Supplementary Data

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Data SUPPLEMENTARY METHODS 1) Characterisation of OCCC cell line gene expression profiles using Prediction Analysis for Microarrays (PAM) The ovarian cancer dataset from Hendrix et al (25) was used to predict the phenotypes of the cell lines used in this study. Hendrix et al (25) analysed a series of 103 ovarian samples using the Affymetrix U133A array platform (GEO: GSE6008). This dataset comprises clear cell (n=8), endometrioid (n=37), mucinous (n=13) and serous epithelial (n=41) primary ovarian carcinomas and samples from 4 normal ovaries. To build the predictor, the Prediction Analysis of Microarrays (PAM) package in R environment was employed (http://rss.acs.unt.edu/Rdoc/library/pamr/html/00Index.html). When more than one probe described the expression of a given gene, we used the probe with the highest median absolute deviation across the samples. The dataset from Hendrix et al. (25) and the dataset of OCCC cell lines described in this manuscript were then overlaid on the basis of 11536 common unique HGNC gene symbols. Only the 99 primary ovarian cancers samples and the four normal ovary samples were used to build the predictor. Following leave one out cross-validation, a predictor based upon 126 genes was able to identify correctly the four distinct phenotypes of primary ovarian tumour samples with a misclassification rate of 18.3%. This predictor was subsequently applied to the expression data from the 12 OCCC cell lines to determine the likeliest phenotype of the OCCC cell lines compared to primary ovarian cancers. Posterior probabilities were estimated for each cell line in comparison to the following phenotypes: clear cell, endometrioid, mucinous and serous epithelial. 2) TP53 mutation analysis in OCCC cell lines The primers used for TP53 sequencing have previously been described by Cooper et al (34). Tumour DNA was amplified using forward and reverse primer pairs in a 50μl reaction volume containing 20ng of 2 template DNA, 0.8 μM of each primer, 0.2 μM dNTP, 1.5 mM MgCl2, 0.3 units of AmpliTaq Gold Taq polymerase (Applied Biosystems, Warrington, UK), and 1 x PCR buffer, and amplified using the following cycle parameters: 95 °C for 10 min, followed by 35 cycles of 95 °C for 30 sec, 56 °C for 30 sec, 72 °C for 30 sec, and a subsequent final extension of 72 °C for 10 min and incubation of incubation of 4 °C. 5μl of PCR product was visualised after being run on a 2% w/v agarose gel. PCR products (45μl) were subsequently cleaned using Min-elute columns (Qiagen) according to the manufactures instructions and eluted in 50μl. Sequencing reactions were carried out with DNA Sequencing Kit BigDye Terminator v 1.1 Cycle Sequencing Ready Reaction Mix (Applied Biosystems, Warrington, UK), in a 10 μl reaction using 1.0mM of the forward or reverse primers, 4μl BigDye, 2 μl cleaned PCR product and 3.5μl nuclease free water, (with cycle parameters 96 °C 1 minute, followed by 25 cycles of 96 °C for 20 sec, 50 °C for 20 sec, 60 °C for 4 minutes and final incubation at 4 °C). 10 μl of the sequencing product was cleaned with the Dye-ex columns (Qiagen) according to manufacturers instructions. Products were dried at 70 °C for 30 minutes and resuspended in Hi-Di Formamide (Applied Biosystems, Warrington, UK) and run on an Applied Biosystems 3100 Genetic Analyser. Sequences were analysed with Mutation Surveyor software (Softgenetics, PA, USA). Mutations were confirmed by repeat PCR and sequencing reactions and by sequencing forward and reverse strands. 3) Quantitative Real-Time Reverse Transcriptase PCR (qRT-PCR) Briefly, RNA was extracted using the RNeasy FFPE RNA Isolation Kit (Qiagen) followed by an additional DNase treatment as previously described (14). RNA quantification, quality control and reverse transcription were performed as previously described (14). RNA samples were quantified using the Agilent 2100 Bioanalyzer with RNA Nano LabChip Kits (Agilent Biosystems). Criteria for use in reverse transcription was a concentration of >75ng/μl. In total, 30 with interpretable PPM1D gene copy 3 number status rendered optimal results. Reverse transcription was performed with Superscript III (Invitrogen) using 400ng of RNA per