Conservation and Management of North American Bumble Bees

Total Page:16

File Type:pdf, Size:1020Kb

Conservation and Management of North American Bumble Bees Conservation and Management of North American Bumble Bees By Dale F. Schweitzer, Nicole A. Capuano, Bruce E. Young, and Sheila R. Colla A product of the USDA Forest Service and NatureServe with funding from the National Fish and Wildlife Foundation Executive Summary This document provides a brief over- Management recommendations center on providing suitable nesting and foraging view of the diversity, natural history, habitat in close proximity during the annual period of bumble bee activity. The major conservation status, and manage- recommendations are: ment of North American bumble Minimize exposure to pesticides. bees, genus Bombus. The spring to • Avoid spraying while a crop is in bloom. late summer period of colony found- • When spraying is necessary, do so under conditions that promote rapid breakdown of toxins and avoid drift. ing, build up, and production of • Provide habitat for nesting and overwintering sites. reproductive individuals, followed • Leave unplowed, undisturbed areas with logs and clumps of grass where bumble by the overwintering of new queens bees can find nesting and overwintering sites. provide the natural history basis for • When nesting sites are limited, consider providing artificial nest boxes. • Assure continuity of nectar and pollen resources when bumble bees are active from management considerations of the spring to late summer. approximately 46 North American • Increase abundance and diversity of wild flowers, suitable garden flowers, crops, species. Most bumble bee species are and even weeds to improve bee density and diversity. currently not threatened or docu- • Mow when bumble bees are dormant, if possible. • When summer mowing is necessary, stagger fields to ensure that some flowers are mented as declining except in areas always available. of intensive agriculture. Eight spe- • Time prescribed burns as recommended for mowing. cies from three subgenera, however, • Ensure that nesting habitat is in close proximity (500-800 m; 0.3-0.5 mi) to foraging have declined drastically during the habitat. • Encourage agricultural authorities to place tight restrictions on the use of bumble last 15-20 years. These include three bees for crop pollination to prevent the spread of diseases. species that are obligate parasites After reviewing the literature on bumble bee conservation and management, a number on other declining species. The of gaps in our knowledge about bumble bee biology become apparent. These gaps, listed Report coordination by Pollinator Partnership pathogen spillover hypothesis, which here to stimulate research in different regions of North America, include: • How are bumble bee populations changing over time? Designer: Marguerite Meyer proposes that diseases from infected • How important are forested habitats for bumble bee diversity? commercial colonies imported from • What habitats do bumble bees use for overwintering? Europe are infecting native popula- • How do habitats, including human-altered ones, vary in quality for bumble bees? 1 1 Dale F. Schweitzer , Nicole A. Capuano , tions of closely related species, may • Do areas where severely declining species remain share common habitat or climatic Bruce E. Young1, and Sheila R. Colla2 explain the sharp declines of most features? • What are the foraging needs and diet breadth of bumble bee species? species. Other threats to bumble 1NatureServe, 4600 North Fiarfax Dr., Floor 7, Arlington, VA 22203 • How are bumble bees affected by fire and fire management? bees include climate change, loss of • How do toxins affect bumble bees differently from honey bees? 2Biology Department, York University, Toronto, ON, Canada nesting and foraging habitats and • How broad is the threat of diseases from non-native bees spilling over to native pesticide use. bumble bees? Cite this document as: Schweitzer, D.F., N.A. Capuano, B.E. Young, and S.R. Colla. 2012. Conservation and management of North American bumble bees. NatureServe, Arlington, Virginia, and USDA Forest Service, Washington, D.C. Conservation and Management of North American Bumble Bees NatureServe and the U.S. Forest Service 3 Executive Summary This document provides a brief over- Management recommendations center on providing suitable nesting and foraging view of the diversity, natural history, habitat in close proximity during the annual period of bumble bee activity. The major conservation status, and manage- recommendations are: ment of North American bumble Minimize exposure to pesticides. bees, genus Bombus. The spring to • Avoid spraying while a crop is in bloom. late summer period of colony found- • When spraying is necessary, do so under conditions that promote rapid breakdown of toxins and avoid drift. ing, build up, and production of • Provide habitat for nesting and overwintering sites. reproductive individuals, followed • Leave unplowed, undisturbed areas with logs and clumps of grass where bumble by the overwintering of new queens bees can find nesting and overwintering sites. provide the natural history basis for • When nesting sites are limited, consider providing artificial nest boxes. • Assure