View Conveyed by the Global Labelling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(2017) Emerging Significance of Bile Acids
Texas Medical Center Digestive Diseases Center 8th Annual Frontiers in Digestive Diseases Symposium: Emerging Significance of Bile Acids in Digestive & Liver Diseases Saturday, February 11, 2017 Onstead Auditorium, Houston, Texas 77030 Table of Contents ....................................................................................................................................................................... 1 Agenda .......................................................................................................................................................................................... 2 CME Activity............................................................................................................................................................................... 3 List of Abstracts .................................................................................................................................................................... 4 - 6 Abstracts............................................................................................................................................................................... 7 - 41 TMC DDC Leadership ............................................................................................................................................................ 42 List of Participants ............................................................................................................................................................ 43 - 46 Acknowledgements -
Detailed Review Paper on Retinoid Pathway Signalling
1 1 Detailed Review Paper on Retinoid Pathway Signalling 2 December 2020 3 2 4 Foreword 5 1. Project 4.97 to develop a Detailed Review Paper (DRP) on the Retinoid System 6 was added to the Test Guidelines Programme work plan in 2015. The project was 7 originally proposed by Sweden and the European Commission later joined the project as 8 a co-lead. In 2019, the OECD Secretariat was added to coordinate input from expert 9 consultants. The initial objectives of the project were to: 10 draft a review of the biology of retinoid signalling pathway, 11 describe retinoid-mediated effects on various organ systems, 12 identify relevant retinoid in vitro and ex vivo assays that measure mechanistic 13 effects of chemicals for development, and 14 Identify in vivo endpoints that could be added to existing test guidelines to 15 identify chemical effects on retinoid pathway signalling. 16 2. This DRP is intended to expand the recommendations for the retinoid pathway 17 included in the OECD Detailed Review Paper on the State of the Science on Novel In 18 vitro and In vivo Screening and Testing Methods and Endpoints for Evaluating 19 Endocrine Disruptors (DRP No 178). The retinoid signalling pathway was one of seven 20 endocrine pathways considered to be susceptible to environmental endocrine disruption 21 and for which relevant endpoints could be measured in new or existing OECD Test 22 Guidelines for evaluating endocrine disruption. Due to the complexity of retinoid 23 signalling across multiple organ systems, this effort was foreseen as a multi-step process. -
Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1. -
Functional Genomics Atlas of Synovial Fibroblasts Defining Rheumatoid Arthritis
medRxiv preprint doi: https://doi.org/10.1101/2020.12.16.20248230; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Functional genomics atlas of synovial fibroblasts defining rheumatoid arthritis heritability Xiangyu Ge1*, Mojca Frank-Bertoncelj2*, Kerstin Klein2, Amanda Mcgovern1, Tadeja Kuret2,3, Miranda Houtman2, Blaž Burja2,3, Raphael Micheroli2, Miriam Marks4, Andrew Filer5,6, Christopher D. Buckley5,6,7, Gisela Orozco1, Oliver Distler2, Andrew P Morris1, Paul Martin1, Stephen Eyre1* & Caroline Ospelt2*,# 1Versus Arthritis Centre for Genetics and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK 2Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland 3Department of Rheumatology, University Medical Centre, Ljubljana, Slovenia 4Schulthess Klinik, Zurich, Switzerland 5Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK 6NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK 7Kennedy Institute of Rheumatology, University of Oxford Roosevelt Drive Headington Oxford UK *These authors contributed equally #corresponding author: [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.12.16.20248230; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. -
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig. -
SUPPLEMENTARY MATERIAL Bone Morphogenetic Protein 4 Promotes
www.intjdevbiol.com doi: 10.1387/ijdb.160040mk SUPPLEMENTARY MATERIAL corresponding to: Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells SUMIYO MIMURA, MIKA SUGA, KAORI OKADA, MASAKI KINEHARA, HIROKI NIKAWA and MIHO K. FURUE* *Address correspondence to: Miho Kusuda Furue. Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan. Tel: 81-72-641-9819. Fax: 81-72-641-9812. E-mail: [email protected] Full text for this paper is available at: http://dx.doi.org/10.1387/ijdb.160040mk TABLE S1 PRIMER LIST FOR QRT-PCR Gene forward reverse AP2α AATTTCTCAACCGACAACATT ATCTGTTTTGTAGCCAGGAGC CDX2 CTGGAGCTGGAGAAGGAGTTTC ATTTTAACCTGCCTCTCAGAGAGC DLX1 AGTTTGCAGTTGCAGGCTTT CCCTGCTTCATCAGCTTCTT FOXD3 CAGCGGTTCGGCGGGAGG TGAGTGAGAGGTTGTGGCGGATG GAPDH CAAAGTTGTCATGGATGACC CCATGGAGAAGGCTGGGG MSX1 GGATCAGACTTCGGAGAGTGAACT GCCTTCCCTTTAACCCTCACA NANOG TGAACCTCAGCTACAAACAG TGGTGGTAGGAAGAGTAAAG OCT4 GACAGGGGGAGGGGAGGAGCTAGG CTTCCCTCCAACCAGTTGCCCCAAA PAX3 TTGCAATGGCCTCTCAC AGGGGAGAGCGCGTAATC PAX6 GTCCATCTTTGCTTGGGAAA TAGCCAGGTTGCGAAGAACT p75 TCATCCCTGTCTATTGCTCCA TGTTCTGCTTGCAGCTGTTC SOX9 AATGGAGCAGCGAAATCAAC CAGAGAGATTTAGCACACTGATC SOX10 GACCAGTACCCGCACCTG CGCTTGTCACTTTCGTTCAG Suppl. Fig. S1. Comparison of the gene expression profiles of the ES cells and the cells induced by NC and NC-B condition. Scatter plots compares the normalized expression of every gene on the array (refer to Table S3). The central line -
