René Dubos, Tuberculosis, and the “Ecological Facets of Virulence”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microbiology Immunology Cent
years This booklet was created by Ashley T. Haase, MD, Regents Professor and Head of the Department of Microbiology and Immunology, with invaluable input from current and former faculty, students, and staff. Acknowledgements to Colleen O’Neill, Department Administrator, for editorial and research assistance; the ASM Center for the History of Microbiology and Erik Moore, University Archivist, for historical documents and photos; and Ryan Kueser and the Medical School Office of Communications & Marketing, for design and production assistance. UMN Microbiology & Immunology 2019 Centennial Introduction CELEBRATING A CENTURY OF MICROBIOLOGY & IMMUNOLOGY This brief history captures the last half century from the last history and features foundational ideas and individuals who played prominent roles through their scientific contributions and leadership in microbiology and immunology at the University of Minnesota since the founding of the University in 1851. 1. UMN Microbiology & Immunology 2019 Centennial Microbiology at Minnesota MICROBIOLOGY AT MINNESOTA Microbiology at Minnesota has been From the beginning, faculty have studied distinguished from the beginning by the bacteria, viruses, and fungi relevant to breadth of the microorganisms studied important infectious diseases, from and by the disciplines and sub-disciplines early studies of diphtheria and rabies, represented in the research and teaching of through poliomyelitis, streptococcal and the faculty. The Microbiology Department staphylococcal infection to the present itself, as an integral part of the Medical day, HIV/AIDS and co-morbidities, TB and School since the department’s inception cryptococcal infections, and influenza. in 1918-1919, has been distinguished Beyond medical microbiology, veterinary too by its breadth, serving historically microbiology, microbial physiology, as the organizational center for all industrial microbiology, environmental microbiological teaching and research microbiology and ecology, microbial for the whole University. -
Infectious Disease in Philadelphia, 1690- 1807
ABSTRACT Title of Dissertation: INFECTIOUS DISEASE IN PHILADELPHIA, 1690- 1807: AN ECOLOGICAL PERSPECTIVE Gilda Marie Anroman, Doctor of Philosophy, 2006 Dissertation directed by: Professor Mary Corbin Sies Department of American Studies This dissertation examines the multiple factors that influenced the pattern and distribution of infectious disease in Philadelphia between the years 1690 and 1807, and explores the possible reasons for the astonishingly high level of death from disease throughout the city at this time . What emerges from this study is a complex picture of a city undergoing rapid cultural and epidemiological changes . Large -scale immigration supplied a susceptible population group, as international trade, densely packed street s, unsanitary living conditions, and a stagnant and contaminated water supply combined to create ideal circumstances for the proliferation of both pathogen s and vectors, set ting the stage for the many public health crises that plagued Philadelphia for more than one hundred years. This study uses an ecological perspective to understand how disease worked in Philadelphia . The idea that disease is virtually always a result of the interplay of the environment, the genetic and physical make -up of the individual , and the agent of disease is one of the most importan t cause and effect ideas underpinned by epidemiology. This dissertation integrates me thods from the health sciences, humanities, and social sciences to demonstrate how disease “emergence” in Philadelphia was a dynamic feature of the interrelationships between people and their socio -cultural and physical environments. Classic epidemiological theory , informed by ecological thinking, is used to rev isit the city’s reconstructed demographic data, bills of mortality, selected diaries (notably that of Elizabeth Drinker ), personal letters, contemporary observations and medical literature . -
The Miracle of the Mould Howard Florey and Colleagues Overcame Great Obstacles to Isolate Penicillin
