Serial Deletions and Duplications Suggest a Mechanism for the Collinearity of Hoxd Genes in Limbs

Total Page:16

File Type:pdf, Size:1020Kb

Serial Deletions and Duplications Suggest a Mechanism for the Collinearity of Hoxd Genes in Limbs articles Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs Marie Kmita*, Nadine Fraudeau*, Yann He´rault*† & Denis Duboule* * Department of Zoology and Animal Biology, NCCR Frontiers in Genetics, University of Geneva, Sciences III, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland ........................................................................................................................................................................................................................... Hox genes, located at one end of the HoxD cluster, are essential for the development of the extremities of our limbs; that is, the digits. This ‘collinear’ correspondence is accompanied by a gradual decrease in the transcriptional efficiency of the genes. To decipher the underlying regulatory mechanisms, and thus to understand better how digits develop, we engineered a series of deletions and duplications in vivo. We find that HoxD genes compete for a remote enhancer that recognizes the locus in a polar fashion, with a preference for the 5 0 extremity. Modifications in either the number or topography of Hoxd loci induced regulatory reallocations affecting both the number and morphology of digits. These results demonstrate why genes located at the extremity of the cluster are expressed at the distal end of the limbs, following a gradual reduction in transcriptional efficiency, and thus highlight the mechanistic nature of collinearity in limbs. During vertebrate evolution, Hox genes were co-opted to achieve a ing that modifications in the presence, the absence, the position or variety of functions in addition to their ancestral role in organizing the number of genes would provide insights into both aspects. We structures along the trunk axis. One example is the limb skeleton, used targeted meiotic recombination (TAMERE19) to produce which is patterned by genes from the HoxA and HoxD clusters1,2. unequal recombination between the Hoxd13, Hoxd12 and Hoxd11 These transcription factors are essential for limb development3,4, loci. Furthermore, some deletions and duplications were engineered and their collinear regulation is similar to that observed in the along with other mutations in cis (Fig. 1b). This allelic series trunk: genes located in the middle of the HoxD complex (for clarified functional issues and provided explanations as to why example, Hoxd9) are expressed in proximal areas of the limb bud genes situated in 5 0 of the HoxD cluster preferentially respond to whereas genes that are located in a more 5 0 direction (for example, this regulation, and why they do it with a decrease in transcriptional Hoxd11) have a more distal expression, in the future forearm region. efficiency; thereby deciphering part of the mechanism underlying Accordingly, the most distal parts of the limb, the future hands and collinearity in limbs. feet, express the four genes situated in the most 5 0 location (Hoxd10 to Hoxd13). Therefore, the skeletal organization of the limb is prefigured in the genomic topology of these genes5–7 (Fig. 1a). Serial deletions Furthermore, a decrease in transcription efficiency correlates with We generated deletions and duplications by crossing mice contain- gene order (quantitative collinearity8; Fig. 1a). ing loxP sites between Evx2 and Hoxd13, between Hoxd13 and The proper regulation and function of these genes is critical, as Hoxd12, between Hoxd12 and Hoxd11, or between Hoxd11 and their inactivation leads to the absence of the corresponding struc- Hoxd10 (Fig. 1b). After recombination, all remaining genes were tures: the loss of Hoxd11 and Hoxa11 function is accompanied by fully functional. This series of deficiencies and duplications involved the loss of forearms3, whereas the absence of both Hoxd13 and from one to three loci, such as deletion (or duplication) of Hoxd13, Hoxa13 prevents the development of hands and feet9–11.These of Hoxd13 and Hoxd12 in cis, or of three loci (Fig. 1b). The phenotypes were difficult to evaluate, owing to redundant and phenotypes of the homozygous animals were examined. Severe compensatory mechanisms, and to a functional hierarchy attribut- skeletal phenotypes were scored only on excision of Hoxd13— ing a