Cell Reprogramming Technologies for Treatment And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ncomms2254.Pdf
ARTICLE Received 3 May 2012 | Accepted 5 Nov 2012 | Published 4 Dec 2012 DOI: 10.1038/ncomms2254 The RB family is required for the self-renewal and survival of human embryonic stem cells Jamie F. Conklin1,2,3, Julie Baker2,3 & Julien Sage1,2,3 The mechanisms ensuring the long-term self-renewal of human embryonic stem cells are still only partly understood, limiting their use in cellular therapies. Here we found that increased activity of the RB cell cycle inhibitor in human embryonic stem cells induces cell cycle arrest, differentiation and cell death. Conversely, inactivation of the entire RB family (RB, p107 and p130) in human embryonic stem cells triggers G2/M arrest and cell death through functional activation of the p53 pathway and the cell cycle inhibitor p21. Differences in E2F target gene activation upon loss of RB family function between human embryonic stem cells, mouse embryonic stem cells and human fibroblasts underscore key differences in the cell cycle regulatory networks of human embryonic stem cells. Finally, loss of RB family function pro- motes genomic instability in both human and mouse embryonic stem cells, uncoupling cell cycle defects from chromosomal instability. These experiments indicate that a homeostatic level of RB activity is essential for the self-renewal and the survival of human embryonic stem cells. 1 Department of Pediatrics, Stanford Medical School, Stanford, California 94305, USA. 2 Department of Genetics, Stanford Medical School, Stanford, California 94305, USA. 3 Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medical School, Stanford, California 94305, USA. Correspondence and requests for materials should be addressed to J.S. -
Author Manuscript Faculty of Biology and Medicine Publication
Serveur Académique Lausannois SERVAL serval.unil.ch Author Manuscript Faculty of Biology and Medicine Publication This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. Published in final edited form as: Title: Sexual dimorphism in cancer. Authors: Clocchiatti A, Cora E, Zhang Y, Dotto GP Journal: Nature reviews. Cancer Year: 2016 May Volume: 16 Issue: 5 Pages: 330-9 DOI: 10.1038/nrc.2016.30 In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article. Sexual dimorphism in cancer Andrea Clocchiatti1+, Elisa Cora2+, Yosra Zhang1,2 and G. Paolo Dotto1,2* 1Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; 2Department of Biochemistry, University of Lausanne, Epalinges, CH-1066, Switzerland + These authors contributed equally to the work * Corresponding author: G. Paolo Dotto email: [email protected] 1 Abstract The incidence of many cancer types is significantly higher in the male than female populations, with associated differences in survival. Occupational and/or behavioral factors are well known underlying determinants. However, cellular/molecular differences between the two sexes are also likely to be important. We are focusing here on the complex interplay that sexual hormones and sex chromosomes can have in intrinsic control of cancer initiating cell populations, tumor microenvironment and systemic determinants of cancer development like the immune system and metabolism. A better appreciation of these differences between the two sexes could be of substantial value for cancer prevention as well as treatment. -
Human Autologous Ipsc–Derived Dopaminergic Progenitors Restore Motor Function in Parkinson’S Disease Models
Human autologous iPSC–derived dopaminergic progenitors restore motor function in Parkinson’s disease models Bin Song, … , Jeffrey S. Schweitzer, Kwang-Soo Kim J Clin Invest. 2020;130(2):904-920. https://doi.org/10.1172/JCI130767. Research Article Neuroscience Stem cells Graphical abstract Find the latest version: https://jci.me/130767/pdf RESEARCH ARTICLE The Journal of Clinical Investigation Human autologous iPSC–derived dopaminergic progenitors restore motor function in Parkinson’s disease models Bin Song,1,2 Young Cha,1,2 Sanghyeok Ko,1,2 Jeha Jeon,1,2 Nayeon Lee,1,2 Hyemyung Seo,1,2,3 Kyung-Joon Park,1 In-Hee Lee,4,5 Claudia Lopes,1,2 Melissa Feitosa,1,2 María José Luna,1,2 Jin Hyuk Jung,1,2 Jisun Kim,1,2,3 Dabin Hwang,1,2 Bruce M. Cohen,1 Martin H. Teicher,1 Pierre Leblanc,1,2 Bob S. Carter,6 Jeffrey H. Kordower,7 Vadim Y. Bolshakov,1 