abundance 178 7.3.2 Water level generalist and specialist 180 7.4 Discussion 184 7.4.1 Predictors of amphibian diversity and abundance 187 7.5 Conclusion 189 References 190 Chapter 8 - General Discussion 193 References 201 Appendix 1 – Publications 204 Appendix 2 – Amphibian Phylogenies 205 vi List of figures Figure Description Page Distribution of worldwide amphibian species richness reprinted from the 1.1 6 global amphibian assessment. 2.1 The location of the Pacaya-Samiria National Reserve within Peru. 18 2.2 Pacaya-Samiria Reserve. 19 2.3 The location of PV1 Shiringal at the mouth of the Maranon River 19 The location of PV2 Tacshacocha where the majority of surveys were 2.4 20 undertaken 2.5 Temperature and humidity graph from 7th June 2013 – 5th September 2013. 21 2.6 Temperature and humidity graph from 26th June 2013 – 4th July 2013. 22 Water level of the Maranon River recorded at Nauta from January to 2.7 22 December 2012 and 2013. 2.8 A small patch of floating meadow within a bend of the channel at PV2. 27 2.9 Floating vegetation in the low water in the channel at PV2. 27 2.10 Continuous floating meadow vegetation around the lake edge at PV2. 28 Dense floating meadow vegetation on the south facing edge of the lake. In 2.11 28 places this extended by over 50 m from the tree line into the lake. A floating raft of vegetation which would have broken away from a section 2.12 29 of floating meadow upriver. The main river, channel and lake at PV2. Although not to scale, this 2.13 31 highlights the differences in availability of floating meadows. Estimated species richness for the floating meadow and terrestrial habitats 3.1 46 at both 1000 and 5500 individuals. Extrapolated rarefaction curves for the floating meadow and terrestrial 3.2 47 habitat estimated by number of individuals. 3.3 Estimated species richness for the three water level periods. 48 Extrapolated rarefaction curves for the three water periods estimated by 3.4 49 number of surveys. Extrapolated rarefaction curves for the three water periods estimated by 3.5 49 number of individuals. Extrapolated rarefaction curves for the three macrohabitats, estimated by 3.6 50 number of individuals. Extrapolated rarefaction curves for the three main sites surveyed, estimated 3.7 50 by number of individual.
Recommended publications
  • 01-Marty 148.Indd
    Copy proofs - 2-12-2013 Bull. Soc. Herp. Fr. (2013) 148 : 419-424 On the occurrence of Dendropsophus leali (Bokermann, 1964) (Anura; Hylidae) in French Guiana by Christian MARTY (1)*, Michael LEBAILLY (2), Philippe GAUCHER (3), Olivier ToSTAIN (4), Maël DEWYNTER (5), Michel BLANC (6) & Antoine FOUQUET (3). (1) Impasse Jean Galot, 97354 Montjoly, Guyane française [email protected] (2) Health Center, 97316, Antécum Pata, Guyane française (3) CNRS Guyane USR 3456, Immeuble Le Relais, 2 avenue Gustave Charlery, 97300 Cayenne, Guyane française (4) Ecobios, BP 44, 97321, Cayenne CEDEX , Guyane française (5) Biotope, Agence Amazonie-Caraïbes, 30 domaine de Montabo, Lotissement Ribal, 97300 Cayenne, Guyane française (6) Pointe Maripa, RN2/PK35, Roura, Guyane française Summary – Dendropsophus leali is a small Amazonian tree frog occurring in Brazil, Peru, Bolivia and Colombia where it mostly inhabits patches of open habitat and disturbed forest. We herein report five new records of this species from French Guiana extending its range 650 km to the north-east and sug- gesting that D. leali could be much more widely distributed in Amazonia than previously thought. The origin of such a disjunct distribution pattern probably lies in historical fluctuations of the forest cover during the late Tertiary and the Quaternary. Poor understanding of Amazonian species distribution still impedes comprehensive investigation of the processes that have shaped Amazonian megabiodiversity. Key-words: Dendropsophus leali, Anura, Hylidae, distribution, French Guiana. Résumé – À propos de la présence de Dendropsophus leali (Bokermann, 1964) (Anura ; Hylidae) en Guyane française. Dendropsophus leali est une rainette de petite taille présente au Brésil, au Pérou, en Bolivie et en Colombie où elle occupe principalement des habitats ouverts ou des forêts perturbées.