prevalent role to the most ‘posterior’ proteins over more deletion of both Hoxd12 and Hoxd11 did not lead to important ‘anterior’ ones12. We reported previously that the element necessary alterations (not shown), in agreement with the functional domi- 20 for digit expression of the four Hoxd genes situated in the most 5 0 nance of Hoxd13 over other posterior Hoxd genes . However, location (Hoxd13 to Hoxd10), and of the neighbouring gene Evx2,is although deletions containing Hoxd13 impinged on digit mor- located outside of the HoxD cluster13–15. Moreover, other Hox16,17 phology, the alterations appeared unexpectedly different from and foreign18 promoters responded to this enhancer whenever those described for the loss of function of the corresponding introduced at the extremity of the locus, and this response was genes generated by disruption of coding sequences. independent of their transcriptional orientation. This raised the This finding was exemplified by deleting the Hoxd13 locus, which question of the specificity of action of this regulatory element; that generated a mild digit alteration in comparison with animals 21–23 is, its potential to discriminate between various, distantly located carrying insertional mutations (Fig. 2a, b) that show a reduction Hox promoters and to lead reproducibly to the observed collinear in digit length, a supernumerary posterior digit and an overall ill- expression patterns, thus producing the correct digit morphology. formed and stiffer aspect of bony elements (Fig. 2a). In contrast, To dissect the function of these genes and to investigate the after deletion of Hoxd13, digit length was no longer affected, apart mechanism underlying collinearity in limbs, we carried out a from a slight reduction of digits II and V, and no supernumerary systematic deletion and duplication approach of Hoxd loci, reason- digit was scored. Altogether, the morphology was close to that of control animals (Fig. 2b, c). Furthermore, mice carrying the † Present address: Molecular and Experimental Genetics, FRE2358, CNRS, Institut de Transge´nose, rue de deletion had normal hindlimbs, without the skeletal defects associ- 21 la Fe´rollerie, 3B, 45071, Orle´ans cedex 2, France. ated with Hoxd13 loss of function . Consequently, whereas Hoxd13 NATURE | VOL 420 | 14 NOVEMBER 2002 | www.nature.com/nature © 2002 Nature Publishing Group 145 articles disruptions induce severe limb alterations, the corresponding To see whether this was specific for Hoxd12 or if it reflected a general deletion has little effect on these structures. This phenomenon versatility of Hoxd promoters, we analysed a deletion whereby illustrates the difficulty over assigning an objective meaning to the Hoxd11 was placed at the position of Hoxd13, and compared it concept of ‘gene function’, as different full loss-of-function alleles with a double disrupted allele, inactivating both Hoxd13 and have distinct consequences on the final morphology. Within such Hoxd12 (ref. 25) (Fig. 1b). Again, limbs of deleted mice appeared gene clusters, the ‘function’ of a given gene cannot be considered on different from those of the double inactivation in cis25. In this case, its own, but instead must be integrated into a larger functional animals carrying the two-gene deletion were affected more severely context, that of the cluster itself. than with the double inactivation in cis (Fig. 2e, f), and up to ten We analysed the expression of neighbouring genes to the dis- supernumerary cartilaginous condensations were scored and the rupted allele and found no difference with control (Fig. 2). In entire autopod (the most distal skeletal limb segment) was markedly contrast, deleting the Hoxd13 locus resulted in a deregulation of the ill formed (Fig. 2). Metacarpal bones appeared chaotic, with partial 3 0 neighbouring gene (Hoxd12; Fig. 2a, b). A robust enhancement in fusions, and phalanges failed to elongate properly. Hoxd12 transcription was observed, and Hoxd12 transcripts were This severe phenotype correlated with both an enhancement of detected in the most anterior aspect of the distal bud, within the Hoxd11 transcription and the anterior expansion of its transcript presumptive domain of digit I, where only Hoxd13 transcripts were domain (Fig. 2f). Again, Hoxd11 behaved like Hoxd13 when located seen in control animals24 (Fig. 2b, c). This gain of expression at the (relative) Hoxd13 position. In contrast, Hoxd11 expression explained why