books and arts The miracle of the mould Howard Florey and colleagues overcame great obstacles to isolate penicillin. The Mould in Dr Florey’s Coat: The Remarkable True Story of the Penicillin Miracle by Eric Lax Little, Brown: 2004. 288 pp. £16.99 William Shaw HAAS/BETTMANN/CORBIS D. Well-researched and readable accounts of medical science and disease are always wel- come. The first thing to note about this new work by Eric Lax, whose earlier efforts have been a well-regarded biography of Woody Allen and an engaging account of cancer chemotherapy, is that its title prom- ises a great deal — and does so rather late in the day. There is little doubt that, after more than half a century of personal reflections and scholarship, the story of the emergence of penicillin as a life-saving medicine remains remarkable — not least for the obstacles overcome and for the personalities of the trio of Nobel laureates involved: Alexander Fleming, Howard Florey and Ernst Chain. But promise of a true story begs the question of what has been on offer since 1945. And was there a miracle? Well, nearly, at least in the sense that the small team assembled by Florey at the Sir William Dunn School of Norman Heatley (below left) oversaw the mass production of penicillin in 1940s America. Pathology in Oxford, UK, in the dark and difficult early honorary doctorate of medi- from farther afield, such as the Yale papers years of the Second World cine, the first non-medical of John Fulton, Florey’s close friend and War, hardly seemed like a person to be so honoured. -
Theobald Smith
VITA Theobald Smith Brief life of a pioneering comparative pathologist: 1859–1934 by steven m. niemi hen theobald smith arrived at Harvard in 1895, he first Fabyan professor of comparative pathology in 1896, and was already accomplished in the nascent fields of microbi- served until the Rockefeller Institute lured him away in 1915. ology, immunology, and public health. Eleven years earlier, He wasted no time in applying his meticulous approach to the newly graduated from Albany Medical College at 25, he had begun production of biologics, increasing the potency of diphtheria anti- his career at the new Bureau of Animal Industry in Washington, serum fourfold, while the annual number of free doses distributed D.C., created by Congress to investigate common livestock dis- in Massachusetts rose from 1,724 in 1895-96 to 40,211 in 1901-02, eases such as hog cholera, Texas cattle fever, and swine plague. sparing an estimated 10,700 lives. This endeavor also produced the These and other affl ictions threatened the supply of meat to an in- first description of immune-mediated hypersensitivity—anaphy- creasingly urban population that depended on railroads to deliver laxis, known for years as the “Theobald Smith phenomenon”— vast numbers of cattle and pigs to centralized processing plants. when guinea pigs re-injected with horse serum suddenly died. Though Smith had no prior experience in animal pathology and He tackled other common but deadly diseases as well. He de- little guidance existed on culturing and characterizing microbes, vised a method for measuring the level of fecal contamination of he discovered not only how ticks (and by inference, insects and municipal drinking water (a principal source of typhoid fever and other bugs) could harbor and transmit infectious diseases, but also cholera) that could be adapted easily to determine the relative effi - that injections of heat-killed bacteria could bestow immunity. -
Chemical Heritage Foundation Boris Magasanik
CHEMICAL HERITAGE FOUNDATION BORIS MAGASANIK Transcript of an interview Conducted by Sondra Schlesinger In three sessions between 1993 and 1995 This interview has been designated as Free Access. One may view, quote from, cite, or reproduce the oral history with the permission of CHF. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to credit CHF using the format below: Boris Magasanik, interview by Sondra Schlesinger, 1993-1995 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0186). Chemical Heritage Foundation Oral History Program 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. BORIS MAGASANIK 1919 Born in Kharkoff, Russia, on December 19 Education 1941 B.S., biochemistry, City College of New York 1948 Ph.D., biochemistry, Columbia University Professional Experience Columbia University 1948-1949 Research Assistant, Department -
Transactions of the Congress American
TRANSACTIONS OF THE C O N G R ES S AmericanPhysicians and Surgeons F O UR T E E N T H T R I E N N I A L S E S S I O N HELD AT WA H NGT D (i S O N . I , . M a l s t and nd 19 8 y 2 , 2 PUBLISHED BY THE CONGRESS N NNN NNNNN NNNNN Ente r e d ac c o rding to Ac t o f Co ngre ss i n th e y e ar 1 93 0 R TEI N R MD e r h n b WALTER . E . e c r ta o f t e Co r e s s y S , , S y g o f Copies may be had the Secretary . T HE T UTTLE MO REHO US E TAYLOR CO MP ANY NEW HAVEN ONN , , , C . TAB LE OF C ONTENT S Table o f Contents Titles O f Papers to be read at Congress Officers O f th e Cong ress Executive Co mmittee Committe e O f Arrang e me nts Past Officers o f th e Cong ress By -Laws o f the Cong ress Minute s Of th e Fourteenth Sessiono f th e Cong re ss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ’ THE PRESIDENT S ADDRES S :— THE DECLINE OF INFECTIOUS DISEASES IN ITS RELATI ON TO O B OB M DERN MEDICINE ; Y D R. -
DAVID NACHMANSOHN March 17, 1899-November 2, 1983