continuity of nectar and pollen resources when bumble bees are active from management considerations of the spring to late summer. approximately 46 North American • Increase abundance and diversity of wild flowers, suitable garden flowers, crops, species. Most bumble bee species are and even weeds to improve bee density and diversity. currently not threatened or docu- • Mow when bumble bees are dormant, if possible. • When summer mowing is necessary, stagger fields to ensure that some flowers are mented as declining except in areas always available. of intensive agriculture. Eight spe- • Time prescribed burns as recommended for mowing. cies from three subgenera, however, • Ensure that nesting habitat is in close proximity (500-800 m; 0.3-0.5 mi) to foraging have declined drastically during the habitat. • Encourage agricultural authorities to place tight restrictions on the use of bumble last 15-20 years. These include three bees for crop pollination to prevent the spread of diseases. species that are obligate parasites After reviewing the literature on bumble bee conservation and management, a number on other declining species. The of gaps in our knowledge about bumble bee biology become apparent. These gaps, listed Report coordination by Pollinator Partnership pathogen spillover hypothesis, which here to stimulate research in different regions of North America, include: • How are bumble bee populations changing over time? Designer: Marguerite Meyer proposes that diseases from infected • How important are forested habitats for bumble bee diversity? commercial colonies imported from • What habitats do bumble bees use for overwintering? Europe are infecting native popula- • How do habitats, including human-altered ones, vary in quality for bumble bees? 1 1 Dale F. Schweitzer , Nicole A. Capuano , tions of closely related species, may • Do areas where severely declining species remain share common habitat or climatic Bruce E. Young1, and Sheila R. Colla2 explain the sharp declines of most features? • What are the foraging needs and diet breadth of bumble bee species? species. Other threats to bumble 1NatureServe, 4600 North Fiarfax Dr., Floor 7, Arlington, VA 22203 • How are bumble bees affected by fire and fire management? bees include climate change, loss of • How do toxins affect bumble bees differently from honey bees? 2Biology Department, York University, Toronto, ON, Canada nesting and foraging habitats and • How broad is the threat of diseases from non-native bees spilling over to native pesticide use. bumble bees? Cite this document as: Schweitzer, D.F., N.A. Capuano, B.E. Young, and S.R. Colla. 2012. Conservation and management of North American bumble bees. NatureServe, Arlington, Virginia, and USDA Forest Service, Washington, D.C. Conservation and Management of North American Bumble Bees NatureServe and the U.S. Forest Service 3 where appropriate. The biblio- and Europe. As in the rest of the world, group of North American bumble varying degrees with body heat to speed growth. This graphic references provide an entry bumble bee diversity in North America bees, occurring from subtropical to adaptation is probably among the reasons why Bombus insularis. Photo James Strange point into the growing literature on is lowest in the southern lowlands and boreal zones. bumble bees can thrive in cool conditions. As in bumble bees. Because scientific papers on highest in cooler northern and mountain Subterraneobombus (2 species)—A all social bees, workers are females. Workers bumble bees are being published with in- regions (Figure 1). For example, most long-tongued, underground-nesting do not mate, but can reproduce by laying Introduction creasing frequency (Goulson et al. 2010), bumble bees in Arizona occur only in the group primarily occurring in open unfertilized eggs, producing males. At the we recognize that this document provides mountains. This pattern is opposite of end of the colony cycle, queens also lay Bumble bees are a familiar component of northern and montane areas, such as a snapshot of the state of our current most plant and vertebrate groups, which unfertilized eggs that become males. our terrestrial fauna. In the past, sight- meadows. knowledge and that subsequent research generally decrease in diversity with ing a bumble bee may have elicited no Thoracobombus (2 species)—A wide- If nectar and pollen resources are ad- will fill in some of the knowledge gaps
Recommended publications
  • Bumble Bees of the Western United States” by Jonathan Koch, James Strange, and Paul Williams (2012)