these mice were less affected than mice with dis- was normal in the double inactivation mutant (Fig. 2d, e), indicat- rupted alleles: increased transcription of Hoxd12 partially substi- ing that the severity of the defects was associated with the upregula- tuted for the absence of Hoxd13. tion of Hoxd11. The potential of Hoxd11 to trigger supernumerary Therefore, moving Hoxd12 to the position of Hoxd13, with chondrogenic condensations was verified by using a deletion respect to the extremity of the cluster, led to a regulatory realloca- removing Hoxd13, Hoxd12 and Hoxd11; in this condition, the tion of Hoxd12, which became transcribed like Hoxd13 (Fig. 2b, c). number of digits was back to five and Hoxd10 expression was Figure 1 Collinearity in developing limbs. a, Scheme of a forelimb skeleton (top) and triangles) in between transcription units (red arrows). Brackets
Recommended publications
  • Detailed Review Paper on Retinoid Pathway Signalling
    1 1 Detailed Review Paper on Retinoid Pathway Signalling 2 December 2020 3 2 4 Foreword 5 1. Project 4.97 to develop a Detailed Review Paper (DRP) on the Retinoid System 6 was added to the Test Guidelines Programme work plan in 2015. The project was 7 originally proposed by Sweden and the European Commission later joined the project as 8 a co-lead. In 2019, the OECD Secretariat was added to coordinate input from expert 9 consultants. The initial objectives of the project were to: 10 draft a review of the biology of retinoid signalling pathway, 11 describe retinoid-mediated effects on various organ systems, 12 identify relevant retinoid in vitro and ex vivo assays that measure mechanistic 13 effects of chemicals for development, and 14 Identify in vivo endpoints that could be added to existing test guidelines to 15 identify chemical effects on retinoid pathway signalling. 16 2. This DRP is intended to expand the recommendations for the retinoid pathway 17 included in the OECD Detailed Review Paper on the State of the Science on Novel In 18 vitro and In vivo Screening and Testing Methods and Endpoints for Evaluating 19 Endocrine Disruptors (DRP No 178). The retinoid signalling pathway was one of seven 20 endocrine pathways considered to be susceptible to environmental endocrine disruption 21 and for which relevant endpoints could be measured in new or existing OECD Test 22 Guidelines for evaluating endocrine disruption. Due to the complexity of retinoid 23 signalling across multiple organ systems, this effort was foreseen as a multi-step process.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • SUPPLEMENTARY MATERIAL Bone Morphogenetic Protein 4 Promotes
    www.intjdevbiol.com doi: 10.1387/ijdb.160040mk SUPPLEMENTARY MATERIAL corresponding to: Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells SUMIYO MIMURA, MIKA SUGA, KAORI OKADA, MASAKI KINEHARA, HIROKI NIKAWA and MIHO K. FURUE* *Address correspondence to: Miho Kusuda Furue. Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan. Tel: 81-72-641-9819. Fax: 81-72-641-9812. E-mail: [email protected] Full text for this paper is available at: http://dx.doi.org/10.1387/ijdb.160040mk TABLE S1 PRIMER LIST FOR QRT-PCR Gene forward reverse AP2α AATTTCTCAACCGACAACATT ATCTGTTTTGTAGCCAGGAGC CDX2 CTGGAGCTGGAGAAGGAGTTTC ATTTTAACCTGCCTCTCAGAGAGC DLX1 AGTTTGCAGTTGCAGGCTTT CCCTGCTTCATCAGCTTCTT FOXD3 CAGCGGTTCGGCGGGAGG TGAGTGAGAGGTTGTGGCGGATG GAPDH CAAAGTTGTCATGGATGACC CCATGGAGAAGGCTGGGG MSX1 GGATCAGACTTCGGAGAGTGAACT GCCTTCCCTTTAACCCTCACA NANOG TGAACCTCAGCTACAAACAG TGGTGGTAGGAAGAGTAAAG OCT4 GACAGGGGGAGGGGAGGAGCTAGG CTTCCCTCCAACCAGTTGCCCCAAA PAX3 TTGCAATGGCCTCTCAC AGGGGAGAGCGCGTAATC PAX6 GTCCATCTTTGCTTGGGAAA TAGCCAGGTTGCGAAGAACT p75 TCATCCCTGTCTATTGCTCCA TGTTCTGCTTGCAGCTGTTC SOX9 AATGGAGCAGCGAAATCAAC CAGAGAGATTTAGCACACTGATC SOX10 GACCAGTACCCGCACCTG CGCTTGTCACTTTCGTTCAG Suppl. Fig. S1. Comparison of the gene expression profiles of the ES cells and the cells induced by NC and NC-B condition. Scatter plots compares the normalized expression of every gene on the array (refer to Table S3). The central line
    [Show full text]
  • Homeobox Genes D11–D13 and A13 Control Mouse Autopod Cortical
