Here Would Have Been No Shakespeare, No Goethe, No Newton, No Faraday, No Pasteur and No Lister …”

Total Page:16

File Type:pdf, Size:1020Kb

Here Would Have Been No Shakespeare, No Goethe, No Newton, No Faraday, No Pasteur and No Lister …” cara Cara and the Royal Society 1. Cara and the Royal Society have a unique shared history. The Founding Statement of the Academic Assistance Council, as Cara was originally known, was issued from the ‘Rooms of the Royal Society’ in Burlington House on 22 May 1933. Cara’s first President, Lord Rutherford, was a Fellow of the Royal Society and its immediate Past President (1925-30). The President of the Royal Society for 1930-1935, Sir Frederick Gowland Hopkins, was a signatory of the Founding Statement, as were four other past or future Presidents of the Royal Society: Sir Joseph Thomson (1915-1920), Sir Charles Sherrington (1920-1925), Sir William Henry Bragg (1935- 1940) and Sir Robert Robinson (1945-1950). Eight other Fellows were also signatories: David Lindsay (Earl of Crawford and Balcarres), Charles Stanley Gibson, Major Greenwood, J S Haldane, A V Hill, James Colquhoun Irvine, William Jackson Pope and Robert Strutt (Lord Rayleigh). 2. A V Hill, Cara’s first Vice-President, was the Royal Society’s Biological Secretary, and worked closely with Sir William Bragg and his successor, Sir Henry Hallett Dale (President, 1940-1945), to help scientists who had been forced into exile by the Nazis to find posts in the UK. Over 70 of the scientists rescued by Cara in the 1930s went on to become Fellows or Foreign Members of the Royal Society, and their contribution helped to transform British science and medicine. Some of the most remarkable, including Ernst Chain, Hans Krebs, Max Born and Max Perutz, were later honoured with Nobel Prizes. 3. That close link between the Royal Society and Cara has continued in recent years. Individual Fellows of the Royal Society have served as Cara Trustees, and the Royal Society has hosted a number of Cara meetings and events, including the Keynote Address by the late Sir Ralph Kohn FRS for Cara’s 75th anniversary conference in 2008, and a meeting in 2017 to help introduce Cara to other learned societies. 4. In November 2013, as part of Cara’s 80th anniversary events, the Royal Society agreed to host the first of the new series of Cara’s ‘Science and Civilisation’ lectures. The original lecture with this title was given in October 1933 by Albert Einstein, at an event to raise funds for four organisations working to support exiled academics and scientists, including the Academic Assistance Council/Cara. Einstein cara spoke forcefully about the importance of intellectual and individual freedom: “If we want to resist the powers which threaten to suppress intellectual and individual freedom we must keep clearly before us what is at stake, and what we owe to that freedom which our ancestors have won for us after hard struggles. Without such freedom, there would have been no Shakespeare, no Goethe, no Newton, no Faraday, no Pasteur and no Lister …”. Cara’s founders defined their mission as ‘the relief of suffering and the defence of learning and science’, and Einstein’s message is as central to Cara’s work now as it was then. 5. Since the launch of the new series in 2013, seven lectures have been held, with the Royal Society providing the venue for the lecture and the subsequent reception free of charge. The speakers and subjects since 2013 have been: - 2013, Jim Al-Khalili FRS, “Science, Rationalism and Academic Freedom in the Arab World” - 2014, George Radda FRS, “Biomedical Knowledge in the Service of Man: Social Responsibility of the Scientist” - 2015, Lord Rees of Ludlow FRS, “Confronting 21st Century Challenges: Scientists as experts, as campaigners and as world citizens” - 2016, Anne Glover FRS, “And then they came for the experts” - 2017, Timothy Garton Ash, “Free Speech under Attack” - 2018, Margaret MacMillan, “War and Society: the impact of the First World War” - 2019, Baroness Onora O’Neill of Bengarve FBA Hon FRS, “Communication and Democracy in a Digital Age” 6. Attendance has grown steadily over the last six years and now numbers well over 100, predominantly academics. For Cara, this has become its annual ‘showcase event’, a unique chance to bring together its most prominent and active partners and supporters and to update them on its work, at a time when, regrettably, crises and conflicts across the world mean that Cara is busier than at any time since the 1930s. The 2020 lecture, to be given by Professor Michael Ignatieff, President and Rector of the Central European University, on ‘Academic Freedom: Right or Privilege?’, had to be postponed due to the Covid pandemic, but we hope that it may be held in 2021. .