    Adapted from the “Bumble Bees of the Western United States” by Jonathan Koch, James Strange, and Paul Williams (2012). Bumble bees are one of Wyoming’s most important and mild-mannered pollinators. There are more than 20 species in Wyoming, which you can often tell apart by the color patterns on their bodies. This guide shows color patterns for queen bees only, and some species can have multiple queen Bumble patterns! of Bees Areas in yellow indicate where each species Wyoming is found in Wyoming wyomingbiodiversity.org Black Tail Bumble Bee How can you tell Bombus melanopygus it's a bumble bee? Common Bumble bees are the largest bodied bees in Wyoming. Queens can be up to two inches long, but most queens and workers are somewhat smaller than that. They're very hairy all over their bodies, and carry pollen in “baskets” on their hind legs. Did you find a bumble bee? Submit your observation to the Xerces Society of Invertebrate Conservation's website: BumbleBeeWatch.org You can be a member of the citizen science community! Brown-Belted Bumble Bee California Bumble Bee Bombus griseocollis Bombus californicus Common Uncommon Central Bumble Bee Cuckoo Bumble Bee Bombus centralis Bombus insularis Common Common Fernald Cuckoo Bumble Bee Forest Bumble Bee Bombus fernaldae Bombus sylvicola Uncommon Uncommon Frigid Bumble Bee Fuzzy-Horned Bumble Bee Bombus frigidus Bombus mixtus Rare Common Half-Black Bumble Bee High Country Bumble Bee Bombus vagans Bombus balteatus Common Common Hunt’s Bumble Bee Morrison Bumble Bee Bombus huntii Bombus morrisoni Common Common Nevada Bumble Bee Red-Belted Bumble Bee Bombus nevadensis Bombus rufocinctus Common Common Suckley Cuckoo Bumble Bee Bombus suckleyi Red-Belted Bumble Bee, continued Uncommon Two-Form Bumble Bee Western Bumble Bee Bombus bifarius Bombus occidentalis Common Rare throughout much of its range, but common in Wyoming.
    [Show full text]
  • Native and Invasive Ants Affect Floral Visits of Pollinating Honey Bees in Pumpkin Flowers (Cucurbita Maxima)
    www.nature.com/scientificreports OPEN Native and invasive ants afect foral visits of pollinating honey bees in pumpkin fowers (Cucurbita maxima) Anjana Pisharody Unni1,3, Sajad Hussain Mir1,2, T. P. Rajesh1, U. Prashanth Ballullaya1, Thomas Jose1 & Palatty Allesh Sinu1* Global pollinator decline is a major concern. Several factors—climate change, land-use change, the reduction of fowers, pesticide use, and invasive species—have been suggested as the reasons. Despite being a potential reason, the efect of ants on fowers received less attention. The consequences of ants being attracted to nectar sources in plants vary depending upon factors like the nectar source’s position, ants’ identity, and other mutualists interacting with the plants. We studied the interaction between fower-visiting ants and pollinators in Cucurbita maxima and compared the competition exerted by native and invasive ants on its pollinators to examine the hypothesis that the invasive ants exacerbate more interference competition to pollinators than the native ants. We assessed the pollinator’s choice, visitation rate, and time spent/visit on the fowers. Regardless of species and nativity, ants negatively infuenced all the pollinator visitation traits, such as visitation rate and duration spent on fowers. The invasive ants exerted a higher interference competition on the pollinators than the native ants did. Despite performing pollination in fowers with generalist pollination syndrome, ants can threaten plant-pollinator mutualism in specialist plants like monoecious plants. A better understanding of factors infuencing pollination will help in implementing better management practices. Humans brought together what continents isolated. One very conspicuous evidence of this claim rests in the rearranged biota.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • Anthidium Manicatum, an Invasive Bee, Excludes a Native Bumble Bee, Bombus Impatiens, from floral Resources
    Biol Invasions https://doi.org/10.1007/s10530-018-1889-7 (0123456789().,-volV)(0123456789().,-volV) ORIGINAL PAPER Anthidium manicatum, an invasive bee, excludes a native bumble bee, Bombus impatiens, from floral resources Kelsey K. Graham . Katherine Eaton . Isabel Obrien . Philip T. Starks Received: 15 April 2018 / Accepted: 21 November 2018 Ó Springer Nature Switzerland AG 2018 Abstract Anthidium manicatum is an invasive pol- response to A. manicatum presence. We found that B. linator reaching widespread distribution in North impatiens avoided foraging near A. manicatum in both America. Male A. manicatum aggressively defend years; but despite this resource exclusion, we found no floral territories, attacking heterospecific pollinators. evidence of fitness consequences for B. impatiens. Female A. manicatum are generalists, visiting many of These results suggest A. manicatum pose as significant the same plants as native pollinators. Because of A. resource competitors, but that B. impatiens are likely manicatum’s rapid range expansion, the territorial able to compensate for this resource loss by finding behavior of males, and the potential for female A. available resources elsewhere. manicatum to be significant resource competitors, invasive A. manicatum have been prioritized as a Keywords Exotic species Á Resource competition Á species of interest for impact assessment. But despite Interspecific competition Á Foraging behavior Á concerns, there have been no empirical studies inves- Pollination tigating the impact of A. manicatum on North Amer- ican pollinators. Therefore, across a two-year study, we monitored foraging behavior and fitness of the common eastern bumble bee (Bombus impatiens) in Introduction With increasing movement of goods and people Electronic supplementary material The online version of around the world, introduction of exotic species is this article (https://doi.org/10.1007/s10530-018-1889-7) con- increasing at an unprecedented rate (Ricciardi et al.