    Research article Homeobox genes d11–d13 and a13 control mouse autopod cortical bone and joint formation Pablo Villavicencio-Lorini,1,2 Pia Kuss,1,2 Julia Friedrich,1,2 Julia Haupt,1,2 Muhammed Farooq,3 Seval Türkmen,2 Denis Duboule,4 Jochen Hecht,1,5 and Stefan Mundlos1,2,5 1Max Planck Institute for Molecular Genetics, Berlin, Germany. 2Institute for Medical Genetics, Charité, Universitätsmedizin Berlin, Berlin, Germany. 3Human Molecular Genetics Laboratory, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan. 4National Research Centre Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland. 5Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, Universitätsmedizin Berlin, Berlin, Germany. The molecular mechanisms that govern bone and joint formation are complex, involving an integrated network of signaling pathways and gene regulators. We investigated the role of Hox genes, which are known to specify individual segments of the skeleton, in the formation of autopod limb bones (i.e., the hands and feet) using the mouse mutant synpolydactyly homolog (spdh), which encodes a polyalanine expansion in Hoxd13. We found that no cortical bone was formed in the autopod in spdh/spdh mice; instead, these bones underwent trabecular ossification after birth. Spdh/spdh metacarpals acquired an ovoid shape and developed ectopic joints, indicating a loss of long bone characteristics and thus a transformation of metacarpals into carpal bones. The perichon- drium of spdh/spdh mice showed abnormal morphology and decreased expression of Runt-related transcription factor 2 (Runx2), which was identified as a direct Hoxd13 transcriptional target. Hoxd11–/–Hoxd12–/–Hoxd13–/– tri- ple-knockout mice and Hoxd13–/–Hoxa13+/– mice exhibited similar but less severe defects, suggesting that these Hox genes have similar and complementary functions and that the spdh allele acts as a dominant negative.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis Reveals Molecular Subtypes of Pancreatic Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 17), pp: 28990-29012 Research Paper Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer Nitish Kumar Mishra1 and Chittibabu Guda1,2,3,4 1Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA 2Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA 3Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA 4Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA Correspondence to: Chittibabu Guda, email: [email protected] Keywords: TCGA, pancreatic cancer, differential methylation, integrative analysis, molecular subtypes Received: October 20, 2016 Accepted: February 12, 2017 Published: March 07, 2017 Copyright: Mishra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Pancreatic cancer (PC) is the fourth leading cause of cancer deaths in the United States with a five-year patient survival rate of only 6%. Early detection and treatment of this disease is hampered due to lack of reliable diagnostic and prognostic markers. Recent studies have shown that dynamic changes in the global DNA methylation and gene expression patterns play key roles in the PC development; hence, provide valuable insights for better understanding the initiation and progression of PC. In the current study, we used DNA methylation, gene expression, copy number, mutational and clinical data from pancreatic patients.
    [Show full text]
  • Pig Antibodies
    Pig Antibodies gene_name sku Entry_Name Protein_Names Organism Length Identity CDX‐2 ARP31476_P050 D0V4H7_PIG Caudal type homeobox 2 (Fragment) Sus scrofa (Pig) 147 100.00% CDX‐2 ARP31476_P050 A7MAE3_PIG Caudal type homeobox transcription factor 2 (Fragment) Sus scrofa (Pig) 75 100.00% Tnnt3 ARP51286_P050 Q75NH3_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 271 85.00% Tnnt3 ARP51286_P050 Q75NH2_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 266 85.00% Tnnt3 ARP51286_P050 Q75NH1_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 260 85.00% Tnnt3 ARP51286_P050 Q75NH0_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 250 85.00% Tnnt3 ARP51286_P050 Q75NG8_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 266 85.00% Tnnt3 ARP51286_P050 Q75NG7_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 260 85.00% Tnnt3 ARP51286_P050 Q75NG6_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 250 85.00% Tnnt3 ARP51286_P050 TNNT3_PIG Troponin T, fast skeletal muscle (TnTf) Sus scrofa (Pig) 271 85.00% ORF Names:PANDA_000462 EMBL EFB13877.1OrganismAiluropod High mobility group protein B2 (High mobility group protein a melanoleuca (Giant panda) ARP31939_P050 HMGB2_PIG 2) (HMG‐2) Sus scrofa (Pig) 210 100.00% Agpat5 ARP47429_P050 B8XTR3_PIG 1‐acylglycerol‐3‐phosphate O‐acyltransferase 5 Sus scrofa (Pig) 365 85.00% irf9 ARP31200_P050 Q29390_PIG Transcriptional regulator ISGF3 gamma subunit (Fragment) Sus scrofa (Pig) 57 100.00% irf9 ARP31200_P050 Q0GFA1_PIG Interferon regulatory factor 9 Sus scrofa (Pig)