    [Show full text]
  • Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
    Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes.
    [Show full text]
  • Nototriton Nelsoni Is a Moss Salamander Endemic to Cloud Forest in Refugio De Vida Silvestre Texíguat, Located in the Departments of Atlántida and Yoro, Honduras
    Nototriton nelsoni is a moss salamander endemic to cloud forest in Refugio de Vida Silvestre Texíguat, located in the departments of Atlántida and Yoro, Honduras. This cryptic species long was confused with N. barbouri, a morphologically similar species now considered endemic to the Sierra de Sulaco in the southern part of the department of Yoro. Like many of its congeners, N. nelsoni rarely is observed in the wild, and is known from just five specimens. Pictured here is the holotype of N. nelsoni, collected above La Liberación in Refugio de Vida Silvestre Texíguat at an elevation of 1,420 m. This salamander is one of many herpetofaunal species endemic to the Cordillera Nombre de Dios. ' © Josiah H. Townsend 909 www.mesoamericanherpetology.com www.eaglemountainpublishing.com Amphibians of the Cordillera Nombre de Dios, Honduras: COI barcoding suggests underestimated taxonomic richness in a threatened endemic fauna JOSIAH H. TOWNSEND1 AND LARRY DAVID WILSON2 1Department of Biology, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705–1081, United States. E-mail: [email protected] (Corresponding author) 2Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Departamento de Francisco Morazán, Honduras; 16010 SW 207th Avenue, Miami, Florida 33187-1067, United States. E-mail: [email protected] ABSTRACT: The Cordillera Nombre de Dios is a chain of mountains along the northern coast of Honduras that harbors a high degree of herpetofaunal endemism. We present a preliminary barcode reference library of amphibians from the Cordillera Nombre de Dios, based on sampling at 10 sites from 2008 to 2013. We sequenced 187 samples of 21 nominal taxa for the barcoding locus cytochrome oxidase subunit I (COI), and recovered 28 well-differentiated clades.
    [Show full text]
  • Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
    Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF.
    [Show full text]
  • Furness, Mcdiarmid, Heyer, Zug.Indd
    south american Journal of Herpetology, 5(1), 2010, 13-29 © 2010 brazilian society of herpetology Oviduct MOdificatiOns in fOaM-nesting frOgs, with eMphasis On the genus LeptodactyLus (aMphibia, LeptOdactyLidae) Andrew I. Furness1, roy w. McdIArMId2, w. ronAld Heyer3,5, And GeorGe r. ZuG4 1 department of Biology, university of california, Riverside, ca 92501, usa. e‑mail: [email protected] 2 us Geological survey, patuxent Wildlife Research center, National Museum of Natural History, MRc 111, po Box 37012, smithsonian Institution, Washington, dc 20013‑7012, usa. e‑mail: [email protected] 3 National Museum of Natural History, MRc 162, po Box 37012, smithsonian Institution, Washington, dc 20013‑7012. e‑mail: [email protected] 4 National Museum of Natural History, MRc 162, po Box 37012, smithsonian Institution, Washington, dc 20013‑7012. e‑mail: [email protected] 5 corresponding author. AbstrAct. various species of frogs produce foam nests that hold their eggs during development. we examined the external morphology and histology of structures associated with foam nest production in frogs of the genus Leptodactylus and a few other taxa. we found that the posterior convolutions of the oviducts in all mature female foam-nesting frogs that we examined were enlarged and compressed into globular structures. this organ-like portion of the oviduct has been called a “foam gland” and these structures almost certainly produce the secretion that is beaten by rhythmic limb movements into foam that forms the nest. however, the label “foam gland” is a misnomer because the structures are simply enlarged and tightly folded regions of the pars convoluta of the oviduct, rather than a separate structure; we suggest the name pars convoluta dilata (pcd) for this feature.