reaction. Triplicate reactions were performed for each sample (RT- positive), in addition to an RT-negative reaction to check for the absence of detectable DNA contamination. Quantitative real time PCR was performed using TaqMan® chemistry on the ABI Prism 7900HT(Applied Biosystems), using the standard curve method (14, 37). Assays were purchased from Applied Biosystems. All selected amplicons were less than 85bp to accommodate the degraded nature of the RNA. In addition, three reference genes (TBP, TFRC and MRPL19) were used, having been previously selected as effectively normalising for degradation of RNA (14). PPM1D expression levels were normalised to the geometric mean of the three reference genes. (Assay on demand ID: Hs00174609_m1-TFRC, Hs00608522_g1-MRPL19 and Hs00186230_m1-PPM1D). SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure 1: Prediction Analysis of Microarrays (PAM) predictor of histological subtypes of primary ovarian cancers. A) One hundred and twenty-six genes were identified to classify correctly primary ovarian samples into clear cell, endometrioid, mucinous and serous cancers or normal ovary. B) Results of the predicted histological types subtypes based on the PAM predictor. Note that the misclassification rate is 18.3%. C) Posterior probabilities for ovarian clear cell carcinoma cell lines based on the PAM predictor. Note that all cell lines displayed a high correlation with the transcriptomic profile of primary ovarian clear cell carcinomas. Supplementary Figure 2: PPM1D shRNA induces knockdown of PPM1D mRNA and protein. A) Quantitative real time RT-PCR assessment of PPM1D mRNA levels in HeLa, KOC7C and TOV21G 24 hours after transfection with scrambled control (SC) or PPM1D shRNA (shRNA). B) Western blot illustrating the protein expression levels of PPM1D in HeLa, KOC7C and TOV21G at baseline and 24 hours after transfection with scramble control or PPM1D shRNA. SUPPLEMENTARY TABLE CAPTIONS Supplementary Table 1 – Gains Losses and amplifications for 12 OCCC cell lines Chrom = Chromosome, Start = Start of region, End = End of region, Start.bac = bacterial artificial chromosome at start of region, End.bac = bacterial artificial chromosome at end of region, BACs = No. of bacterial artificial chromosomes within region of copy number alteration, Length MB = size of copy number alteration in MB, maxM = maximum M-value (aws ratio) within region, Mirna = micro RNAs, aCGH.CNVs = previously reported microarray comparative genomic hybridisation copy number variations/ polymorphisms. Supplementary Table 2 – Recurrent gains and losses in ≥4 OCCC cell lines 2 Chrom = Chromosome, Start = Start of region, End = End of region, Start.bac = bacterial artificial chromosome at start of region, End.bac = bacterial artificial chromosome at end of region, BACs = No. of bacterial artificial chromosomes within region of copy number alteration, Length MB = size of copy number alteration in MB, maxM = maximum M-value (aws ratio) within region, Mirna = micro RNAs, aCGH CNVs = previously reported microarray comparative genomic hybridisation copy number variations/ polymorphisms. Supplementary Table 3 – Regions of high level amplification (Log2ratio>0.8) in OCCC cell lines Chrom = Chromosome, Start = Start of region, End = End of region, Start.bac = bacterial artificial chromosome at start of region, End.bac = bacterial artificial chromosome at end of region, Mirna = micro RNAs, aCGH.CNVs = previously reported microarray comparative genomic hybridisation copy number variations/ polymorphisms. Supplementary Table 4 – smallest region of overlap for amplified regions (Log2ratio>0.4) in 2 or more OCCC cell lines Chrom = Chromosome, Start = Start of region, End = End of region, Start.bac = bacterial artificial chromosome at start of region, End.bac = bacterial artificial chromosome at end of region, Mirna = micro RNAs, aCGH.CNVs = previously reported microarray comparative genomic hybridisation copy number variations/ polymorphisms. Supplementary Table 5 – List of genes whose expression correlate with copy number gains and/ or amplification. Symbol = HUGO gene symbol, refseq: NCBI Reference Sequence, unigene: NCBI UniGene reference, Start (kb) = Start of region in kilobases, End (kb) = End of region in kilobases, t.test.p.gain: two-tailed p value for correlations between gains and/ or amplification and mRNA expression levels. 