Molecular Biology and Applied Genetics

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Biology and Applied Genetics MOLECULAR BIOLOGY AND APPLIED GENETICS FOR Medical Laboratory Technology Students Upgraded Lecture Note Series Mohammed Awole Adem Jimma University MOLECULAR BIOLOGY AND APPLIED GENETICS For Medical Laboratory Technician Students Lecture Note Series Mohammed Awole Adem Upgraded - 2006 In collaboration with The Carter Center (EPHTI) and The Federal Democratic Republic of Ethiopia Ministry of Education and Ministry of Health Jimma University PREFACE The problem faced today in the learning and teaching of Applied Genetics and Molecular Biology for laboratory technologists in universities, colleges andhealth institutions primarily from the unavailability of textbooks that focus on the needs of Ethiopian students. This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Medical Applied Genetics and Molecular Biology course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used in teaching any introductory course on medical Applied Genetics and Molecular Biology and as a reference material. This lecture note is specifically designed for medical laboratory technologists, and includes only those areas of molecular cell biology and Applied Genetics relevant to degree-level understanding of modern laboratory technology. Since genetics is prerequisite course to molecular biology, the lecture note starts with Genetics i followed by Molecular Biology. It provides students with molecular background to enable them to understand and critically analyze recent advances in laboratory sciences. Finally, it contains a glossary, which summarizes important terminologies used in the text. Each chapter begins by specific learning objectives and at the end of each chapter review questions are also included. We welcoming the reviewers and users input regarding this edition so that future editions will be better. ii ACKNOWLEDGEMENTS I would like to acknowledge The Carter Center for its initiative, financial, material and logistic supports for the preparation of this teaching material. We are indebted to The Jimma University that support directly or indirectly for the visibility of this lecture note preparation. I extend our appreciation to the reviewers of the manuscript during intra-workshop, Namely, Ato Tsehayneh Kelemu , Biochemistry Department, School of Medicine, and Ato Yared Alemu, School of Medical Laboratory Technology, Jimma University.We greatly appreciate them for their attitude, concern and dedication. I also acknowledge all reviewers of the manuscript during inter-institutional workshop and those who participated as national reviewers. Last but not least I would like to acknowledge tyhose who helped me directly or indirectly. iii TABLE OF CONTENTS Preface............................................................................ i Acknowledgement.............................................................. iii Table of Contents............................................................... iv List of Figures ................................................................... xi General objectives ............................................................. xiv CHAPTER ONE: THE CELL 1.0. Eukaryotic and Prokaryotic Cell .......................... 1 1.1. Function of the cell .............................................. 5 1.2. The chemical components of Cell membranes... 8 1.3. Membrane structure............................................. 10 CHAPTER TWO: THE CELL CYCLE 2.0. Introduction .......................................................... 13 2.1. Control of the Cell Cycle ...................................... 15 2.2. Steps in the cycle................................................. 16 2.3. Meiosis and the Cell Cycle................................... 18 2.4. Quality Control of the Cell Cycle .......................... 18 2.5. Regulation of the Cell Cycle................................. 19 iv 2.6. Mitosis.................................................................. 23 2.7. Meiosis................................................................. 30 2.8. Comparison of Meiosis and Mitosis ..................... 33 2.9. Meiotic errors ....................................................... 33 2.10. Mitosis, Meiosis, and Ploidy............................... 34 2.11. Meiosis and Genetic Recombination.................. 35 2.12. Meiosis and Sexual Reproduction...................... 38 CHAPTER THREE: MACROMOLECULES 3.0. Introduction .......................................................... 40 3.1. Carbohydrate ....................................................... 41 3.2. Nucleic acids ....................................................... 43 3.3. Protein ................................................................. 46 3.4. Helix..................................................................... 49 3.5. Tertiary structure.................................................. 58 3.6. Macromolecular Interactions................................ 63 3.7. Denaturation ........................................................ 64 3.8. Renaturation ........................................................ 69 CHAPTER FOUR: GENETICS 4.1. Mendelian genetics.............................................. 73 4.2. Mendel's first law: principle of segregation .......... 79 4.3. Mendel's second law: principle of independent assortment.. 80 4.4. Mendel's third law: principle of Dominance.......... 81 v 4.5. Exception to Mendelian Genetics ........................ 82 CHAPTER FIVE: CHROMOSOME STRUCTURE AND FUNCTION 5.1. Chromosome Morphology.................................... 96 5.2. Normal Chromosome........................................... 