A Private 16Q24.2Q24.3 Microduplication in a Boy with Intellectual Disability, Speech Delay and Mild Dysmorphic Features
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Architecture of a Lymphomyeloid Developmental Switch Controlled by PU.1, Notch and Gata3 Marissa Morales Del Real and Ellen V
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors DEVELOPMENT AND STEM CELLS RESEARCH ARTICLE 1207 Development 140, 1207-1219 (2013) doi:10.1242/dev.088559 © 2013. Published by The Company of Biologists Ltd Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3 Marissa Morales Del Real and Ellen V. Rothenberg* SUMMARY Hematopoiesis is a classic system with which to study developmental potentials and to investigate gene regulatory networks that control choices among alternate lineages. T-cell progenitors seeding the thymus retain several lineage potentials. The transcription factor PU.1 is involved in the decision to become a T cell or a myeloid cell, and the developmental outcome of expressing PU.1 is dependent on exposure to Notch signaling. PU.1-expressing T-cell progenitors without Notch signaling often adopt a myeloid program, whereas those exposed to Notch signals remain in a T-lineage pathway. Here, we show that Notch signaling does not alter PU.1 transcriptional activity by degradation/alteration of PU.1 protein. Instead, Notch signaling protects against the downregulation of T-cell factors so that a T-cell transcriptional network is maintained. Using an early T-cell line, we describe two branches of this network. The first involves inhibition of E-proteins by PU.1 and the resulting inhibition of Notch signaling target genes. Effects of E- protein inhibition can be reversed by exposure to Notch signaling. The second network is dependent on the ability of PU.1 to inhibit important T-cell transcription factor genes such as Myb, Tcf7 and Gata3 in the absence of Notch signaling. -
Supplementary Figure 1. Qrt-PCR Analyses for Measuring the Knockdown Efficiency of Transcription Factors. A549 and U937 Cells Kn
Supplementary Figure 1. qRT-PCR analyses for measuring the knockdown efficiency of transcription factors. A549 and U937 cells knocking down or overexpressing different transcription factors including NF-κB subunits p65 and p50 (A), HIF1 (B), TCF4 (C), AP-1 subunits c-Jun and c-FOS (D), or FOXP3 (E) were subjected to RNA isolation, followed by qRT-PCR analyses to examine the expression of these transcription factors. **P<0.01 and ***P<0.001. 1 Supplementary Figure 2. Effects of FOXP3 downregulation and overexpression on the expression of NLRP1, IL1B and IL18. A549 and U937 cells were transfected with si-FOXP3 or pCDNA3-2×Flag-FOXP3. After 24 h, cells were subjected to RNA isolation, followed by qRT-PCR analyses to examine the expression of NLRP1 (A), IL1B (B) and IL18 (C). ***P<0.001. 2 Supplementary Figure 3. Effects of CtBP2 downregulation and overexpression on the expression of miR-199a-3p, NLRP1, IL1B and IL18. A549 and U937 cells were transfected with si-CtBP2 or pCDNA3-2×Flag-CtBP2. After 24 h, cells were subjected to RNA isolation, followed by qRT-PCR analyses to examine the expression of miR-199a-3p (A), NLRP1 (B), IL1B (C) and IL18 (D). ***P<0.001. 3 Supplementary Figure 4. CHFTC specifically bond to the promoter of miR-199a-3p. (A and B) Effects of CtBP2 knockdown and overexpression on HDAC1 and FOXP3 protein levels. A549 cells were transfected with two CtBP2-specific shRNAs and pCDNA3-2×Flag-CtBP2 to obtain two CtBP2-knockdown cell lines (KD-1 and KD-2) (A) and two CtBP2-overexpression cells lines (OE-1 and OE-2) (B), respectively. -
Open Dogan Phdthesis Final.Pdf
The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues. -
Location Analysis of Estrogen Receptor Target Promoters Reveals That
Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand. -
Huntington's Disease Like-2: Review and Update