    [Show full text]
  • Role of HOX Genes in Stem Cell Differentiation and Cancer
    Thomas Jefferson University Jefferson Digital Commons Kimmel Cancer Center Papers, Presentations, and Grand Rounds Kimmel Cancer Center 7-22-2018 Role of HOX Genes in Stem Cell Differentiation and Cancer. Seema Bhatlekar Helen F. Graham Cancer Center and Research Institute; University of Delaware Jeremy Z Fields CATX Inc. Bruce M. Boman Thomas Jefferson University; Helen F. Graham Cancer Center and Research Institute; University of Delaware; CATX Inc. Follow this and additional works at: https://jdc.jefferson.edu/kimmelgrandrounds Part of the Oncology Commons Let us know how access to this document benefits ouy Recommended Citation Bhatlekar, Seema; Fields, Jeremy Z; and Boman, Bruce M., "Role of HOX Genes in Stem Cell Differentiation and Cancer." (2018). Kimmel Cancer Center Papers, Presentations, and Grand Rounds. Paper 62. https://jdc.jefferson.edu/kimmelgrandrounds/62 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Kimmel Cancer Center Papers, Presentations, and Grand Rounds by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. Hindawi Stem Cells International Volume 2018, Article ID 3569493, 15 pages https://doi.org/10.1155/2018/3569493 Review Article Role of HOX Genes in Stem Cell Differentiation and Cancer 1,2 3 1,2,3,4 Seema Bhatlekar , Jeremy Z.
    [Show full text]
  • BMC Biology Biomed Central
    BMC Biology BioMed Central Research article Open Access Classification and nomenclature of all human homeobox genes PeterWHHolland*†1, H Anne F Booth†1 and Elspeth A Bruford2 Address: 1Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK and 2HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK Email: Peter WH Holland* - [email protected]; H Anne F Booth - [email protected]; Elspeth A Bruford - [email protected] * Corresponding author †Equal contributors Published: 26 October 2007 Received: 30 March 2007 Accepted: 26 October 2007 BMC Biology 2007, 5:47 doi:10.1186/1741-7007-5-47 This article is available from: http://www.biomedcentral.com/1741-7007/5/47 © 2007 Holland et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described. Results: We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes.
    [Show full text]
  • Comprehensive Epigenome Characterization Reveals Diverse Transcriptional Regulation Across Human Vascular Endothelial Cells
    Nakato et al. Epigenetics & Chromatin (2019) 12:77 https://doi.org/10.1186/s13072-019-0319-0 Epigenetics & Chromatin RESEARCH Open Access Comprehensive epigenome characterization reveals diverse transcriptional regulation across human vascular endothelial cells Ryuichiro Nakato1,2† , Youichiro Wada2,3*†, Ryo Nakaki4, Genta Nagae2,4, Yuki Katou5, Shuichi Tsutsumi4, Natsu Nakajima1, Hiroshi Fukuhara6, Atsushi Iguchi7, Takahide Kohro8, Yasuharu Kanki2,3, Yutaka Saito2,9,10, Mika Kobayashi3, Akashi Izumi‑Taguchi3, Naoki Osato2,4, Kenji Tatsuno4, Asuka Kamio4, Yoko Hayashi‑Takanaka2,11, Hiromi Wada3,12, Shinzo Ohta12, Masanori Aikawa13, Hiroyuki Nakajima7, Masaki Nakamura6, Rebecca C. McGee14, Kyle W. Heppner14, Tatsuo Kawakatsu15, Michiru Genno15, Hiroshi Yanase15, Haruki Kume6, Takaaki Senbonmatsu16, Yukio Homma6, Shigeyuki Nishimura16, Toutai Mitsuyama2,9, Hiroyuki Aburatani2,4, Hiroshi Kimura2,11,17* and Katsuhiko Shirahige2,5* Abstract Background: Endothelial cells (ECs) make up the innermost layer throughout the entire vasculature. Their phe‑ notypes and physiological functions are initially regulated by developmental signals and extracellular stimuli. The underlying molecular mechanisms responsible for the diverse phenotypes of ECs from diferent organs are not well understood. Results: To characterize the transcriptomic and epigenomic landscape in the vascular system, we cataloged gene expression and active histone marks in nine types of human ECs (generating 148 genome‑wide datasets) and carried out a comprehensive analysis with chromatin interaction data. We developed a robust procedure for comparative epigenome analysis that circumvents variations at the level of the individual and technical noise derived from sample preparation under various conditions. Through this approach, we identifed 3765 EC‑specifc enhancers, some of which were associated with disease‑associated genetic variations.