    [Show full text]
  • THE HUMBLE-BEE MACMILLAN and CO., Limited LONDON BOMBAY CALCUTTA MELBOURNE the MACMILLAN COMPANY NEW YORK BOSTON CHICAGO DALLAS SAN FRANCISCO the MACMILLAN CO
    THE HUMBLE-BEE MACMILLAN AND CO., Limited LONDON BOMBAY CALCUTTA MELBOURNE THE MACMILLAN COMPANY NEW YORK BOSTON CHICAGO DALLAS SAN FRANCISCO THE MACMILLAN CO. OF CANADA, Ltd. TORONTO A PET QUEEN OF BOMBUS TERRESTRIS INCUBATING HER BROOD. (See page 139.) THE HUMBLE-BEE ITS LIFE-HISTORY AND HOW TO DOMESTICATE IT WITH DESCRIPTIONS OF ALL THE BRITISH SPECIES OF BOMBUS AND PSITHTRUS BY \ ; Ff W. U SLADEN FELLOW OF THE ENTOMOLOGICAL SOCIETY OF LONDON AUTHOR OF 'QUEEN-REARING IN ENGLAND ' ILLUSTRATED WITH PHOTOGRAPHS AND DRAWINGS BY THE AUTHOR AND FIVE COLOURED PLATES PHOTOGRAPHED DIRECT FROM NA TURE MACMILLAN AND CO., LIMITED ST. MARTIN'S STREET, LONDON 1912 COPYRIGHT Printed in ENGLAND. PREFACE The title, scheme, and some of the contents of this book are borrowed from a little treatise printed on a stencil copying apparatus in August 1892. The boyish effort brought me several naturalist friends who encouraged me to pursue further the study of these intelligent and useful insects. ..Of these friends, I feel especially indebted to the late Edward Saunders, F.R.S., author of The Hymen- optera Aculeata of the British Islands, and to the late Mrs. Brightwen, the gentle writer of Wild Nattcre Won by Kindness, and other charming studies of pet animals. The general outline of the life-history of the humble-bee is, of course, well known, but few observers have taken the trouble to investigate the details. Even Hoffer's extensive monograph, Die Htimmeln Steiermarks, published in 1882 and 1883, makes no mention of many remarkable can particulars that I have witnessed, and there be no doubt that further investigations will reveal more.
    [Show full text]
  • Bombus Terrestris L
    Apidologie 39 (2008) 419–427 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2008020 Original article Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae)* Stephan Wolf, Robin F.A. Moritz Institut für Biologie / Institutsbereich Zoologie, Martin-Luther-Universität Halle-Wittenberg, Germany Received 11 October 2007 – Revised 7 February 2008 – Accepted 25 February 2008 Abstract – A major determinant of bumblebees pollination efficiency is the distance of pollen dispersal, which depends on the foraging distance of workers. We employ a transect setting, controlling for both forage and nest location, to assess the foraging distance of Bombus terrestris workers and the influence of environmental factors on foraging frequency over distance. The mean foraging distance of B. terrestris workers was 267.2 m ± 180.3 m (max. 800 m). Nearly 40% of the workers foraged within 100 m around the nest. B. terrestris workers have thus rather moderate foraging ranges if rewarding forage is available within vicinity of the nests. We found the spatial distribution and the quality of forage plots to be the major determinants for the bees foraging decision-making, explaining over 80% of the foraging frequency. This low foraging range has implications for using B. terrestris colonies as pollinators in agriculture. Bumblebee / foraging / pollination / decision-making 1. INTRODUCTION efficiency (Gauld et al., 1990; Westerkamp, 1991; Wilson and Thomson, 1991; Goulson, Pollen dispersal through animal pollinators 2003). This is partly due to the more robust is essential for plant reproduction. The effi- handling of flowers by bumblebees and their ciency of pollinators depends on various fac- ability of buzz-pollination (e.g.