    [Show full text]
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • For Review Only
    Page 63 of 123 Evolution Moen et al. 1 1 2 3 4 5 Appendix S1: Supplementary data 6 7 Table S1 . Estimates of local species composition at 39 sites in Middle America based on data summarized by Duellman 8 9 10 (2001). Locality numbers correspond to Table 2. References for body size and larval habitat data are found in Table S2. 11 12 Locality and elevation Body Larval Subclade within Middle Species present Hylid clade 13 (country, state, specific location)For Reviewsize Only habitat American clade 14 15 16 1) Mexico, Sonora, Alamos; 597 m Pachymedusa dacnicolor 82.6 pond Phyllomedusinae 17 Smilisca baudinii 76.0 pond Middle American Smilisca clade 18 Smilisca fodiens 62.6 pond Middle American Smilisca clade 19 20 21 2) Mexico, Sinaloa, Mazatlan; 9 m Pachymedusa dacnicolor 82.6 pond Phyllomedusinae 22 Smilisca baudinii 76.0 pond Middle American Smilisca clade 23 Smilisca fodiens 62.6 pond Middle American Smilisca clade 24 Tlalocohyla smithii 26.0 pond Middle American Tlalocohyla 25 Diaglena spatulata 85.9 pond Middle American Smilisca clade 26 27 28 3) Mexico, Durango, El Salto; 2603 Hyla eximia 35.0 pond Middle American Hyla 29 m 30 31 32 4) Mexico, Jalisco, Chamela; 11 m Dendropsophus sartori 26.0 pond Dendropsophus 33 Exerodonta smaragdina 26.0 stream Middle American Plectrohyla clade 34 Pachymedusa dacnicolor 82.6 pond Phyllomedusinae 35 Smilisca baudinii 76.0 pond Middle American Smilisca clade 36 Smilisca fodiens 62.6 pond Middle American Smilisca clade 37 38 Tlalocohyla smithii 26.0 pond Middle American Tlalocohyla 39 Diaglena spatulata 85.9 pond Middle American Smilisca clade 40 Trachycephalus venulosus 101.0 pond Lophiohylini 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Evolution Page 64 of 123 Moen et al.
    [Show full text]
  • Mannophryne Olmonae) Catherine G
    The College of Wooster Libraries Open Works Senior Independent Study Theses 2014 A Not-So-Silent Spring: The mpI acts of Traffic Noise on Call Features of The loB ody Bay Poison Frog (Mannophryne olmonae) Catherine G. Clemmens The College of Wooster, [email protected] Follow this and additional works at: https://openworks.wooster.edu/independentstudy Part of the Other Environmental Sciences Commons Recommended Citation Clemmens, Catherine G., "A Not-So-Silent Spring: The mpI acts of Traffico N ise on Call Features of The loodyB Bay Poison Frog (Mannophryne olmonae)" (2014). Senior Independent Study Theses. Paper 5783. https://openworks.wooster.edu/independentstudy/5783 This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The oC llege of Wooster Libraries. It has been accepted for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact [email protected]. © Copyright 2014 Catherine G. Clemmens A NOT-SO-SILENT SPRING: THE IMPACTS OF TRAFFIC NOISE ON CALL FEATURES OF THE BLOODY BAY POISON FROG (MANNOPHRYNE OLMONAE) DEPARTMENT OF BIOLOGY INDEPENDENT STUDY THESIS Catherine Grace Clemmens Adviser: Richard Lehtinen Submitted in Partial Fulfillment of the Requirement for Independent Study Thesis in Biology at the COLLEGE OF WOOSTER 2014 TABLE OF CONTENTS I. ABSTRACT II. INTRODUCTION…………………………………………...............…...........1 a. Behavioral Effects of Anthropogenic Noise……………………….........2 b. Effects of Anthropogenic Noise on Frog Vocalization………………....6 c. Why Should We Care? The Importance of Calling for Frogs..................8 d. Color as a Mode of Communication……………………………….…..11 e. Biology of the Bloody Bay Poison Frog (Mannophryne olmonae)…...13 III.