    [Show full text]
  • View Conveyed by the Global Labelling
    Fabre et al. BMC Biology (2018) 16:101 https://doi.org/10.1186/s12915-018-0570-z RESEARCHARTICLE Open Access Heterogeneous combinatorial expression of Hoxd genes in single cells during limb development P. J. Fabre1,4* , M. Leleu1, B. Mascrez2, Q. Lo Giudice4, J. Cobb3 and D. Duboule1,2* Abstract Background: Global analyses of gene expression during development reveal specific transcription patterns associated with the emergence of various cell types, tissues, and organs. These heterogeneous patterns are instrumental to ensure the proper formation of the different parts of our body, as shown by the phenotypic effects generated by functional genetic approaches. However, variations at the cellular level can be observed within each structure or organ. In the developing mammalian limbs, expression of Hox genes from the HoxD cluster is differentially controlled in space and time, in cells that will pattern the digits and the forearms. While the Hoxd genes broadly share a common regulatory landscape and large-scale analyses have suggested a homogenous Hox gene transcriptional program, it has not previously been clear whether Hoxd genes are expressed together at the same levels in the same cells. Results: We report a high degree of heterogeneity in the expression of the Hoxd11 and Hoxd13 genes. We analyzed single-limb bud cell transcriptomes and show that Hox genes are expressed in specific combinations that appear to match particular cell types. In cells giving rise to digits, we find that the expression of the five relevant Hoxd genes (Hoxd9 to Hoxd13) is unbalanced, despite their control by known global enhancers. We also report that specific combinatorial expression follows a pseudo-time sequence, which is established based on the transcriptional diversity of limb progenitors.
    [Show full text]
  • Hox5 Interacts with Plzf to Restrict Shh Expression in the Developing Forelimb
    Hox5 interacts with Plzf to restrict Shh expression in the developing forelimb Ben Xua,1, Steven M. Hrycaja, Daniel C. McIntyrea,2, Nicholas C. Bakera, Jun K. Takeuchib, Lucie Jeannottec, Zachary B. Gaberd, Bennett G. Novitchd, and Deneen M. Wellika,3 aDepartment of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109; bCardiovascular Regeneration Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan; cCentre de Recherche en Cancérologie de l’Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1R 2J6; and dDepartment of Neurobiology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 Edited by Clifford J. Tabin, Harvard Medical School, Boston, MA, and approved October 18, 2013 (received for review August 8, 2013) To date, only the five most posterior groups of Hox genes, Hox9– expression in limb AP patterning (12, 13). Although misexpression Hox13, have demonstrated loss-of-function roles in limb pattern- of more anterior Hox genes in mice reportedly affects limb patterning ing. Individual paralog groups control proximodistal patterning of (16), no loss-of-function mutants of anterior, non–abdominal B the limb skeletal elements. Hox9 genes also initiate the onset of (AbdB)-related genes have demonstrated defects in the patterning of Hand2 expression in the posterior forelimb compartment, and col- limb skeletal elements. Moreover, no HoxB or HoxC group genes had lectively, the posterior HoxA/D genes maintain posterior Sonic been shown to play a role in forelimb development until a report by Hedgehog (Shh) expression.
    [Show full text]