97 5.3. Chromosome Abnormalities................................. 100 5.4. Types of Chromatin ............................................. 105 5.5. Codominant alleles .............................................. 106 5.6. Incomplete dominance......................................... 107 5.7. Multiple alleles ..................................................... 108 5.8. Epistasis............................................................... 108 5.9. Environment and Gene Expression .................... 109 5.10. Polygenic Inheritance ........................................ 110 5.11. Pleiotropy .......................................................... 112 5.12. Human Chromosome Abnormalities ................. 113 5.13. Cytogenetics ...................................................... 119 CHAPTER SIX: LINKAGE 6.0. Introduction .......................................................... 125 6.1. Mapping ............................................................... 128 6.2. Double Crossovers .............................................. 132 6.3. Interference.......................................................... 132 6.4. Deriving Linkage Distance and Gene Order from Three-Point Crosses ........................................... 134 vi CHAPTER SEVEN: PEDIGREE ANALYSIS 7.1. Symbols Used to Draw Pedigrees ....................... 145 7.2. Modes of inheritance............................................ 147 7.3. Autosomal dominant ............................................ 150 7.4. Autosomal recessive............................................ 151 7.5. Mitochondrial inheritance..................................... 157 7.6. Uniparental disomy .............................................. 158 CHAPTER EIGHT: NUCLEIC ACID STRUCTURE AND FUNCTION 8.0. Introduction .......................................................... 161 8.1. Deoxyribonucleic acid.......................................... 162 8.2. Ribonucleic acid................................................... 167 8.3. Chemical differences between DNA & RNA ........ 170 8.4. DNA Replication................................................... 173 8.5. Control of Replication........................................... 191 8.6. DNA Ligation........................................................ 193 CHAPTER NINE:DNA DAMAGE AND REPAIR 9.0. Introduction .......................................................... 200 9.1. Agents that Damage DNA ................................... 201 9.2. Types of DNA damage......................................... 202 9.3. Repairing Damaged Bases.................................. 203 9.4. Repairing Strand Breaks...................................... 209 vii 9.5. Mutation ............................................................... 210 9.6. Insertions and Deletions ...................................... 214 9. 7. Duplications ........................................................ 216 9.8. Translocations...................................................... 219 9.9. Frequency of Mutations ...................................... 220 9.10.Measuring Mutation Rate.................................... 223 CHAPTER TEN: GENE TRANSFER IN BACTERIA 10.0. Introduction ........................................................ 226 10.1. Conjugation........................................................ 227 10.2. Transduction ...................................................... 232 10.3. Transformation................................................... 238 10.4. Transposition ..................................................... 241 10.5. Recombination................................................... 242 10.6. Plasmid .............................................................. 243 CHAPTER ELEVEN: TRANSCRIPTION AND TRANSLATION 11.0. Introduction ......................................................
Recommended publications
  • Intelligent Design, Abiogenesis, and Learning from History: Dennis R
    Author Exchange Intelligent Design, Abiogenesis, and Learning from History: Dennis R. Venema A Reply to Meyer Dennis R. Venema Weizsäcker’s book The World View of Physics is still keeping me very busy. It has again brought home to me quite clearly how wrong it is to use God as a stop-gap for the incompleteness of our knowledge. If in fact the frontiers of knowledge are being pushed back (and that is bound to be the case), then God is being pushed back with them, and is therefore continually in retreat. We are to find God in what we know, not in what we don’t know; God wants us to realize his presence, not in unsolved problems but in those that are solved. Dietrich Bonhoeffer1 am thankful for this opportunity to nature, is the result of intelligence. More- reply to Stephen Meyer’s criticisms over, this assertion is proffered as the I 2 of my review of his book Signature logical basis for inferring design for the in the Cell (hereafter Signature). Meyer’s origin of biological information: if infor- critiques of my review fall into two gen- mation only ever arises from intelli- eral categories. First, he claims I mistook gence, then the mere presence of Signature for an argument against bio- information demonstrates design. A few logical evolution, rendering several of examples from Signature make the point my arguments superfluous. Secondly, easily: Meyer asserts that I have failed to refute … historical scientists can show that his thesis by not providing a “causally a presently acting cause must have adequate alternative explanation” for the been present in the past because the origin of life in that the few relevant cri- proposed candidate is the only known tiques I do provide are “deeply flawed.” cause of the effect in question.