    [Show full text]
  • Species Diversity and Conservation Status of Amphibians in Madre De Dios, Southern Peru
    Herpetological Conservation and Biology 4(1):14-29 Submitted: 18 December 2007; Accepted: 4 August 2008 SPECIES DIVERSITY AND CONSERVATION STATUS OF AMPHIBIANS IN MADRE DE DIOS, SOUTHERN PERU 1,2 3 4,5 RUDOLF VON MAY , KAREN SIU-TING , JENNIFER M. JACOBS , MARGARITA MEDINA- 3 6 3,7 1 MÜLLER , GIUSEPPE GAGLIARDI , LILY O. RODRÍGUEZ , AND MAUREEN A. DONNELLY 1 Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE-167, Miami, Florida 33199, USA 2 Corresponding author, e-mail: [email protected] 3 Departamento de Herpetología, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Avenida Arenales 1256, Lima 11, Perú 4 Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA 5 Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118, USA 6 Departamento de Herpetología, Museo de Zoología de la Universidad Nacional de la Amazonía Peruana, Pebas 5ta cuadra, Iquitos, Perú 7 Programa de Desarrollo Rural Sostenible, Cooperación Técnica Alemana – GTZ, Calle Diecisiete 355, Lima 27, Perú ABSTRACT.—This study focuses on amphibian species diversity in the lowland Amazonian rainforest of southern Peru, and on the importance of protected and non-protected areas for maintaining amphibian assemblages in this region. We compared species lists from nine sites in the Madre de Dios region, five of which are in nationally recognized protected areas and four are outside the country’s protected area system. Los Amigos, occurring outside the protected area system, is the most species-rich locality included in our comparison.
    [Show full text]
  • Thermal Adaptation of Amphibians in Tropical Mountains
    Thermal adaptation of amphibians in tropical mountains. Consequences of global warming Adaptaciones térmicas de anfibios en montañas tropicales: consecuencias del calentamiento global Adaptacions tèrmiques d'amfibis en muntanyes tropicals: conseqüències de l'escalfament global Pol Pintanel Costa ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia.
    [Show full text]
  • Etar a Área De Distribuição Geográfica De Anfíbios Na Amazônia
    Universidade Federal do Amapá Pró-Reitoria de Pesquisa e Pós-Graduação Programa de Pós-Graduação em Biodiversidade Tropical Mestrado e Doutorado UNIFAP / EMBRAPA-AP / IEPA / CI-Brasil YURI BRENO DA SILVA E SILVA COMO A EXPANSÃO DE HIDRELÉTRICAS, PERDA FLORESTAL E MUDANÇAS CLIMÁTICAS AMEAÇAM A ÁREA DE DISTRIBUIÇÃO DE ANFÍBIOS NA AMAZÔNIA BRASILEIRA MACAPÁ, AP 2017 YURI BRENO DA SILVA E SILVA COMO A EXPANSÃO DE HIDRE LÉTRICAS, PERDA FLORESTAL E MUDANÇAS CLIMÁTICAS AMEAÇAM A ÁREA DE DISTRIBUIÇÃO DE ANFÍBIOS NA AMAZÔNIA BRASILEIRA Dissertação apresentada ao Programa de Pós-Graduação em Biodiversidade Tropical (PPGBIO) da Universidade Federal do Amapá, como requisito parcial à obtenção do título de Mestre em Biodiversidade Tropical. Orientador: Dra. Fernanda Michalski Co-Orientador: Dr. Rafael Loyola MACAPÁ, AP 2017 YURI BRENO DA SILVA E SILVA COMO A EXPANSÃO DE HIDRELÉTRICAS, PERDA FLORESTAL E MUDANÇAS