Recommended publications
  • Warburg Effect(S)—A Biographical Sketch of Otto Warburg and His Impacts on Tumor Metabolism Angela M
    Otto Cancer & Metabolism (2016) 4:5 DOI 10.1186/s40170-016-0145-9 REVIEW Open Access Warburg effect(s)—a biographical sketch of Otto Warburg and his impacts on tumor metabolism Angela M. Otto Abstract Virtually everyone working in cancer research is familiar with the “Warburg effect”, i.e., anaerobic glycolysis in the presence of oxygen in tumor cells. However, few people nowadays are aware of what lead Otto Warburg to the discovery of this observation and how his other scientific contributions are seminal to our present knowledge of metabolic and energetic processes in cells. Since science is a human endeavor, and a scientist is imbedded in a network of social and academic contacts, it is worth taking a glimpse into the biography of Otto Warburg to illustrate some of these influences and the historical landmarks in his life. His creative and innovative thinking and his experimental virtuosity set the framework for his scientific achievements, which were pioneering not only for cancer research. Here, I shall allude to the prestigious family background in imperial Germany; his relationships to Einstein, Meyerhof, Krebs, and other Nobel and notable scientists; his innovative technical developments and their applications in the advancement of biomedical sciences, including the manometer, tissue slicing, and cell cultivation. The latter were experimental prerequisites for the first metabolic measurements with tumor cells in the 1920s. In the 1930s–1940s, he improved spectrophotometry for chemical analysis and developed the optical tests for measuring activities of glycolytic enzymes. Warburg’s reputation brought him invitations to the USA and contacts with the Rockefeller Foundation; he received the Nobel Prize in 1931.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
    Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4.
    [Show full text]
  • René Dubos, Tuberculosis, and the “Ecological Facets of Virulence”
    HPLS (2017) 39:15 DOI 10.1007/s40656-017-0142-5 ORIGINAL PAPER René Dubos, tuberculosis, and the “ecological facets of virulence” Mark Honigsbaum1 Received: 15 January 2017 / Accepted: 23 June 2017 / Published online: 4 July 2017 © The Author(s) 2017. This article is an open access publication Abstract Reflecting on his scientific career toward the end of his life, the French- educated medical researcher Rene´ Dubos presented his flowering as an ecological thinker as a story of linear progression—the inevitable product of the intellectual seeds planted in his youth. But how much store should we set by Dubos’s account of his ecological journey? Resisting retrospective biographical readings, this paper seeks to relate the development of Dubos’s ecological ideas to his experimental practices and his career as a laboratory researcher. In particular, I focus on Dubos’s studies of tuberculosis at the Rockefeller Institute in the period 1944–1956—studies which began with an inquiry into the tubercle bacillus and the physiochemical determinants of virulence, but which soon encompassed a wider investigation of the influence of environmental forces and host–parasite interactions on susceptibility and resistance to infection in animal models. At the same time, through a close reading of Dubos’s scientific papers and correspondence, I show how he both drew on and distinguished his ecological ideas from those of other medical researchers such as Theobald Smith, Frank Macfarlane Burnet, and Frank Fenner. However, whereas Burnet and Fenner tended to view ecological interactions at the level of populations, Dubos focused on the interface of hosts and parasites in the physio- logical environments of individuals.
    [Show full text]
  • The Miracle of the Mould Howard Florey and Colleagues Overcame Great Obstacles to Isolate Penicillin
    books and arts The miracle of the mould Howard Florey and colleagues overcame great obstacles to isolate penicillin. The Mould in Dr Florey’s Coat: The Remarkable True Story of the Penicillin Miracle by Eric Lax Little, Brown: 2004. 288 pp. £16.99 William Shaw HAAS/BETTMANN/CORBIS D. Well-researched and readable accounts of medical science and disease are always wel- come. The first thing to note about this new work by Eric Lax, whose earlier efforts have been a well-regarded biography of Woody Allen and an engaging account of cancer chemotherapy, is that its title prom- ises a great deal — and does so rather late in the day. There is little doubt that, after more than half a century of personal reflections and scholarship, the story of the emergence of penicillin as a life-saving medicine remains remarkable — not least for the obstacles overcome and for the personalities of the trio of Nobel laureates involved: Alexander Fleming, Howard Florey and Ernst Chain. But promise of a true story begs the question of what has been on offer since 1945. And was there a miracle? Well, nearly, at least in the sense that the small team assembled by Florey at the Sir William Dunn School of Norman Heatley (below left) oversaw the mass production of penicillin in 1940s America. Pathology in Oxford, UK, in the dark and difficult early honorary doctorate of medi- from farther afield, such as the Yale papers years of the Second World cine, the first non-medical of John Fulton, Florey’s close friend and War, hardly seemed like a person to be so honoured.