3 Supplementary Table 6 – Gene networks identified as significantly enriched using the Ingenuity Pathways Analysis software based on the list of genes whose expression correlated with copy number gains and/ or gene amplification. In bold, genes whose expression significantly correlated with copy number gains and/ or gene amplification. Ingenuity Pathway Analysis scores >30 are considered highly significant. Supplementary Table 7 – List of genes whose expression correlate with deletion. Symbol = HUGO gene symbol, refseq: NCBI Reference Sequence, unigene: NCBI UniGene reference, Start (kb) = Start of region in kilobases, End (kb) = End of region in kilobases, t.test.p.loss: two-tailed p value for correlations between losses (deletions) and mRNA expression levels. Supplementary Table 8 – Gene networks identified as significantly enriched using the Ingenuity Pathways Analysis software based on the list of genes whose expression correlated with copy number losses. In bold, genes whose expression significantly
Recommended publications
  • CDX4 Regulates the Progression of Neural Maturation in the Spinal Cord
    Developmental Biology 449 (2019) 132–142 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology CDX4 regulates the progression of neural maturation in the spinal cord Piyush Joshi a,b, Andrew J. Darr c, Isaac Skromne a,d,* a Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States b Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, 600 5th St S, St. Petersburg, FL 33701, United States c Department of Health Sciences Education, University of Illinois College of Medicine, 1 Illini Drive, Peoria, IL 61605, United States d Department of Biology, University of Richmond, 138 UR Drive B322, Richmond, VA, 23173, United States ARTICLE INFO ABSTRACT Keywords: The progression of cells down different lineage pathways is a collaborative effort between networks of extra- CDX cellular signals and intracellular transcription factors. In the vertebrate spinal cord, FGF, Wnt and Retinoic Acid Neurogenesis signaling pathways regulate the progressive caudal-to-rostral maturation of neural progenitors by regulating a Spinal cord poorly understood gene regulatory network of transcription factors. We have mapped out this gene regulatory Gene regulatory network network in the chicken pre-neural tube, identifying CDX4 as a dual-function core component that simultaneously regulates gradual loss of cell potency and acquisition of differentiation states: in a caudal-to-rostral direction, CDX4 represses the early neural differentiation marker Nkx1.2 and promotes the late neural differentiation marker Pax6. Significantly, CDX4 prevents premature PAX6-dependent neural differentiation by blocking Ngn2 activation. This regulation of CDX4 over Pax6 is restricted to the rostral pre-neural tube by Retinoic Acid signaling.
    [Show full text]
  • CCT3 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science CCT3 Rabbit pAb Catalog No.: A6547 3 Publications Basic Information Background Catalog No. The protein encoded by this gene is a molecular chaperone that is a member of the A6547 chaperonin containing TCP1 complex (CCT), also known as the TCP1 ring complex (TRiC). This complex consists of two identical stacked rings, each containing eight different Observed MW proteins. Unfolded polypeptides enter the central cavity of the complex and are folded 60kDa in an ATP-dependent manner. The complex folds various proteins, including actin and tubulin. Alternate transcriptional splice variants have been characterized for this gene. Calculated MW In addition, a pseudogene of this gene has been found on chromosome 8. 56kDa/60kDa Category Primary antibody Applications WB,IHC,IF Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 7203 P49368 IHC 1:50 - 1:200 Immunogen 1:50 - 1:200 IF Recombinant fusion protein containing a sequence corresponding to amino acids 1-300 of human CCT3 (NP_005989.3). Synonyms CCT3;CCT-gamma;CCTG;PIG48;TCP-1-gamma;TRIC5 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using CCT3 antibody (A6547) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST.