NATIONAL ACADEMY OF SCIENCES D A V I D N ACHMANSOHN 1899—1983 A Biographical Memoir by SEVERO OCHOA Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1989 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. DAVID NACHMANSOHN March 17, 1899-November 2, 1983 BY SEVERO OCHOA AVID NACHMANSOHN'S scientific life path was strongly D influenced by his early studies on the biochemistry of muscle in Otto Meyerhof's laboratory. This experience led to an interest in the biochemistry of nerve activity, a field of study to which he would devote most of his scientific life. In so doing, he contributed—perhaps more than any other in- vestigator—to our understanding of the molecular basis of bioelectricity. David Nachmansohn was born in Jekaterinoslav, Russia (now Dnjetropetrowsk, USSR). His parents came from middle-class families among whom were many lawyers, phy- sicians, and other professionals. Before David and his two sisters reached school age, the family moved to Berlin where they had many relatives. Thus, David's background and edu- cation were essentially, if not exclusively, German. His college education was strongly humanistic, with Latin, Greek, liter- ature, and history as mainstays, some mathematics, and the rudiments of physics. Through his readings, perhaps pri- marily through his reading of the second part of Goethe's Faust when he was only seventeen years of age, he became interested in philosophy—so much so that he continued to attend courses and seminars in philosophy even while a med- ical student at Heidelberg in 1920. -
Speaker's Manuscript
Nobel Prize Lessons 2018 Speaker’s manuscript – the 2018 Medicine Prize The Nobel Prize in Physiology or Medicine • The Nobel Prize in Physiology or Medicine is one of the five prizes founded by Alfred Nobel and awarded on December 10 every year. Before Alfred Nobel died on December 10, 1896, he wrote in his will that the largest part of his fortune should be placed in a fund. The yearly interest on this fund would pay for a prize given to “those who, during the preceding year, shall have conferred the greatest benefit to humankind.” Who is rewarded with the Medicine Prize? • The Nobel Prize in Physiology or Medicine is thus awarded to people who have either made a discovery about how organisms work or have helped find a cure for a disease. • This is May-Britt Moser, 2014 Nobel Laureate in Medicine. In 2005 she and Edvard Moser discovered a type of cell in the brain that is important for determining one's position. They also found that those cells cooperate with different nerve cells in the brain that help us to navigate. You can say that the Laureates discovered and explained a kind of GPS system in the brain. • Other Medicine Laureates include: • Francis Crick, James Watson and Maurice Wilkins, who received the 1962 Prize for their discoveries and descriptions about the structure of DNA molecules. • Alexander Fleming, Ernst Chain and Howard Florey, who received the 1945 Prize for the discovery of penicillin and its curative effects on bacterial diseases. Medicine Prize 2018 • The 2018 Nobel Prize is about a new way of treating cancer. -
Theobald Smith
PHOTO QUIZ Theobald Smith Myron Schultz his is a photograph of Theobald Smith (1859–1934). Smith’s work at BAI was extremely productive. BAI TSmith was a pioneer epidemiologist, bacteriologist, was created within the Department of Agriculture in 1884, and pathologist who made many contributions to medi- when efforts by the states to stem the rising tide of animal cal science that were of far-reaching importance. He is diseases proved inadequate. The major problems were hog best known for his work on Texas cattle fever, in which he cholera, bovine pleuropneumonia, Texas cattle fever, tur- and his colleagues discovered the protozoan agent and its key blackhead, and bovine tuberculosis. During his [ rst 2 means of transmission by ticks. This was the [ rst time that years at BAI, Smith discovered a new species of bacteria an arthropod had been de [ nitively linked with the trans- (Salmonella enterica , formerly called S almonella choler- mission of an infectious disease. aesuis ), which he thought was the cause of hog cholera. It Theobald Smith was born in 1859. He was the son of was later shown that hog cholera was in fact a viral infection a German immigrant, who kept a small tailoring shop in and Smith’s bacillus was a constant but secondary invader. Albany, New York. At age 18, Smith earned a tuition-free Although this genus of bacteria was discovered by Smith, scholarship to Cornell University. He graduated from Cor- Daniel E. Salmon, Smith’s chief, claimed credit for the dis- nell in 1881 with a Bachelor of Philosophy degree, and he covery, and the genus Salmonella is named after him. -
CHAPTER V Some of the Charter Members
