DIG Application Manual for Nonradioactive in Situ Hybridization 4Th Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Optimized Autonomous Space In-Situ Sensor-Web for Volcano Monitoring
Optimized Autonomous Space In-situ Sensor-Web for Volcano Monitoring Wen-Zhan Song Behrooz Shirazi Renjie Huang Mingsen Xu Nina Peterson fsongwz, shirazi, renjie huang, mingsen xu, [email protected] Sensorweb Research Laboratory, Washington State University Rick LaHusen John Pallister Dan Dzurisin Seth Moran Mike Lisowski frlahusen, jpallist, dzurisin, smoran, [email protected] Cascades Volcano Observatory, U.S. Geological Survey Sharon Kedar Steve Chien Frank Webb Aaron Kiely Joshua Doubleday Ashley Davies David Pieri fsharon.kedar, steve.chien, frank.webb, aaron.b.kiely, jdoubled, ashley.davies, [email protected] Jet Propulsion Laboratory, California Institute of Technology Abstract—In response to NASA’s announced requirement for situ Sensor-web (OASIS) has two-way communication ca- Earth hazard monitoring sensor-web technology, a multidis- pability between ground and space assets, use both space ciplinary team involving sensor-network experts (Washington and ground data for optimal allocation of limited bandwidth State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), have developed a resources on the ground, and uses smart management of prototype of dynamic and scalable hazard monitoring sensor-web competing demands for limited space assets [1]. and applied it to volcano monitoring. The combined Optimized This research responds to the NASA objective [2] to Autonomous Space - In-situ Sensor-web (OASIS) has two-way “conduct a program of research and technology development communication capability between ground and space assets, to advance Earth observation from space, improve scientific uses both space and ground data for optimal allocation of limited bandwidth resources on the ground, and uses smart understanding, and demonstrate new technologies with the management of competing demands for limited space assets. -
Using Earth Observation Data to Improve Health in the United States Accomplishments and Future Challenges
a report of the csis technology and public policy program Using Earth Observation Data to Improve Health in the United States accomplishments and future challenges 1800 K Street, NW | Washington, DC 20006 Tel: (202) 887-0200 | Fax: (202) 775-3199 Author E-mail: [email protected] | Web: www.csis.org Lyn D. Wigbels September 2011 ISBN 978-0-89206-668-1 Ë|xHSKITCy066681zv*:+:!:+:! a report of the csis technology and public policy program Using Earth Observation Data to Improve Health in the United States accomplishments and future challenges Author Lyn D. Wigbels September 2011 About CSIS At a time of new global opportunities and challenges, the Center for Strategic and International Studies (CSIS) provides strategic insights and bipartisan policy solutions to decisionmakers in government, international institutions, the private sector, and civil society. A bipartisan, nonprofit organization headquartered in Washington, D.C., CSIS conducts research and analysis and devel- ops policy initiatives that look into the future and anticipate change. Founded by David M. Abshire and Admiral Arleigh Burke at the height of the Cold War, CSIS was dedicated to finding ways for America to sustain its prominence and prosperity as a force for good in the world. Since 1962, CSIS has grown to become one of the world’s preeminent international policy institutions, with more than 220 full-time staff and a large network of affiliated scholars focused on defense and security, regional stability, and transnational challenges ranging from energy and climate to global development and economic integration. Former U.S. senator Sam Nunn became chairman of the CSIS Board of Trustees in 1999, and John J. -
Study Guide Medical Terminology by Thea Liza Batan About the Author
Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails proficiencyincommunicatingwithhealthcareprofessionalssuchasphysicians,nurses, or dentists. -
Rna in Situ Hybridization Protocol
Rna In Situ Hybridization Protocol Weighted Zack nark, his Edna deputed consternated awheel. Open and quaky Claudius crammed almost stonily, though Temple warrants his probabilism liberate. Gabby Davie scandalising some Viv after cretinoid Braden thrum quite. In Situ Hybridization Protocols and Methods Springer Nature. And quiet these above are published in summary paper. A Complete Protocol for In Situ Hybridization of Messenger. Location within ffpe tissue that is glassy, local generation lentivirus production becomes very sensitive method. In situ hybridization protocols in python. Ish protocol page charges in advance for joining acd provides information on degenerative markers with leica biosystems must be low dig antibody twice. Transcribing the RNA probe correctly is paramount If yes probe doesn't look about the examples shown in this protocol start again You should have five nice