    [Show full text]
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Ovarian Gene Expression in the Absence of FIGLA, an Oocyte
    BMC Developmental Biology BioMed Central Research article Open Access Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor Saurabh Joshi*1, Holly Davies1, Lauren Porter Sims2, Shawn E Levy2 and Jurrien Dean1 Address: 1Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA and 2Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA Email: Saurabh Joshi* - [email protected]; Holly Davies - [email protected]; Lauren Porter Sims - [email protected]; Shawn E Levy - [email protected]; Jurrien Dean - [email protected] * Corresponding author Published: 13 June 2007 Received: 11 December 2006 Accepted: 13 June 2007 BMC Developmental Biology 2007, 7:67 doi:10.1186/1471-213X-7-67 This article is available from: http://www.biomedcentral.com/1471-213X/7/67 © 2007 Joshi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Ovarian folliculogenesis in mammals is a complex process involving interactions between germ and somatic cells. Carefully orchestrated expression of transcription factors, cell adhesion molecules and growth factors are required for success. We have identified a germ-cell specific, basic helix-loop-helix transcription factor, FIGLA (Factor In the GermLine, Alpha) and demonstrated its involvement in two independent developmental processes: formation of the primordial follicle and coordinate expression of zona pellucida genes. Results: Taking advantage of Figla null mouse lines, we have used a combined approach of microarray and Serial Analysis of Gene Expression (SAGE) to identify potential downstream target genes.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Protein Domain-Level Landscape of Cancer-Type-Specific Somatic We Explored the Protein Domain-Level Landscape of Cancer-Type-Specific Somatic Mutations
    RESEARCH ARTICLE Protein Domain-Level Landscape of Cancer- Type-Specific Somatic Mutations Fan Yang1,2,3, Evangelia Petsalaki2,3, Thomas Rolland4,5, David E. Hill4, Marc Vidal4, Frederick P. Roth1,2,3,4,6,7* 1 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, 2 Donnelly Centre, University of Toronto, Toronto, Ontario, Canada, 3 Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada, 4 Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 5 Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 6 Canadian Institute for Advanced Research, Toronto, Ontario, Canada, 7 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada * [email protected] Abstract OPEN ACCESS Identifying driver mutations and their functional consequences is critical to our understand- Citation: Yang F, Petsalaki E, Rolland T, Hill DE, ing of cancer. Towards this goal, and because domains are the functional units of a protein, Vidal M, Roth FP (2015) Protein Domain-Level Landscape of Cancer-Type-Specific Somatic we explored the protein domain-level landscape of cancer-type-specific somatic mutations. Mutations. PLoS Comput Biol 11(3): e1004147. Specifically, we systematically examined tumor genomes from 21 cancer types to identify doi:10.1371/journal.pcbi.1004147 domains with high mutational density in specific tissues, the positions of mutational hotspots Editor: Mona Singh, Princeton University, United within these domains, and the functional and structural context where possible. While hot- States of America spots corresponding to specific gain-of-function mutations are expected for oncoproteins, Received: August 22, 2014 we found that tumor suppressor proteins also exhibit strong biases toward being mutated in Accepted: January 22, 2015 particular domains.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Location Analysis of Estrogen Receptor Target Promoters Reveals That
    Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17␤-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand.
    [Show full text]
  • Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
    The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP).
    [Show full text]
  • A Private 16Q24.2Q24.3 Microduplication in a Boy with Intellectual Disability, Speech Delay and Mild Dysmorphic Features
    G C A T T A C G G C A T genes Article A Private 16q24.2q24.3 Microduplication in a Boy with Intellectual Disability, Speech Delay and Mild Dysmorphic Features Orazio Palumbo * , Pietro Palumbo , Ester Di Muro, Luigia Cinque, Antonio Petracca, Massimo Carella and Marco Castori Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; [email protected] (P.P.); [email protected] (E.D.M.); [email protected] (L.C.); [email protected] (A.P.); [email protected] (M.C.); [email protected] (M.C.) * Correspondence: [email protected]; Tel.: +39-088-241-6350 Received: 5 June 2020; Accepted: 24 June 2020; Published: 26 June 2020 Abstract: No data on interstitial microduplications of the 16q24.2q24.3 chromosome region are available in the medical literature and remain extraordinarily rare in public databases. Here, we describe a boy with a de novo 16q24.2q24.3 microduplication at the Single Nucleotide Polymorphism (SNP)-array analysis spanning ~2.2 Mb and encompassing 38 genes. The patient showed mild-to-moderate intellectual disability, speech delay and mild dysmorphic features. In DECIPHER, we found six individuals carrying a “pure” overlapping microduplication. Although available data are very limited, genomic and phenotype comparison of our and previously annotated patients suggested a potential clinical relevance for 16q24.2q24.3 microduplication with a variable and not (yet) recognizable phenotype predominantly affecting cognition. Comparing the cytogenomic data of available individuals allowed us to delineate the smallest region of overlap involving 14 genes. Accordingly, we propose ANKRD11, CDH15, and CTU2 as candidate genes for explaining the related neurodevelopmental manifestations shared by these patients.
    [Show full text]