    [Show full text]
  • The Making of a Biochemist
    book reviews disappearance of kuru as an important In the late 1920s, he looked into the effect TION episode in our understanding of the risks of light on the inhibition by carbon monox- A associated with this type of infectious ide of respiration in living cells. This work process. Informing the wider community of encompassed considerations of photo- these risks may lead to a more helpful debate chemical processes in terms of quantum about the public health policies required chemistry, and the use of the manometer, NOBEL FOUND to minimize the chances of another BSE photoelectric cell and spectroscope. From epidemic. Books such as this are useful in the shape of the curve obtained by plotting this context. the effectiveness of light against its wave- Colin L. Masters is in the Department of Pathology, length, it was possible to deduce the resem- 8 The University of Melbourne, Parkville, Victoria, blance between the respiratory ferment and 3052, Australia. haemins. Warburg was awarded the Nobel prize for physiology or medicine in 1931 for his recognition of the haemin-type nature of the respiratory ferment and its underlying The making principles. The development of Warburg’s theoreti- of a biochemist cal thinking and experimental procedures are Otto Warburgs Beitrag zur ably chronicled in Petra Werner’s introducto- Atmungstheorie: Das Problem der ry essay. Her book is the first volume of an Sauerstoffaktivierung* edition of Warburg’s correspondence Brilliant but flawed: Warburg tended to pettiness. by Petra Werner deposited in the Berlin–Brandenburg Aca- Basilisken-Presse: 1996. Pp. 390. DM136 demy of Sciences. Regrettably, the 143 pub- 1950).
    [Show full text]
  • Illustrations from the Wellcome Institute Library the Chain Papers*
    Medical History, 1983, 27:434-435 ILLUSTRATIONS FROM THE WELLCOME INSTITUTE LIBRARY THE CHAIN PAPERS* THE three men who shared the Nobel Prize in October 1945 for their work on penicillin could scarcely have differed more in their backgrounds and characters. Fleming was sixty-four years old by then; the son of a Scottish farmer, he was a retiring man, not given to conversation. By contrast, Florey, then aged forty-seven, was the son of a wealthy Australian boot and shoe manufacturer; aggressively ambitious, his achievements and intellect were later to secure him the Presidency of the Royal Society. Then there was Chain - a mere thirty-nine years old - a Jewish refugee of Russian origin, who still had major work on penicillin ahead of him; his ambition was mixed with an independence and volubility that was to lead him into conflict with the scientific/medical establishment. Fleming has been the subject of many biographies, mostly hagiographical. Florey's role in the penicillin story was recently reassessed in Gwyn Macfarlane's excellent Howard Florey. The making ofa great scientist (Oxford University Press, 1979). Sir Ernst Boris Chain died in 1979, and his biography is being written by Ronald W. Clark. This, together with future research on Chain's papers, will enable a fuller assessment to be made of the role and character of the youngest of the three scientists. The Chain papers, recently given by Lady Chain to the Contemporary Medical Archives Centre, form an extensive collection of some sixty-nine boxes, comprising material from Chain's personal and professional life.
    [Show full text]
  • DAVID NACHMANSOHN March 17, 1899-November 2, 1983
    NATIONAL ACADEMY OF SCIENCES D A V I D N ACHMANSOHN 1899—1983 A Biographical Memoir by SEVERO OCHOA Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1989 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. DAVID NACHMANSOHN March 17, 1899-November 2, 1983 BY SEVERO OCHOA AVID NACHMANSOHN'S scientific life path was strongly D influenced by his early studies on the biochemistry of muscle in Otto Meyerhof's laboratory. This experience led to an interest in the biochemistry of nerve activity, a field of study to which he would devote most of his scientific life. In so doing, he contributed—perhaps more than any other in- vestigator—to our understanding of the molecular basis of bioelectricity. David Nachmansohn was born in Jekaterinoslav, Russia (now Dnjetropetrowsk, USSR). His parents came from middle-class families among whom were many lawyers, phy- sicians, and other professionals. Before David and his two sisters reached school age, the family moved to Berlin where they had many relatives. Thus, David's background and edu- cation were essentially, if not exclusively, German. His college education was strongly humanistic, with Latin, Greek, liter- ature, and history as mainstays, some mathematics, and the rudiments of physics. Through his readings, perhaps pri- marily through his reading of the second part of Goethe's Faust when he was only seventeen years of age, he became interested in philosophy—so much so that he continued to attend courses and seminars in philosophy even while a med- ical student at Heidelberg in 1920.