tight. Content may be subject to copyright. Because we send light when aliens suddenly invade the rna hybridization: you for you prototype and. The rna accumulation around. Open access your samples can use probes did not necessarily fix this. Whole tail In Situ Hybridization Protocol for mRNA Detection. The protocol is also redundant as TagSeq 3 Tag-RNA-Seq Digital RNA-seq. Api architecture from other authors wish it is required autoradiography for probe of the termination of human skeleton that the hybridization in rna extractions and by extracting insights. Time with our services that human api for several advantages in: a commercial financial regulators probe. Hepatocellular carcinoma ranks sixth in. An eyelash, tungsten wire or fine pipette tip can be used to manipulate the embryos. If the embryos are helpful their chorions, all the bloom can be removed. -
The Spatial Distribution of Ocean Waves in Tropical Cyclones
AUGUST 2020 T A M I Z I A N D Y O U N G 2123 The Spatial Distribution of Ocean Waves in Tropical Cyclones ALI TAMIZI AND IAN R. YOUNG Department of Infrastructure Engineering, University of Melbourne, Melbourne, Australia (Manuscript received 27 January 2020, in final form 28 May 2020) ABSTRACT The spatial structure of both the wind and wave fields within tropical cyclones is investigated using two large databases. The first of these was compiled from global overpasses of tropical cyclones by satellite altimeters. The second dataset consists of an extensive collection of North American buoy measurements during the passage of tropical cyclones (hurricanes). The combined datasets confirm the vortex structure of the tropical cyclone wind field with the strongest winds to the right (Northern Hemisphere) of the storm. The wave field largely mirrors the wind field but with greater right–left asymmetry that results from the extended fetch to the right of the translating tropical cyclone. The extensive in situ buoy database confirms previous studies indi- cating that the one-dimensional spectra are generally unimodal. The directional spectra are, however, di- rectionally skewed, consisting of remotely generated waves radiating out from the center of the storm and locally generated wind sea. The one-dimensional wave spectra have many similarities to fetch-limited cases, although for a given peak frequency the spectra contain less energy than for a fetch-limited case. This result is consistent with the fact that much of the wave field is dominated by remotely generated waves. 1. Introduction This paper attempts to build an extensive database of observations of tropical cyclone wave conditions In tropical and subtropical regions, tropical cyclones from a number of sources. -
Assessment of Phytoremediation As an In-Situ Technique for Cleaning Oil-Contaminated Sites
Assessment of Phytoremediation as an In-Situ Technique for Cleaning Oil-Contaminated Sites Prepared by: C.M. Frick, R.E. Farrell and J.J. Germida Department of Soil Science University of Saskatchewan Saskatoon, SK Canada S7N 5A8 Submitted to: Petroleum Technology Alliance of Canada (PTAC) Calgary, AB [email protected] [email protected] December 29, 1999 Support for this project was provided through an initiative sponsored by the Petroleum Technology Alliance Canada (PTAC). Funding was provided by Environment Canada, Quest/Amoco, the Canadian Association of Petroleum Producers (CAPP), and the Saskatchewan Agriculture & Food strategic research program in Soil Biology & Conservation. This document was developed as a literature review and technology assessment of phytoremediation and its alternatives. As such, the stakeholders do not endorse the use of any specific technology, nor do they assume any liabilities with respect to the use of, or damages resulting from the use of, any information, apparatus, method, or process discussed in this document. Mention of trade names or commercial products does not constitute endorsement or recommendation of use. Requests for reprints of this report should be addressed to: PTAC Dr. R.E. Farrell Petroleum Technology Alliance Canada University of Saskatchewan 17th Floor, One Palliser Square Department of Soil Science 125 9th Avenue S.E. 51 Campus Drive Calgary, Alberta T2G 0P8 Saskatoon, Saskatchewan S7N 5A8 Canada Canada Cover photographs courtesy of Trevor Carlson (Federated Co-Operatives, Ltd., Saskatoon, SK). ii EXECUTIVE SUMMARY Phytoremediation, the use of plants and their associated microorganisms for the in situ treatment of contaminated soils, is a steadily emerging technology with potential for the effective and inexpensive cleanup of a broad range of organic and inorganic wastes. -
Hybridization Probes the Most Direct Way to Monitor PCR Amplification for Quantification and Mutation Detection