    [Show full text]
  • Guide to MN Bumble Bees: Females
    Guide to MN Bumble Bees: Females This guide is only for females (12 antennal segments, 6 abdominal segments, most bumble Three small bees, most have pollen baskets, no beards on their mandibles). First determine which yellow eyes highlighted section your bee is in, then go through numbered characters to find a match. See if your bee matches the color patterns shown and the description in the text. Color patterns ® can vary. More detailed keys are available at discoverlife.org. Top of head Bee Front of face Squad Join the search for bumble bees with www.bumbleebeewatch.org Cheek Yellow hairs between wings, 1st abdominal band yellow (may have black spot in center of thorax) 1. Black on sides of 2nd ab, yellow or rusty in center 2.All other ab segments black 3. 2nd ab brownish centrally surrounded by yellow 2nd abdominal 2nd abdominal Light lemon Center spot band with yellow band with yellow hairs on on thorax with in middle, black yellow in middle top of head and sometimes faint V on sides. Yellow bordered by and on thorax. shaped extension often in a “W” rusty brown in a back from the shape. Top of swooping shape. middle. Queens head yellow. Top of head do not have black. Bombus impatiens Bombus affinis brownish central rusty patched bumble bee Bombus bimaculatus Bombus griseocollis common eastern bumble bee C patch. two-spotted bumble bee C brown-belted bumble bee C 5. Yellow on front edge of 2nd ab 6. No obvious spot on thorax. 4. 2nd ab entirely yellow and ab 3-6 black Yellow on top Black on top of Variable color of head.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program Permalink https://escholarship.org/uc/item/8z91q49s Author Ward, Laura True Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program By Laura T Ward A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Nicholas J. Mills, Chair Professor Erica Bree Rosenblum Professor Eileen A. Lacey Fall 2020 Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program © 2020 by Laura T Ward Abstract Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program By Laura T Ward Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Nicholas J. Mills, Chair This dissertation combines two disparate subjects: bees and belonging. The first two chapters explore pesticide exposure for wild bees and honey bees visiting crop and non-crop plants in northern California agriculture. The final chapter utilizes surveys from a mentorship program as a case study to analyze sense of belonging among undergraduates. The first chapter of this dissertation explores pesticide exposure for wild bees and honey bees visiting sunflower crops.
    [Show full text]
  • Artificial Domicile Use by Bumble Bees (Bombus; Hymenoptera: Apidae) in Ontario, Canada
    Journal of Insect Science, (2019) 19(1): 7; 1–5 doi: 10.1093/jisesa/iey139 Short Communication Artificial Domicile Use by Bumble Bees Bombus( ; Hymenoptera: Apidae) in Ontario, Canada Sarah A. Johnson,1,2,6, Meagan M. Tompkins,3 Hayley Tompkins,2,4 and Sheila R. Colla5 1Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada, 2Wildlife Preservation Canada, Native Pollinator Initiative, 5420 Highway 6 North, Guelph, ON N1H 6J2, Canada, 3Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada, 4School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada, 5Faculty of Environmental Studies, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada, and 6Corresponding author, e-mail: [email protected] Subject Editor: Guy Bloch Received 31 August, 2018; Editorial decision 19 December, 2018 Abstract Bumble bees are an important group of pollinating insects that are of increasing conservation concern due to relatively recent and dramatic species-specific declines. Nesting ecology can vary significantly between species, and nest site selection may be affected by many factors, including heredity, individual experience, and habitat availability. Data on bumble bee nesting ecology are inherently difficult to collect in the wild as nests are often cryptic. Artificial domiciles (nest boxes) can be a useful tool for gathering information on species-specific nesting behavior to inform conservation management of native pollinator populations. The aim of this study was to examine the use of three different domicile designs for monitoring bumble bees: aboveground, underground, and false underground, while collecting information on occupying species identity and richness to compare with sampling with traditional netting survey methods.