Sek Won Kong,4,5 Jeffrey S. Schweitzer,6 and Kwang-Soo Kim1,2 1Department of Psychiatry and 2Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA. 3Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea. 4Department of Pediatrics, 5Computational Health Informatics Program, Boston Children’s Hospital, and 6Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 7Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA. Parkinson’s disease (PD) is a neurodegenerative disorder associated with loss of striatal dopamine, secondary to degeneration of midbrain dopamine (mDA) neurons in the substantia nigra, rendering cell transplantation a promising therapeutic strategy. -
Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript. -
Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). -
Investigation of Candidate Genes and Mechanisms Underlying Obesity
Prashanth et al. BMC Endocrine Disorders (2021) 21:80 https://doi.org/10.1186/s12902-021-00718-5 RESEARCH ARTICLE Open Access Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules G. Prashanth1 , Basavaraj Vastrad2 , Anandkumar Tengli3 , Chanabasayya Vastrad4* and Iranna Kotturshetti5 Abstract Background: Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. Methods: To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. Results: A total of 820 DEGs were identified between -
Viewed in [2, 3])
Yildiz et al. Neural Development (2019) 14:5 https://doi.org/10.1186/s13064-019-0129-x RESEARCH ARTICLE Open Access Zebrafish prdm12b acts independently of nkx6.1 repression to promote eng1b expression in the neural tube p1 domain Ozge Yildiz1, Gerald B. Downes2 and Charles G. Sagerström1* Abstract Background: Functioning of the adult nervous system depends on the establishment of neural circuits during embryogenesis. In vertebrates, neurons that make up motor circuits form in distinct domains along the dorsoventral axis of the neural tube. Each domain is characterized by a unique combination of transcription factors (TFs) that promote a specific fate, while repressing fates of adjacent domains. The prdm12 TF is required for the expression of eng1b and the generation of V1 interneurons in the p1 domain, but the details of its function remain unclear. Methods: We used CRISPR/Cas9 to generate the first germline mutants for prdm12 and employed this resource, together with classical luciferase reporter assays and co-immunoprecipitation experiments, to study prdm12b function in zebrafish. We also generated germline mutants for bhlhe22 and nkx6.1 to examine how these TFs act with prdm12b to control p1 formation. Results: We find that prdm12b mutants lack eng1b expression in the p1 domain and also possess an abnormal touch-evoked escape response. Using luciferase reporter assays, we demonstrate that Prdm12b acts as a transcriptional repressor. We also show that the Bhlhe22 TF binds via the Prdm12b zinc finger domain to form a complex. However, bhlhe22 mutants display normal eng1b expression in the p1 domain. While prdm12 has been proposed to promote p1 fates by repressing expression of the nkx6.1 TF, we do not observe an expansion of the nkx6.1 domain upon loss of prdm12b function, nor is eng1b expression restored upon simultaneous loss of prdm12b and nkx6.1. -
Regulation of Adult Neurogenesis in Mammalian Brain
International Journal of Molecular Sciences Review Regulation of Adult Neurogenesis in Mammalian Brain 1,2, 3, 3,4 Maria Victoria Niklison-Chirou y, Massimiliano Agostini y, Ivano Amelio and Gerry Melino 3,* 1 Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK; [email protected] 2 Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK 3 Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; [email protected] (M.A.); [email protected] (I.A.) 4 School of Life Sciences, University of Nottingham, Nottingham NG7 2HU, UK * Correspondence: [email protected] These authors contributed equally to this work. y Received: 18 May 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: Adult neurogenesis is a multistage process by which neurons are generated and integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Neurogenesis plays a fundamental role in postnatal brain, where it is required for neuronal plasticity. Moreover, perturbation of adult neurogenesis contributes to several human diseases, including cognitive impairment and neurodegenerative diseases. The interplay between extrinsic and intrinsic factors is fundamental in regulating neurogenesis. Over the past decades, several studies on intrinsic pathways, including transcription factors, have highlighted their fundamental role in regulating every stage of neurogenesis. However, it is likely that transcriptional regulation is part of a more sophisticated regulatory network, which includes epigenetic modifications, non-coding RNAs and metabolic pathways. -