LightCycler™ Hybridization Probes The most direct way to monitor PCR amplification for quantification and mutation detection. Brian Erich Caplin1, Randy P. Rasmussen1, Philip S. Bernard2, and Carl T. Wittwer1,2 1 ARUP Institute for Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, UT 84108 2 Department of Pathology, University of Utah School of Medicine, 50 North Medical Drive, Salt Lake City, UT 84132 IIntroduction The polymerase chain reaction (PCR) is perhaps the from the donor probe. The acceptor probe is labeled most powerful modern tool available for today's with a LightCycler specific fluorophore, LightCycler molecular biologist. Its extraordinary sensitivity Red 640 (LC Red 640). Fluorescence from the accep- allows for the detection of only a few molecules of tor probe will only occur when both the donor probe DNA. The sensitivity of PCR is often complimented by and the acceptor probe have annealed to the prod- the specificity of hybridization techniques such as uct. This process of transferring the energy from one Southern blotting or oligonucleotide hybridization. fluorescent dye, to a second fluorescent dye is called Amplification and hybridization techniques are Fluorescence Resonance Energy Transfer (FRET; R E usually performed separately. However, with the Figure 1). Hybridization probes use FRET to provide L C recent development of LightCycler™ technology, PCR a homogeneous real-time measure of amplification Y C amplification and hybridization probe detection occur product formation. T H G simultaneously in homogeneous solution. That is, I both amplification and hybridization analysis can pro- L ceed in the same reaction. Because the LightCycler Instrument uses rapid cycling techniques (12), the entire process is finished in 15–30 min. -
Molecular Biology and Applied Genetics
MOLECULAR BIOLOGY AND APPLIED GENETICS FOR Medical Laboratory Technology Students Upgraded Lecture Note Series Mohammed Awole Adem Jimma University MOLECULAR BIOLOGY AND APPLIED GENETICS For Medical Laboratory Technician Students Lecture Note Series Mohammed Awole Adem Upgraded - 2006 In collaboration with The Carter Center (EPHTI) and The Federal Democratic Republic of Ethiopia Ministry of Education and Ministry of Health Jimma University PREFACE The problem faced today in the learning and teaching of Applied Genetics and Molecular Biology for laboratory technologists in universities, colleges andhealth institutions primarily from the unavailability of textbooks that focus on the needs of Ethiopian students. This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Medical Applied Genetics and Molecular Biology course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used in teaching any introductory course on medical Applied Genetics and Molecular Biology and as a reference material. This lecture note is specifically designed for medical laboratory technologists, and includes only those areas of molecular cell biology and Applied Genetics relevant to degree-level understanding of modern laboratory technology. Since genetics is prerequisite course to molecular biology, the lecture note starts with Genetics i followed by Molecular Biology. It provides students with molecular background to enable them to understand and critically analyze recent advances in laboratory sciences. Finally, it contains a glossary, which summarizes important terminologies used in the text. Each chapter begins by specific learning objectives and at the end of each chapter review questions are also included. -
The State of in Situ Management the STATE of in SITU MANAGEMENT
CHAPTER 2 Chapter 2 The state of in situ management THE STATE OF IN SITU MANAGEMENT 2.1 Introduction 2.2 Conservation and management of PGRFA in The CBD defines in situ conservation as “the wild ecosystems conservation of ecosystems and natural habitats and the maintenance and recovery of viable populations Many plant species growing in wild ecosystems are of species in their natural surroundings and, in valuable for food and agriculture and may play an the case of domesticated or cultivated species, in important cultural role in local societies. They can the surroundings where they have developed their provide a safety net when food is scarce and are distinctive properties.” While the concept has evolved increasingly marketed locally and internationally, since the CBD was adopted, this definition is used providing an important contribution to household in several major international treaties and initiatives incomes. Approximately a third of the country reports including the ITPGRFA and the Global Strategy for received mentioned the use of wild-harvested plants. Plant Conservation (GSPC). In situ conservation is Nigeria, for example, cited the use of African mango often envisaged as taking place in protected areas or (Irvingia gabonensis) and locust bean (Parkia biglobosa) habitats (as opposed to ex situ conservation) and can in times of food shortage. either be targeted at species or the ecosystem in which Grassland and forage species are another important they occur. It is a particularly important method of component of agrobiodiversity, especially in countries conservation for species that are difficult to conserve where livestock production is a major contributor to ex situ, such as many CWR. -