HOX D13 Expression Across 79 Tumor Tissue Types
Int. J. Cancer: 125, 1532–1541 (2009) ' 2009 UICC HOX D13 expression across 79 tumor tissue types Monica Cantile1,3, Renato Franco3, Adrienne Tschan2, Daniel Baumhoer2, Inti Zlobec2, Giulia Schiavo2, Iris Forte3, Michel Bihl2, Giuseppina Liguori3, Gerardo Botti3, Luigi Tornillo2, Eva Karamitopoulou-Diamantis4, Luigi Terracciano2,5 and Clemente Cillo1,2* 1Department of Clinical & Experimental Medicine, Federico II University Medical School, Naples, Italy 2Molecular Pathology Department, Institute of Pathology, University of Basel, Basel, Switzerland 3Surgical Pathology Department, National Cancer Institute ‘‘G.Pascale,’’ Naples, Italy 4Second Department of Pathology, University of Athens, Athens, Greece 5Health Science Department, University of Molise, Italy HOX genes control normal development, primary cellular proc- (CREB1, CREB2, Neuro D1) lying several hundred kilobases from esses and are characterized by a unique genomic network organi- one another.18 zation. Locus D HOX genes play an important role in limb genera- The most posterior located HOXD gene, HOXD13, was the first tion and mesenchymal condensation. Dysregulated HOXD13 19 expression has been detected in breast cancer, melanoma, cervical HOX gene to be described as mutated in human synpolidactyly. During normal morphogenesis, HOXD13 is involved in the deter- cancer and astrocytomas. We have investigated the epidemiology 20–22 of HOXD13 expression in human tissues and its potential deregu- mination of the terminal digestive and urogenital tracts. lation in the carcinogenesis of specific tumors. HOXD13 homeo- HOXD13 deregulation has been further detected in different tumor protein expression has been detected using microarray technology types, such as breast cancer, melanoma, cervical cancer and atroc- comprising more than 4,000 normal and neoplastic tissue samples ytomas,23–26 and in the neuro-endocrine differentiation of human including 79 different tumor categories. -
A Conserved Tissue-Specific Homeodomain-Less Isoform of MEIS1 Is Downregulated in Colorectal Cancer
Thomas Jefferson University Jefferson Digital Commons Department of Microbiology and Immunology Faculty Papers Department of Microbiology and Immunology 8-17-2011 A conserved tissue-specific homeodomain-less isoform of MEIS1 is downregulated in colorectal cancer. Richard C Crist Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia Jacquelyn J Roth Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia Scott A Waldman Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia Arthur M Buchberg Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia Follow this and additional works at: https://jdc.jefferson.edu/mifp Part of the Gastroenterology Commons, Medical Genetics Commons, Medical Microbiology Commons, Oncology Commons, and the Pathology Commons Let us know how access to this document benefits ouy Recommended Citation Crist, Richard C; Roth, Jacquelyn J; Waldman, Scott A; and Buchberg, Arthur M, "A conserved tissue-specific homeodomain-less isoform of MEIS1 is downregulated in colorectal cancer." (2011). Department of Microbiology and Immunology Faculty Papers. Paper 25. https://jdc.jefferson.edu/mifp/25 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Microbiology and Immunology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. -
Large Scale Transgenic and Cluster Deletion Analysis of the Hoxd Complex Separate an Ancestral Regulatory Module from Evolutionary Innovations
Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION where groups of genes acquired shared enhancer se- Large scale transgenic and quences acting independently of colinearity. For in- cluster deletion analysis of the stance, the early phase of Hoxd gene expression in limb buds is regulated in a colinear fashion, whereas expres- HoxD complexseparate an sion of the same genes in digits is concurrent, rather than ancestral regulatory module colinear (Nelson et al. 1996). In the HoxD complex, gene recruitment involved in from evolutionary innovations many instances the design of potent enhancer sequences, which regulate several genes at once. We proposed ear- François Spitz,1 Federico Gonzalez,1 lier that expression of four genes in developing digits was Catherine Peichel,2,3 Thomas F. Vogt,2,4 controlled by a unique enhancer that displays poor pro- Denis Duboule,1,5 and József Zákány1 moter specificity as it influenced foreign promoters when targeted to the locus (van der Hoeven et al. 1996; 1Department of Zoology and Animal Biology, University Hérault et al. 1999). Targeted deletions in the posterior of Geneva, Sciences III, 1211 Geneva 4, Switzerland; HoxD complex placed this enhancer somewhere up- 2Department of Molecular Biology, Princeton University, stream of Evx2, outside the cluster (Kondo and Duboule Princeton, New Jersey 08544, USA 1999). Likewise, several genes respond to a gut enhancer sequence that is required to form the ileo-coecal sphinc- The ancestral role of the Hox gene family is specifying ter (Zakany and Duboule 1999) and is localized either in morphogenetic differences along the main body axis. -