    [Show full text]
  • Speaker's Manuscript
    Nobel Prize Lessons 2018 Speaker’s manuscript – the 2018 Medicine Prize The Nobel Prize in Physiology or Medicine • The Nobel Prize in Physiology or Medicine is one of the five prizes founded by Alfred Nobel and awarded on December 10 every year. Before Alfred Nobel died on December 10, 1896, he wrote in his will that the largest part of his fortune should be placed in a fund. The yearly interest on this fund would pay for a prize given to “those who, during the preceding year, shall have conferred the greatest benefit to humankind.” Who is rewarded with the Medicine Prize? • The Nobel Prize in Physiology or Medicine is thus awarded to people who have either made a discovery about how organisms work or have helped find a cure for a disease. • This is May-Britt Moser, 2014 Nobel Laureate in Medicine. In 2005 she and Edvard Moser discovered a type of cell in the brain that is important for determining one's position. They also found that those cells cooperate with different nerve cells in the brain that help us to navigate. You can say that the Laureates discovered and explained a kind of GPS system in the brain. • Other Medicine Laureates include: • Francis Crick, James Watson and Maurice Wilkins, who received the 1962 Prize for their discoveries and descriptions about the structure of DNA molecules. • Alexander Fleming, Ernst Chain and Howard Florey, who received the 1945 Prize for the discovery of penicillin and its curative effects on bacterial diseases. Medicine Prize 2018 • The 2018 Nobel Prize is about a new way of treating cancer.
    [Show full text]
  • Physiological Society Template
    An interview with Ron Whittam Conducted by David Miller and Richard Naftalin on 12 August 2014 Published December 2019 This is the transcript of an interview of the Oral Histories Project for The Society's History & Archives Committee. The original digital sound recording is lodged with The Society and will be placed in its archive at The Wellcome Library. An interview with Ron Whittam Ron Whittam photographed by David Miller This interview with Ron Whittam (RW) was conducted by David Miller (DM) and Richard Naftalin (RN) on 12 August 2014 DM: Let’s make sure we’re starting. Fine. So okay this is David Miller, it’s the 12th August 2014 and we’re are in Leicester at the home of Professor Ron Whittam and we’re here to record for the oral history project of the Physiological Society. So, also here is Richard Naftalin whose voice you’ll hear and Ron Whittam himself, of course. So we’re going to run through elements of Ron’s life and background as he wishes to cover in the usual way. So that’s enough from me. Perhaps Richard if you could just say a few words so that it’s recognised whose voice is whose. RN: Okay, well I’m Richard Naftalin. I’m currently Emeritus Professor at King’s College London but I was, had the privilege of being, in Leicester University and I was appointed lecturer to Ron Whittam’s department of General Physiology in 1968. I came to Leicester as newlywed and as a virgin physiologist to Ron’s department so that was very exciting –at least for me.
    [Show full text]
  • Alexander Fleming, Ernst Chain Och Howard Florey NOBELPRISET I FYSIOLOGI ELLER MEDICIN 1945
    Alexander Fleming, Ernst Chain och Howard Florey NOBELPRISET I FYSIOLOGI ELLER MEDICIN 1945 ”för upptäckten av penicillinet och dess botande verkan vid olika infektionssjukdomar” Nobelstiftelsen© Nobelstiftelsen© Nobelstiftelsen© Fleming tillhörde inte de mest fanatiska forskarna. Han drack ”afternoon tea”, spelade biljard, schack, kort, tog en Sir Alexander Fleming Sir Ernst Boris Chain Sir Howard Walter Florey drink för att sedan gå hem * 6 augusti 1881 i Lochfield, * 19 juni 1906 i Berlin, * 24 september 1898 i Ade- Skottland Tyskland laide, Australien till familjen och äta middag † 11 mars 1955 i London, † 12 augusti 1979 i Mulrany, † 21 februari 1968 i Oxford, England Ireland England klockan åtta på kvällarna. Alexander Fleming upptäcker 1928 att ett och blodförgiftning till döden. Idag kan vi med mögel har växt i en av hans bakterieodlingar. penicillin eller motsvarande antibiotika bota Runt möglet har bakterierna dött. I de andra dem. Men för stor användning av antibiotika proverna, där det inte finns mögel har bak- har också lett till att bakterier blivit resistenta. terierna växt normalt. Fleming inser snabbt Detta innebär att det börjar bli allt vanligare att det här är en fantastisk upptäckt. Kan man med bakteriesjukdomar som inte går att bota använda den här mögelsvampen som medi- med de antibiotika som finns tillgängliga idag. cin? Han börjar odla den speciella svampen Det finns därför ett stort behov av att hitta nya i större skala, för att få möjlighet att också former av antibiotika. Redan 1945 i sin Nobel- testa den på bakterier som angripit djur och föreläsning varnade Fleming för att bakterier det fungerar. lätt kan utveckla motståndskraft mot penicil- linet om det används fel.