Review Article 1 Huntington’s Disease Like-2: Review and Update Russell L. Margolis1,2,3, Dobrila D. Rudnicki1, and Susan E. Holmes1 Abstract- Huntington’s Disease-like 2 (HDL2), like Huntington’s disease (HD), is an adult onset, progres- sive, neurodegenerative autosomal dominant disorder clinically characterized by abnormal movements, dementia, and psychiatric syndromes. Like HD, the neuropathology of HDL2 features prominent cortical and striatal atrophy and intranuclear inclusions. HDL2 is generally rare, accounting for only a few percent of HD-like cases in which the HD mutation has already been excluded. However, the rate is considerably higher among individuals of African ancestry, and is almost as common as HD in Black South Africans. The disorder is caused by a CTG/CAG expansion mutation on chromosome 16q24.3, with normal and expanded repeat ranges similar to HD, and a correlation between repeat length and onset age very similar to HD. Surprisingly, the available evidence suggests that HDL2 is not a polyglutamine disease. Rather, the repeat expansion is located within Junctophilin-3 in the CTG orientation. The phenotypic similarities between HD and HDL2 suggest that understanding the pathobiology of HDL2 may shed new light on the pathogenesis of HD and other disorders of striatal neurodegeneration. Key Words: Huntington’s disease Like-2, Huntington disease, Neurodegeneration, Neurogenetic disease Acta Neurol Taiwan 2005;14:1-8 INTRODUCTION sis(3,4). Neuronal loss is also present in the cerebral cor- tex, particularly in layers III, V, and VI(5) and to a milder Huntington’s disease, first described by George degree in globus pallidus, thalamus, subthalamic nucle- Huntington in 1872 is characterized by a triad of move- us, and substantia nigra. -
Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) Beyond SMARCA4 Mutations: a Comprehensive Genomic Analysis
cells Article Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) beyond SMARCA4 Mutations: A Comprehensive Genomic Analysis Aurélie Auguste 1,Félix Blanc-Durand 2 , Marc Deloger 3 , Audrey Le Formal 1, Rohan Bareja 4,5, David C. Wilkes 4 , Catherine Richon 6,Béatrice Brunn 2, Olivier Caron 6, Mojgan Devouassoux-Shisheboran 7,Sébastien Gouy 2, Philippe Morice 2, Enrica Bentivegna 2, Andrea Sboner 4,5,8, Olivier Elemento 4,8, Mark A. Rubin 9 , Patricia Pautier 2, Catherine Genestie 10, Joanna Cyrta 4,9,11 and Alexandra Leary 1,2,* 1 Medical Oncologist, Gynecology Unit, Lead Translational Research Team, INSERM U981, Gustave Roussy, 94805 Villejuif, France; [email protected] (A.A.); [email protected] (A.L.F.) 2 Gynecological Unit, Department of Medicine, Gustave Roussy, 94805 Villejuif, France; [email protected] (F.B.-D.); [email protected] (B.B.); [email protected] (S.G.); [email protected] (P.M.); [email protected] (E.B.); [email protected] (P.P.) 3 Bioinformatics Core Facility, Gustave Roussy Cancer Center, UMS CNRS 3655/INSERM 23 AMMICA, 94805 Villejuif, France; [email protected] 4 Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10001, USA; [email protected] (R.B.); [email protected] (D.C.W.); [email protected] (A.S.); [email protected] (O.E.); [email protected] (J.C.) 5 Institute for Computational Biomedicine, Weill Cornell -
Systematic Integration of GATA Transcription Factors and Epigenomes Via IDEAS Paints the Regulatory Landscape of Hematopoietic Cells
Received: 2 July 2019 Accepted: 17 October 2019 DOI: 10.1002/iub.2195 CRITICAL REVIEW Systematic integration of GATA transcription factors and epigenomes via IDEAS paints the regulatory landscape of hematopoietic cells Ross C. Hardison1 | Yu Zhang1 | Cheryl A. Keller1 | Guanjue Xiang1 | Elisabeth F. Heuston2 | Lin An1 | Jens Lichtenberg2 | Belinda M. Giardine1 | David Bodine2 | Shaun Mahony1 | Qunhua Li1 | Feng Yue3 | Mitchell J. Weiss4 | Gerd A. Blobel5 | James Taylor6 | Jim Hughes7 | Douglas R. Higgs7 | Berthold Göttgens8 1Departments of Biochemistry and Molecular Biology and of Statistics, The Abstract Pennsylvania State University, University Members of the GATA family of transcription factors play key roles in the dif- Park, PA ferentiation of specific cell lineages by regulating the expression of target 2 Genetics and Molecular Biology Branch, genes. Three GATA factors play distinct roles in hematopoietic differentiation. Hematopoiesis Section, National Institutes of Health, NHGRI, Bethesda, MD In order to better understand how these GATA factors function to regulate 3Department of Biochemistry and genes throughout the genome, we are studying the epigenomic and transcrip- Molecular Biology, The Pennsylvania State tional landscapes of hematopoietic cells in a model-driven, integrative fashion. University College of Medicine, Hershey, PA We have formed the collaborative multi-lab VISION project to conduct ValI- 4Hematology Department, St. Jude dated Systematic IntegratiON of epigenomic data in mouse and human hema- Children's Research Hospital, topoiesis. The epigenomic data included nuclease accessibility in chromatin, Memphis, TN CTCF occupancy, and histone H3 modifications for 20 cell types covering 5Children's Hospital of Philadelphia, hematopoietic stem cells, multilineage progenitor cells, and mature cells across Philadelphia, PA 6Departments of Biology and of Computer the blood cell lineages of mouse. -