CLIMÁTICAS AMEAÇAM A ÁREA DE DISTRIBUIÇÃO DE ANFÍBIOS NA AMAZÔNIA BRASILEIRA _________________________________________ Dra. Fernanda Michalski Universidade Federal do Amapá (UNIFAP) _________________________________________ Dr. Rafael Loyola Universidade Federal de Goiás (UFG) ____________________________________________ Alexandro Cezar Florentino Universidade Federal do Amapá (UNIFAP) ____________________________________________ Admilson Moreira Torres Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá (IEPA) Aprovada em de de , Macapá, AP, Brasil À minha família, meus amigos, meu amor e ao meu pequeno Sebastião. AGRADECIMENTOS Agradeço a CAPES pela conceção de uma bolsa durante os dois anos de mestrado, ao Programa de Pós-Graduação em Biodiversidade Tropical (PPGBio) pelo apoio logístico durante a pesquisa realizada. Obrigado aos professores do PPGBio por todo o conhecimento compartilhado. Agradeço aos Doutores, membros da banca avaliadora, pelas críticas e contribuições construtivas ao trabalho.
    [Show full text]
  • AMPHIBIANS of the RIOZINHO Do ANFRÍSIO Extractive Reserve,Pará
    WEB VERSION PARÁ STATE, Eastern Amazon, BRAZIL AMPHIBIANS of the RIOZINHO do ANFRÍSIO Extractive Reserve, Pará 1 Flávio Bezerra Barros1,2; Luís Vicente2 and Henrique M. Pereira2 1Universidade Federal do Pará, Brazil; 2Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Portugal Photos by Flávio Bezerra Barros, except where indicated. Produced by Tyana Wachter, J. Philipp, & R. Foster, with support from Ellen Hyndman Fund & Andrew Mellon Foundation. © Flávio Bezerra Barros [[email protected]] Universidade Federal do Pará, Brazil; Faculdade de Ciências da Universidade de Lisboa, Portugal © Environmental & Conservation Programs, The Field Museum, Chicago, IL 60605 USA. [[email protected]] [www.fmnh.org/animalguides/] Rapid Color Guide # 271 version 1 08/2010 1 Allophryne ruthveni 2 Allobates femoralis 3 Allobates sp. 4 Dendrophryniscus bokermanni ALLOPHRYNIDAE AROMOBATIDAE AROMOBATIDAE BUFONIDAE (carrying tadpoles) 5 Rhaebo guttatus 6 Rhinella castaneotica 7 Rhinella magnussoni 8 Rhinella gr. margaritifera BUFONIDAE BUFONIDAE BUFONIDAE BUFONIDAE 9 Rhinella gr. margaritifera 10 Rhinella marina 11 Rhinella marina 12 Ceratophrys cornuta BUFONIDAE BUFONIDAE BUFONIDAE CERATOPHRYIDAE (pair in amplexus) (pair in amplexus) 13 Proceratophrys concavitympanum 14 Adelphobates castaneoticus 15 Dendropsophus brevifrons 16 Dendropsophus leucophyllatus CYCLORAMPHIDAE DENDROBATIDAE HYLIDAE HYLIDAE photo: Pedro L.V. Peloso 17 Dendropsophus leucophyllatus 18 Dendropsophus leucophyllatus 19 Dendropsophus melanargyreus 20 Dendropsophus minusculus HYLIDAE HYLIDAE HYLIDAE HYLIDAE (yellow pattern) (giraffe pattern) WEB VERSION PARÁ STATE, Eastern Amazon, BRAZIL AMPHIBIANS of the RIOZINHO do ANFRÍSIO Extractive Reserve, Pará 2 Flávio Bezerra Barros1,2; Luís Vicente2 and Henrique M. Pereira2 1Universidade Federal do Pará, Brazil; 2Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Portugal Photos by Flávio Bezerra Barros, except where indicated.
    [Show full text]