Real-Time PCR Detection Chemistry
Clinica Chimica Acta 439 (2015) 231–250 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/clinchim Invited critical review Real-time PCR detection chemistry E. Navarro a,⁎, G. Serrano-Heras a,M.J.Castañoa,J.Solerab a Research Unit, General University Hospital, Laurel s/n, 02006 Albacete, Spain b Internal Medicine Department, General University Hospital, Hermanos Falcó 37, 02006 Albacete, Spain article info abstract Article history: Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology Received 18 March 2014 merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to Received in revised form 9 October 2014 monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination Accepted 11 October 2014 of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, Available online 22 October 2014 which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative fl Keywords: to conventional PCR. The present paper attempts to provide a rigorous overview of uorescent-based methods Real-time PCR for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chem- DNA detection chemistries istries have been classified into two main groups; the first group comprises double-stranded DNA intercalating DNA binding dye molecules, -
In Situ Hybridization Probe Design and Synthesis
Ben Vincent and Gavin Rice, June 2019. Adapted from Rebeiz Lab protocols. In situ hybridization probe design and synthesis ! Reagents Design probes Nuclease Free H20 We design 200-300bp probes, although we note that other labs design longer HyClone HyPure Molecular Biology Grade probes for fluorescent in situ hybridization experiments in Drosophila (http:// Water. GE SH30538.02 fly-fish.ccbr.utoronto.ca/). DNeasy Blood and Tissue Kit" Qiagen catalog #69504 For a given gene of interest, Identify a large exon using the Get Dec- orated FASTA tool from flybase.org. Ensure that exon is present in PCR Master Mix Phusion Flash High-Fidelity PCR Master Mix. all annotated transcripts using the UCSC Genome Browser. ThermoFisher F548S Use Primer3Plus to select primers that will amplify a 200-300 bp re- T7 RNA polymerase and buffer gion of the selected exon. Use the In Silico PCR tool from the UCSC ThermoFisher EP0112 Genome Browser to ensure that the selected pair will amplify a single DIG-labelled NTP mix region from the genome. If desired, use the In Silico PCR tool to Roche / Sigma 11277073910 screen suggested primer pairs from Primer3Plus for their ability to RNAse inhibitor amplify the same region of DNA in multiple Drosophila species. SUPERase-in, ThermoFisher AM 2694 Order your selected primers using IDTDNA or another service, en- Linear polyacrylamide VWR K548-1mL suring that the reverse primer (the primer that forms the 5’ end of the antisense strand) has a T7 RNA polymerase binding sequence (5’ Formamide TAATACGACTCACTATAG 3’) on its 5’ end. Fisher, BP 227-500 Amplify probe template Isolate genomic DNA from your experimental strain using the (Qia- gen) DNeasy kit. -
Input Template Epg Pathshala
Paper No. : 16 Molecular Genetics Module : 21 Methods for gene identification: In-situ Hybridization Development Team Principal Investigator: Prof. Neeta Sehgal Head, Department of Zoology, University of Delhi Co-Principal Investigator: Prof. D.K. Singh Department of Zoology, University of Delhi Paper Coordinator: Prof. Namita Agrawal Department of Zoology, University of Delhi Content Writer: Dr. Jasvinder Kaur, Dr. Poonam Sharma, Gargi College, University of Delhi Content Reviewer: Dr. Surajit Sarkar Department of Genetics, South Campus, University of Delhi 1 ZOOLOGY Molecular Genetics In-situ Hybridization Description of Module Subject Name ZOOLOGY Paper Name Zool 016: Molecular Genetics Module Name/Title Methods for gene identification Module ID M21: In-situ Hybridization Keywords In-situ Hybridization, Probe, Radioactive label, Fish, Chromosome painting Glossary Avidin: Biotin binding protein, found in the egg whites of birds, amphibians and reptiles (produced in their oviducts). Chromosome mapping: Technique using which genes belonging to same gene families can be detected by hybridization with suitable labeled probes. Chromosome painting: Multiple fluorochromes can be used in FISH technique which produces a multicolored and painted effect with unique color at each hybridization site in the chromosomes being studied giving the effect of chromosome painting. Fluorescent in-situ hybridization:It is a cytogenetic technique that uses fluorescent probes to detect the presence or absence of specific DNA sequences on chromosomes. Hybridization probe:Probe is a fragment of DNA or RNA of variable length, which can be radioactively labelled. Used to detect nucleotide sequence, complementary to the sequence in the probe. Immunohistochemistry: Technique used to localize proteins such as antibodies in tissue sections by antigen-antibody interactions.