    [Show full text]
  • Epstein-Barr Virus Recombinants from Overlapping Cosmid Fragments
    JOURNAL OF VIROLOGY, Dec. 1993, p. 7298-7306 Vol. 67, No. 12 0022-538X/93/127298-09$02.00/0 Copyright © 1993, American Society for Microbiology Epstein-Barr Virus Recombinants from Overlapping Cosmid Fragments BLAKE TOMKINSON,t ERLE ROBERTSON, RAMANA YALAMANCHILI, RICHARD LONGNECKER,t AND ELLIOT-T KIEFF* Departments of Medicine and Microbiology and Molecular Genetics, Harvard Medical School, 75 Francis Street, Boston, Massachuisetts 02115 Received 7 July 1993/Accepted 18 August 1993 Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome.
    [Show full text]
  • The Retinoblastoma Tumor-Suppressor Gene, the Exception That Proves the Rule
    Oncogene (2006) 25, 5233–5243 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc REVIEW The retinoblastoma tumor-suppressor gene, the exception that proves the rule DW Goodrich Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA The retinoblastoma tumor-suppressor gene (Rb1)is transmission of one mutationally inactivated Rb1 allele centrally important in cancer research. Mutational and loss of the remaining wild-type allele in somatic inactivation of Rb1 causes the pediatric cancer retino- retinal cells. Hence hereditary retinoblastoma typically blastoma, while deregulation ofthe pathway in which it has an earlier onset and a greater number of tumor foci functions is common in most types of human cancer. The than sporadic retinoblastoma where both Rb1 alleles Rb1-encoded protein (pRb) is well known as a general cell must be inactivated in somatic retinal cells. To this day, cycle regulator, and this activity is critical for pRb- Rb1 remains an exception among cancer-associated mediated tumor suppression. The main focus of this genes in that its mutation is apparently both necessary review, however, is on more recent evidence demonstrating and sufficient, or at least rate limiting, for the genesis of the existence ofadditional, cell type-specific pRb func- a human cancer. The simple genetics of retinoblastoma tions in cellular differentiation and survival. These has spawned the hope that a complete molecular additional functions are relevant to carcinogenesis sug- understanding of the Rb1-encoded protein (pRb) would gesting that the net effect of Rb1 loss on the behavior of lead to deeper insight into the processes of neoplastic resulting tumors is highly dependent on biological context.