YALE JOURNAL OF BIOLOGY AND MEDICINE 46, 32-51 (1972) CHAPTER V Some of the Charter Members The American Epidemiological Society was, at the start, a small, but fervent organization. The founding fathers who controlled it played an earnest and mean- ingful role in the early life of this organization which could not help but contribute to its success. In order to give some idea of the personalities involved, brief biographical sketches of a few of the charter members are given. Those 26 persons to whom Emerson and Godfrey had sent out letters of invita- tion in October 1927 and from whom they had received favorable replies, I believe, represent the true charter members of our Society. Another and longer list which bears the name of "Charter Members of the AES" has been unearthed among Haven Emerson's notes, made in the early years of his secretaryship. This list of 40, includes the names of 14 who were elected at the first meeting of the Society, but I have chosen the original 26 as the official charter members. In the early years there seemed to be no need to enlarge the Society beyond the group of 40 mentioned on Emerson's second list. At least it was an ideal group for the type of spirited discussions which were held at AES meetings for the next 5 years. It may be of interest to see what the backgrounds of some of this early group of 40 had been. Three of the men (Frost, Leake and Maxcy) had spent longer or shorter periods of apprenticeship on what might be called observational and statistical epidemiological field studies which dealt with subjects such as polio- myelitis, influenza, and murine typhus. -
1 Foundations of Microbiology I
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION p a r t Foundations © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 1NOT FOR SALE ofOR DISTRIBUTION MicrobiologyNOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, ChapterLLC 1 Microbiology:© Jones Then & and Bartlett Now Learning, LLC NOT FOR SALE OR DISTRIBUTIONChapter 2 The ChemicalNOT Building FOR SALE Blocks OR of DISTRIBUTIONLife Chapter 3 Concepts and Tools for Studying Microorganisms Chapter 4 Cell Structure and Function in the Bacteria © Jones & Bartlett Learning, LLC © Jonesand &Archaea Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Chapter 5 Microbial Growth and Nutrition Chapter 6 Metabolism of Microorganisms Chapter 7 Control of Microorganisms: Physical and © Jones & Bartlett Learning, LLCChemical Methods © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION n 1676, a century before the Declaration of Independence, a Dutch merchant named Antony van Leeuwenhoek sent a noteworthy letter to the Royal Society of London. Writing in the vernacular of © Jones & Bartlett Learning, LLCI © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTIONhis home in the United Netherlands,NOT FOR Leeuwenhoek SALE OR described DISTRIBUTION how he used a simple microscope to observe vast populations of minute, living creatures. His reports opened a chapter of science that would evolve into the study of microscopic organisms and the discipline of microbiology. During the next three centuries scientists would discover how profoundly these organisms © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC Cells of Vibrio cholerae, transmitted to humans influence the quality of our lives and the environment around us. -
Physiological Society Template
An interview with Ron Whittam Conducted by David Miller and Richard Naftalin on 12 August 2014 Published December 2019 This is the transcript of an interview of the Oral Histories Project for The Society's History & Archives Committee. The original digital sound recording is lodged with The Society and will be placed in its archive at The Wellcome Library. An interview with Ron Whittam Ron Whittam photographed by David Miller This interview with Ron Whittam (RW) was conducted by David Miller (DM) and Richard Naftalin (RN) on 12 August 2014 DM: Let’s make sure we’re starting. Fine. So okay this is David Miller, it’s the 12th August 2014 and we’re are in Leicester at the home of Professor Ron Whittam and we’re here to record for the oral history project of the Physiological Society. So, also here is Richard Naftalin whose voice you’ll hear and Ron Whittam himself, of course. So we’re going to run through elements of Ron’s life and background as he wishes to cover in the usual way. So that’s enough from me. Perhaps Richard if you could just say a few words so that it’s recognised whose voice is whose. RN: Okay, well I’m Richard Naftalin. I’m currently Emeritus Professor at King’s College London but I was, had the privilege of being, in Leicester University and I was appointed lecturer to Ron Whittam’s department of General Physiology in 1968. I came to Leicester as newlywed and as a virgin physiologist to Ron’s department so that was very exciting –at least for me.