    [Show full text]
  • The Worshipful Society of Apothecaries of London Galen Medal Winners
    The Worshipful Society of Apothecaries of London Galen Medal Winners 1926 Prof WE DIXON, BSc, MA, MD, DPH, FRS Pharmacology 1927 Sir Gowland HOPKINS, MA, LLD, DSc, FRCP, FRIC, FRS Discovery of vitamins 1928 Prof JJ ABEL, MD, ScD, LLD Isolation of Adrenaline 1930 Prof E FOURNEAU, Directeur de 1'Institute Pasteur Pharmacology of amino-alcohols 1932 Sir Henry DALE, OM, GBE, MA, MD, FRCP, FRS Neurophysiology 1934 Prof Sir Frederick BANTING, MC, Hon FRCS, DSc, LLD Discovery of Insulin 1946 Sir Alexander FLEMING, FRCP, FRCS, FRS Penicillin Lord FLOREY, MA, MD, FRCP, FRS 1947 F CURD, BSc, PhD D DAVEY, MSc, PhD Discovery of Paludrine F ROSE, BSc, PhD 1948 Sir Lionel WHITBY, CVO, MC, MD, FRCP Sulphonamides 1949 Prof J TREFOUEL, Directeur de 1'Institute Pasteur Sulphonamides 1951 Prof Sir Charles DODDS, Bt, MVO, MD, FRCP, FRS Biochemistry 1953 Sir Charles HARINGTON, MA, PhD, FRS Synthesised Thyroxin 1954 EL SMITH, DSc, FRIC Vitamin B12 1955 Lord BROCK, MS, FRCS Cardiac surgery 1957 Prof Sir Ernst CHAIN, MA, DPhil, FRS Production of Penicillin 1958 Sir Macfarlane BURNET, OM, MD, FRCP, FRS Vaccines for virus infections 1959 Prof Sir Bradford HILL, CBE, PhD, DSc, FRS Medical statistics 1960 Sir Tudor THOMAS, DSc, MD, MS, FRCS Corneo-plastic surgery 1961 Prof R PATERSON, CBE, MC, MD, FRCS, FFR Radiotherapy 1962 Prof W PENFIELD, OM, CMG, MD, DSc, FRS Neurosurgery & Neurophysiology 1963 Prof Sir Alexander HADDOW, MD, DSc, PhD, FRS Experimental pathology & cancer research 1964 FP DOYLE, MSc, FRIC Chemical & biological GN ROLINSON, BSc, PhD development
    [Show full text]
  • Microbiologytoday
    microbiologytoday microbiology vol36|feb09 quarterly magazine of the society today for general microbiology vol 36 | feb 09 the legacy of fleming ‘that’s funny!’: the discovery of penicillin what manner of man was fleming? the future of antibiotic discovery look who’s talking when good bugs fight bad contents vol36(1) regular features 2 News 38 Schoolzone 46 Hot off the Press 10 Microshorts 42 Gradline 49 Going Public 36 Conferences 45 Addresses 60 Reviews other items 33 The Defra-commissioned independent review of bovine tuberculosis research 54 Education Development Fund report 58 Obituary – Professor Sir James Baddiley FRS 59 Obituary – Emeritus Professor Naomi Datta FRS articles 12 ‘That’s funny!’: the 24 Look who’s talking! discovery and development Julian Davies of penicillin Antibiotics aren’t just for fighting infections; they are part of the bacterial signalling network. Kevin Brown The chance discovery of penicillin 80 years ago made Alexander Fleming a famous scientist. 28 When good bugs fight bad Roy Sleator 16 What manner of man was There are alternative methods available Alexander Fleming? for combating infectious diseases – not just antimicrobial chemotherapy. Philip Mortimer Alexander Fleming, the Society’s first President, did so much more than discover penicillin. 32 A precious memory Norberto Palleroni One of the few people left who met Fleming recounts his 20 Antibiotics and experience. Streptomyces: the future of antibiotic discovery 64 Comment: Debating creationism Flavia Marinelli Many options for drug discovery
    [Show full text]