CNS Myelin Paranodes Require Nkx6-2 Homeoprotein Transcriptional Activity for Normal Structure
The Journal of Neuroscience, December 15, 2004 • 24(50):11215–11225 • 11215 Development/Plasticity/Repair CNS Myelin Paranodes Require Nkx6-2 Homeoprotein Transcriptional Activity for Normal Structure Cherie Southwood,1,2 Chris He,1 James Garbern,2,4 John Kamholz,2,4 Edgardo Arroyo,5 and Alexander Gow1,2,3,4 1Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York, 10029, 2Center for Molecular Medicine and Genetics, 3Carman and Ann Adams Department of Pediatrics, 4Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, 48201, and 5Department of Neurology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, 19104 Homeodomain proteins play critical roles during development in cell fate determination and proliferation, but few studies have defined gene regulatory networks for this class of transcription factors in differentiated cells. Using a lacZ-knock-in strategy to ablate Nkx6-2, we find that the Nkx6-2 promoter is active embryonically in neuroblasts and postnatally in oligodendrocytes. In addition to neurological deficits, we find widespread ultrastructural abnormalities in CNS white matter and aberrant expression of three genes encoding a paranodal microtubule destabilizing protein, stathmin 1, and the paranodal cell adhesion molecules neurofascin and contactin. The involvement of these downstream proteins in cytoskeletal function and cell adhesion reveals mechanisms whereby Nkx6-2 directly or indirectly regulates axon–glial interactions at myelin paranodes. Nkx6-2 does not appear to be the central regulator of axoglial junction assembly; nonetheless, our data constitute the first evidence of such a regulatory network and provide novel insights into the mechanism and effector molecules that are involved. -
Cellular and Molecular Signatures in the Disease Tissue of Early
Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of -
Abbit Monoclonal Igg Antibody Against Human, Mouse SOX1
Anti-Human SOX1 Antibody, Clone EPR4766 Antibodies Rabbit monoclonal IgG antibody against human, mouse SOX1 Catalog #60095 0.1 mL Product Description The EPR4766 antibody reacts with SOX1, also known as SRY (sex determining region Y)-box 1, an ~40 kDa nuclear transcription factor belonging to the SRY-related HMG-box family. SOX1 is involved in regulating development of the central nervous system and is an early marker for neuroectodermal differentiation in the embryo. Its expression is down-regulated during differentiation in many neuronal subtypes. SOX1 is also a useful marker for identifying embryonic and somatic neuronal progenitor cells (NPCs), in concert with other markers such as SOX2 and SOX9. SOX1 is thought to promote self-renewal in NPCs, whereas it functions in other cell types to promote differentiation. There is evidence that SOX1 plays a role in tumor suppression by binding to ß-catenin and attenuating the WNT signaling pathway, and in mice it plays an essential role in lens development by regulating expression of γ-crystallins. The EPR4766 antibody does not cross-react with rat SOX1. Target Antigen Name: SOX1 Alternative Names: Sox-1, SRY (sex determining region Y)-box 1, SRY-related HMG-box Gene ID: 6656 Species Reactivity: Human, Mouse Host Species: Rabbit Clonality: Monoclonal Clone: EPR4766 Isotype: IgG Immunogen: Synthetic peptide corresponding to the partial amino acid sequence of human SOX1 Conjugate: Unconjugated Applications Verified: ICC, IF, IHC, WB Reported: ICC, IF, IHC, WB Special Applications: This antibody clone has been verified for labeling neural stem and progenitor cells grown with STEMdiff™ Neural Induction Medium (Catalog #05835), STEMdiff™ Neural Progenitor Medium (Catalog #05833), NeuroCult™ NS-A Proliferation Kit (Human; Catalog #05751) and NeuroCult™ Proliferation Kit (Mouse; Catalog #05702). -
Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.