Genomic Profiling of Short- and Long-Term Caloric Restriction Effects in the Liver of Aging Mice
Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice Shelley X. Cao, Joseph M. Dhahbi, Patricia L. Mote, and Stephen R. Spindler* Department of Biochemistry, University of California, Riverside, CA 92521 Edited by Bruce N. Ames, University of California, Berkeley, CA, and approved July 11, 2001 (received for review June 19, 2001) We present genome-wide microarray expression analysis of 11,000 aging and CR on gene expression. Control young (7-month-old; n ϭ genes in an aging potentially mitotic tissue, the liver. This organ has 3) and old (27-month-old; n ϭ 3) mice were fed 95 kcal of a a major impact on health and homeostasis during aging. The effects semipurified control diet (Harlan Teklad, Madison, WI; no. of life- and health-span-extending caloric restriction (CR) on gene TD94145) per week after weaning. Long-term CR (LT-CR) young expression among young and old mice and between long-term CR (7-month-old; n ϭ 3) and old (27-month-old; n ϭ 3) mice were fed (LT-CR) and short-term CR (ST-CR) were examined. This experimental 53 kcal of a semipurified CR diet (Harlan Teklad; no. TD94146) per design allowed us to accurately distinguish the effects of aging from week after weaning. Short-term CR (ST-CR) mice were 34-month- those of CR on gene expression. Aging was accompanied by changes old control mice that were switched to 80 kcal of CR diet for 2 in gene expression associated with increased inflammation, cellular weeks, followed by 53 kcal for 2 weeks (n ϭ 3). -
Role of Transfer RNA Modification and Aminoacylation in the Etiology of Congenital Intellectual Disability
Franz et al. J Transl Genet Genom 2020;4:50-70 Journal of Translational DOI: 10.20517/jtgg.2020.13 Genetics and Genomics Review Open Access Role of transfer RNA modification and aminoacylation in the etiology of congenital intellectual disability Martin Franz#, Lisa Hagenau#, Lars R. Jensen, Andreas W. Kuss Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany. #Authors cotributed equally. Correspondence to: Prof. Andreas W. Kuss; Dr. Lars R. Jensen, Department of Functional Genomics, University Medicine Greifswald, C_FunGene, Felix-Hausdorff-Str. 8, Greifswald 17475, Germany. E-mail: [email protected]; [email protected] How to cite this article: Franz M, Hagenau L, Jensen LR, Kuss AW. Role of transfer RNA modification and aminoacylation in the etiology of congenital intellectual disability. J Transl Genet Genom 2020;4:50-70. http://dx.doi.org/10.20517/jtgg.2020.13 Received: 14 Feb 2020 First Decision: 17 Mar 2020 Revised: 30 Mar 2020 Accepted: 23 Apr 2020 Available online: 16 May 2020 Science Editor: Tjitske Kleefstra Copy Editor: Jing-Wen Zhang Production Editor: Tian Zhang Abstract Transfer RNA (tRNA) modification and aminoacylation are post-transcriptional processes that play a crucial role in the function of tRNA and thus represent critical steps in gene expression. Knowledge of the exact processes and effects of the defects in various tRNAs remains incomplete, but a rapidly increasing number of publications over the last decade has shown a growing amount of evidence as to the importance of tRNAs for normal human development, including brain formation and the development and maintenance of higher cognitive functions as well. -
Hereditary Hearing Impairment with Cutaneous Abnormalities