Homeobox Genes D11–D13 and A13 Control Mouse Autopod Cortical
Research article Homeobox genes d11–d13 and a13 control mouse autopod cortical bone and joint formation Pablo Villavicencio-Lorini,1,2 Pia Kuss,1,2 Julia Friedrich,1,2 Julia Haupt,1,2 Muhammed Farooq,3 Seval Türkmen,2 Denis Duboule,4 Jochen Hecht,1,5 and Stefan Mundlos1,2,5 1Max Planck Institute for Molecular Genetics, Berlin, Germany. 2Institute for Medical Genetics, Charité, Universitätsmedizin Berlin, Berlin, Germany. 3Human Molecular Genetics Laboratory, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan. 4National Research Centre Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland. 5Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, Universitätsmedizin Berlin, Berlin, Germany. The molecular mechanisms that govern bone and joint formation are complex, involving an integrated network of signaling pathways and gene regulators. We investigated the role of Hox genes, which are known to specify individual segments of the skeleton, in the formation of autopod limb bones (i.e., the hands and feet) using the mouse mutant synpolydactyly homolog (spdh), which encodes a polyalanine expansion in Hoxd13. We found that no cortical bone was formed in the autopod in spdh/spdh mice; instead, these bones underwent trabecular ossification after birth. Spdh/spdh metacarpals acquired an ovoid shape and developed ectopic joints, indicating a loss of long bone characteristics and thus a transformation of metacarpals into carpal bones. The perichon- drium of spdh/spdh mice showed abnormal morphology and decreased expression of Runt-related transcription factor 2 (Runx2), which was identified as a direct Hoxd13 transcriptional target. Hoxd11–/–Hoxd12–/–Hoxd13–/– tri- ple-knockout mice and Hoxd13–/–Hoxa13+/– mice exhibited similar but less severe defects, suggesting that these Hox genes have similar and complementary functions and that the spdh allele acts as a dominant negative. -
Genome-Wide DNA Methylation Analysis Reveals Molecular Subtypes of Pancreatic Cancer
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 17), pp: 28990-29012 Research Paper Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer Nitish Kumar Mishra1 and Chittibabu Guda1,2,3,4 1Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA 2Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA 3Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA 4Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA Correspondence to: Chittibabu Guda, email: [email protected] Keywords: TCGA, pancreatic cancer, differential methylation, integrative analysis, molecular subtypes Received: October 20, 2016 Accepted: February 12, 2017 Published: March 07, 2017 Copyright: Mishra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Pancreatic cancer (PC) is the fourth leading cause of cancer deaths in the United States with a five-year patient survival rate of only 6%. Early detection and treatment of this disease is hampered due to lack of reliable diagnostic and prognostic markers. Recent studies have shown that dynamic changes in the global DNA methylation and gene expression patterns play key roles in the PC development; hence, provide valuable insights for better understanding the initiation and progression of PC. In the current study, we used DNA methylation, gene expression, copy number, mutational and clinical data from pancreatic patients. -
Serial Deletions and Duplications Suggest a Mechanism for the Collinearity of Hoxd Genes in Limbs
articles Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs Marie Kmita*, Nadine Fraudeau*, Yann He´rault*† & Denis Duboule* * Department of Zoology and Animal Biology, NCCR Frontiers in Genetics, University of Geneva, Sciences III, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland ........................................................................................................................................................................................................................... Hox genes, located at one end of the HoxD cluster, are essential for the development of the extremities of our limbs; that is, the digits. This ‘collinear’ correspondence is accompanied by a gradual decrease in the transcriptional efficiency of the genes. To decipher the underlying regulatory mechanisms, and thus to understand better how digits develop, we engineered a series of deletions and duplications in vivo. We find that HoxD genes compete for a remote enhancer that recognizes the locus in a polar fashion, with a preference for the 5 0 extremity. Modifications in either the number or topography of Hoxd loci induced regulatory reallocations affecting both the number and morphology of digits. These results demonstrate why genes located at the extremity of the cluster are expressed at the distal end of the limbs, following a gradual reduction in transcriptional efficiency, and thus highlight the mechanistic nature of collinearity in limbs. During vertebrate evolution, Hox genes were co-opted to achieve a ing that modifications in the presence, the absence, the position or variety of functions in addition to their ancestral role in organizing the number of genes would provide insights into both aspects. We structures along the trunk axis. One example is the limb skeleton, used targeted meiotic recombination (TAMERE19) to produce which is patterned by genes from the HoxA and HoxD clusters1,2.