    [Show full text]
  • Cytogenetics, Chromosomal Genetics
    Cytogenetics Chromosomal Genetics Sophie Dahoun Service de Génétique Médicale, HUG Geneva, Switzerland [email protected] Training Course in Sexual and Reproductive Health Research Geneva 2011 Cytogenetics is the branch of genetics that correlates the structure, number, and behaviour of chromosomes with heredity and diseases Conventional cytogenetics Molecular cytogenetics Molecular Biology I. Karyotype Definition Chromosomal Banding Resolution limits Nomenclature The metaphasic chromosome telomeres p arm q arm G-banded Human Karyotype Tjio & Levan 1956 Karyotype: The characterization of the chromosomal complement of an individual's cell, including number, form, and size of the chromosomes. A photomicrograph of chromosomes arranged according to a standard classification. A chromosome banding pattern is comprised of alternating light and dark stripes, or bands, that appear along its length after being stained with a dye. A unique banding pattern is used to identify each chromosome Chromosome banding techniques and staining Giemsa has become the most commonly used stain in cytogenetic analysis. Most G-banding techniques require pretreating the chromosomes with a proteolytic enzyme such as trypsin. G- banding preferentially stains the regions of DNA that are rich in adenine and thymine. R-banding involves pretreating cells with a hot salt solution that denatures DNA that is rich in adenine and thymine. The chromosomes are then stained with Giemsa. C-banding stains areas of heterochromatin, which are tightly packed and contain
    [Show full text]
  • Challenges in Clinicogenetic Correlations: One Gene – Many Phenotypes Francesca Magrinelli, MD,1,2,* Bettina Balint, MD,1,3 and Kailash P
    REVIEW CLINICAL PRACTICE Challenges in Clinicogenetic Correlations: One Gene – Many Phenotypes Francesca Magrinelli, MD,1,2,* Bettina Balint, MD,1,3 and Kailash P. Bhatia, MD, FRCP1,* ABSTRACT: Background:Background Progress in genetics – particularly the advent of next-generation sequencing (NGS) – has enabled an unparalleled gene discovery and revealed unmatched complexity of genotype– phenotype correlations in movement disorders. Among other things, it has emerged that mutations in one and the same gene can cause multiple, often markedly different phenotypes. Consequently, movement disorder specialists have increasingly experienced challenges in clinicogenetic correlations. Objectives:Objectives To deconstruct biological phenomena and mechanistic bases of phenotypic heterogeneity in monogenic movement disorders and neurodegenerative diseases. To discuss the evolving role of movement disorder specialists in reshaping disease phenotypes in the NGS era. Methods:Methods This scoping review details phenomena contributing to phenotypic heterogeneity and their underlying mechanisms. Results:Results Three phenomena contribute to phenotypic heterogeneity, namely incomplete penetrance, variable expressivity and pleiotropy. Their underlying mechanisms, which are often shared across phenomena and non- mutually exclusive, are not fully elucidated. They involve genetic factors (ie, different mutation types, dynamic mutations, somatic mosaicism, intragenic intra- and inter-allelic interactions, modifiers and epistatic genes, mitochondrial heteroplasmy),
    [Show full text]
  • The Activator Protein-1 Transcription Factor in Respiratory Epithelium Carcinogenesis
    Subject Review The Activator Protein-1 Transcription Factor in Respiratory Epithelium Carcinogenesis Michalis V. Karamouzis,1 Panagiotis A. Konstantinopoulos,1,2 and Athanasios G. Papavassiliou1 1Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece and 2Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts Abstract Much of the current anticancer research effort is focused on Respiratory epithelium cancers are the leading cause cell-surface receptors and their cognate upstream molecules of cancer-related death worldwide. The multistep natural because they provide the easiest route for drugs to affect history of carcinogenesis can be considered as a cellular behavior, whereas agents acting at the level of gradual accumulation of genetic and epigenetic transcription need to invade the nucleus. However, the aberrations, resulting in the deregulation of cellular therapeutic effect of surface receptor manipulation might be homeostasis. Growing evidence suggests that cross- considered less than specific because their actions are talk between membrane and nuclear receptor signaling modulated by complex interacting downstream signal trans- pathways along with the activator protein-1 (AP-1) duction pathways. A pivotal transcription factor during cascade and its cofactor network represent a pivotal respiratory epithelium carcinogenesis is activator protein-1 molecular circuitry participating directly or indirectly in (AP-1). AP-1–regulated genes include important modulators of respiratory epithelium carcinogenesis. The crucial role invasion and metastasis, proliferation, differentiation, and of AP-1 transcription factor renders it an appealing survival as well as genes associated with hypoxia and target of future nuclear-directed anticancer therapeutic angiogenesis (7). Nuclear-directed therapeutic strategies might and chemoprevention approaches.