G C A T T A C G G C A T genes Review Hereditary Hearing Impairment with Cutaneous Abnormalities Tung-Lin Lee 1 , Pei-Hsuan Lin 2,3, Pei-Lung Chen 3,4,5,6 , Jin-Bon Hong 4,7,* and Chen-Chi Wu 2,3,5,8,* 1 Department of Medical Education, National Taiwan University Hospital, Taipei City 100, Taiwan; [email protected] 2 Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan; [email protected] 3 Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan; [email protected] 4 Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan 5 Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan 6 Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan 7 Department of Dermatology, National Taiwan University Hospital, Taipei City 100, Taiwan 8 Department of Medical Research, National Taiwan University Biomedical Park Hospital, Hsinchu City 300, Taiwan * Correspondence: [email protected] (J.-B.H.); [email protected] (C.-C.W.) Abstract: Syndromic hereditary hearing impairment (HHI) is a clinically and etiologically diverse condition that has a profound influence on affected individuals and their families. As cutaneous findings are more apparent than hearing-related symptoms to clinicians and, more importantly, to caregivers of affected infants and young individuals, establishing a correlation map of skin manifestations and their underlying genetic causes is key to early identification and diagnosis of syndromic HHI. In this article, we performed a comprehensive PubMed database search on syndromic HHI with cutaneous abnormalities, and reviewed a total of 260 relevant publications. -
E-Mutpath: Computational Modelling Reveals the Functional Landscape of Genetic Mutations Rewiring Interactome Networks
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.262386; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. e-MutPath: Computational modelling reveals the functional landscape of genetic mutations rewiring interactome networks Yongsheng Li1, Daniel J. McGrail1, Brandon Burgman2,3, S. Stephen Yi2,3,4,5 and Nidhi Sahni1,6,7,8,* 1Department oF Systems Biology, The University oF Texas MD Anderson Cancer Center, Houston, TX 77030, USA 2Department oF Oncology, Livestrong Cancer Institutes, Dell Medical School, The University oF Texas at Austin, Austin, TX 78712, USA 3Institute For Cellular and Molecular Biology (ICMB), The University oF Texas at Austin, Austin, TX 78712, USA 4Institute For Computational Engineering and Sciences (ICES), The University oF Texas at Austin, Austin, TX 78712, USA 5Department oF Biomedical Engineering, Cockrell School of Engineering, The University oF Texas at Austin, Austin, TX 78712, USA 6Department oF Epigenetics and Molecular Carcinogenesis, The University oF Texas MD Anderson Science Park, Smithville, TX 78957, USA 7Department oF BioinFormatics and Computational Biology, The University oF Texas MD Anderson Cancer Center, Houston, TX 77030, USA 8Program in Quantitative and Computational Biosciences (QCB), Baylor College oF Medicine, Houston, TX 77030, USA *To whom correspondence should be addressed. Nidhi Sahni. Tel: +1 512 2379506; Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.262386; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
Urm1 in Trna Thiolation and Protein Modification
Urm1 in tRNA thiolation and protein modification Annemarthe G. van der Veen Urm1 in tRNA thiolation and protein modification A.G. van der Veen Thesis, Utrecht University, The Netherlands A.G. van der Veen 2011 ISBN: 9789461081728 Cover image: Stata Center, MIT campus. Photo courtesy of W. van der Veen Invitation: Image courtesy of Eugene Galleries, Boston Printed by: Gildeprint Drukkerijen, Enschede Urm1 in tRNA thiolation and protein modification Urm1 in tRNA thiolatie en eiwit modificatie (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 30 mei 2011 des middags te 12.45 uur door Annemarthe Godelieve van der Veen geboren op 13 september 1982 te Hardenberg Promotoren: Prof.dr. H.L. Ploegh Prof.dr. E.J.H.J. Wiertz The research described in this thesis was supported by a pre-doctoral grant from the Boehringer Ingelheim Fonds. Voor papa en mama Contents Chapter 1 General introduction 8 Chapter 2 A functional proteomics approach links the Ubiquitin- 28 related modifier Urm1 to a tRNA modification pathway Chapter 3 Role of the Ubiquitin-like molecule Urm1 as a 46 noncanonical lysine-directed protein modifier Chapter 4 Transgenic mice expressing a dominant negative Urm1 74 mutant fail to generate offspring Chapter 5 Urm1B, an alternate isoform of Urm1, is stabilized and 90 redistributed by its interaction with ATPBD3 Chapter 6 General discussion 102 English summary 114 Nederlandse samenvatting 116 Acknowledgements 118 Curriculum vitae 121 List of publications 122 Chapter 1 General introduction Post-translational modifications Cellular homeostasis requires tight control of protein activity, function, stability, and localization.