    [Show full text]
  • Phylogenetic Analysis of the Corbiculate Bee Tribes Based on 12 Nuclear Protein-Coding Genes (Hymenoptera: Apoidea: Apidae) Atsushi Kawakita, John S
    Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae) Atsushi Kawakita, John S. Ascher, Teiji Sota, Makoto Kato, David W. Roubik To cite this version: Atsushi Kawakita, John S. Ascher, Teiji Sota, Makoto Kato, David W. Roubik. Phylogenetic anal- ysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae). Apidologie, Springer Verlag, 2008, 39 (1), pp.163-175. hal-00891935 HAL Id: hal-00891935 https://hal.archives-ouvertes.fr/hal-00891935 Submitted on 1 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 39 (2008) 163–175 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2007046 Original article Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae)* Atsushi Kawakita1, John S. Ascher2, Teiji Sota3,MakotoKato 1, David W. Roubik4 1 Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan 2 Division of Invertebrate Zoology, American Museum of Natural History, New York, USA 3 Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan 4 Smithsonian Tropical Research Institute, Balboa, Ancon, Panama Received 2 July 2007 – Revised 3 October 2007 – Accepted 3 October 2007 Abstract – The corbiculate bees comprise four tribes, the advanced eusocial Apini and Meliponini, the primitively eusocial Bombini, and the solitary or communal Euglossini.
    [Show full text]
  • The Rusty Patched Bumble Bee (Bombus Affinis) Voluntary Implementation Guidance for Section 10(A)(1)(B) of the Endangered Species Act
    The Rusty Patched Bumble Bee (Bombus affinis) Voluntary Implementation Guidance for Section 10(a)(1)(B) of the Endangered Species Act Version 1.1 U.S. Fish & Wildlife Service, Regions 3, 4, 5 and 6 March 21, 2017 Contents Background and Purpose ................................................................................................................ 1 Current Versions of this Guidance .................................................................................................. 1 Range of Rusty Patched Bumble Bee .............................................................................................. 1 Brief Description of the Habitat Model ...................................................................................... 2 Section 10(a)(1)(B) of the Endangered Species Act and the Rusty Patched Bumble Bee .............. 5 Screening and Evaluation of Projects – A Stepwise Approach ................................................... 5 Step 1. Determine whether the rusty patched bumble bee is likely to be present in the project area. ............................................................................................................................ 5 Step 2 - Review the Project for its Potential to Incidentally Take the Species ....................... 8 Step 3 - Review Measures to Avoid Incidental Take of the Rusty Patched Bumble Bee ...... 14 Conservation Measures ............................................................................................................ 15 Restore and Maintain High Quality Habitat
    [Show full text]
  • Bumble Bees of CT-Females
    Guide to CT Bumble Bees: Females This guide is only for females (12 antennal segments, 6 abdominal segments, most bumble bees, most have pollen baskets, no beards on their mandibles). First determine which yellow Three small eyes highlighted section your bee is in, then go through numbered characters to find a match. See if your bee matches the color patterns shown and the description in the text. Color patterns can vary. More detailed keys are available at discoverlife.org. Top of head Join the search for bumble bees with www.bumbleebeewatch.org Front of face Cheek Yellow hairs between wings, 1st abdominal band yellow (may have black spot in center of thorax) 1. Black on sides of 2nd ab, yellow or rusty in center 2.All other ab segments black 3. 2nd ab brownish centrally surrounded by yellow 2nd abdominal 2nd abdominal Light lemon Center spot band with yellow band with yellow hairs on on thorax with in middle, black yellow in middle top of head and sometimes faint V on sides. Yellow bordered by and on thorax. shaped extension often in a “W” rusty brown in a back from the shape. Top of swooping shape. middle. Queens head yellow. Top of head do not have black. Bombus impatiens Bombus affinis brownish central rusty patched bumble bee Bombus bimaculatus Bombus griseocollis common eastern bumble bee patch. two-spotted bumble bee brown-belted bumble bee 4. 2nd ab entirely yellow and ab 3-6 black 5. No obvious spot on thorax. Yellow on top Black on top of Variable color of head.
    [Show full text]