    [Show full text]
  • GENETICS and GENOMICS Ed
    GENETICS AND GENOMICS Ed. Csaba Szalai, PhD GENETICS AND GENOMICS Editor: Csaba Szalai, PhD, university professor Authors: Chapter 1: Valéria László Chapter 2, 3, 4, 6, 7: Sára Tóth Chapter 5: Erna Pap Chapter 8, 9, 10, 11, 12, 13, 14: Csaba Szalai Chapter 15: András Falus and Ferenc Oberfrank Keywords: Mitosis, meiosis, mutations, cytogenetics, epigenetics, Mendelian inheritance, genetics of sex, developmental genetics, stem cell biology, oncogenetics, immunogenetics, human genomics, genomics of complex diseases, genomic methods, population genetics, evolution genetics, pharmacogenomics, nutrigenetics, gene environmental interaction, systems biology, bioethics. Summary The book contains the substance of the lectures and partly of the practices of the subject of ‘Genetics and Genomics’ held in Semmelweis University for medical, pharmacological and dental students. The book does not contain basic genetics and molecular biology, but rather topics from human genetics mainly from medical point of views. Some of the 15 chapters deal with medical genetics, but the chapters also introduce to the basic knowledge of cell division, cytogenetics, epigenetics, developmental genetics, stem cell biology, oncogenetics, immunogenetics, population genetics, evolution genetics, nutrigenetics, and to a relative new subject, the human genomics and its applications for the study of the genomic background of complex diseases, pharmacogenomics and for the investigation of the genome environmental interactions. As genomics belongs to sytems biology, a chapter introduces to basic terms of systems biology, and concentrating on diseases, some examples of the application and utilization of this scientific field are also be shown. The modern human genetics can also be associated with several ethical, social and legal issues. The last chapter of this book deals with these issues.
    [Show full text]
  • Gene Therapy Glossary of Terms
    GENE THERAPY GLOSSARY OF TERMS A • Phase 3: A phase of research to describe clinical trials • Allele: one of two or more alternative forms of a gene that that gather more information about a drug’s safety and arise by mutation and are found at the same place on a effectiveness by studying different populations and chromosome. different dosages and by using the drug in combination • Adeno-Associated Virus: A single stranded DNA virus that has with other drugs. These studies typically involve more not been found to cause disease in humans. This type of virus participants.7 is the most frequently used in gene therapy.1 • Phase 4: A phase of research to describe clinical trials • Adenovirus: A member of a family of viruses that can cause occurring after FDA has approved a drug for marketing. infections in the respiratory tract, eye, and gastrointestinal They include post market requirement and commitment tract. studies that are required of or agreed to by the study • Adeno-Associated Virus Vector: Adeno viruses used as sponsor. These trials gather additional information about a vehicles for genes, whose core genetic material has been drug’s safety, efficacy, or optimal use.8 removed and replaced by the FVIII- or FIX-gene • Codon: a sequence of three nucleotides in DNA or RNA • Amino Acids: building block of a protein that gives instructions to add a specific amino acid to an • Antibody: a protein produced by immune cells called B-cells elongating protein in response to a foreign molecule; acts by binding to the • CRISPR: a family of DNA sequences that can be cleaved by molecule and often making it inactive or targeting it for specific enzymes, and therefore serve as a guide to cut out destruction and insert genes.
    [Show full text]
  • Phragmoplast Microtubule Dynamics – a Game of Zones Andrei Smertenko1,2,‡, Seanna L
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs203331. doi:10.1242/jcs.203331 REVIEW SPECIAL ISSUE: PLANT CELL BIOLOGY Phragmoplast microtubule dynamics – a game of zones Andrei Smertenko1,2,‡, Seanna L. Hewitt2,3, Caitlin N. Jacques2,4, Rafal Kacprzyk1, Yan Liu2,5, Matthew J. Marcec2,6, Lindani Moyo2,6, Aaron Ogden1,2, Hui Min Oung1,2, Sharol Schmidt1,2 and Erika A. Serrano-Romero2,5 ABSTRACT during anaphase from the remnants of the central spindle (Segui- Plant morphogenesis relies on the accurate positioning of the partition Simarro et al., 2004). It consists of microtubules, actin, membrane (cell plate) between dividing cells during cytokinesis. The cell plate is compartments and proteins that associate with or regulate the above synthetized by a specialized structure called the phragmoplast, which (Boruc and Van Damme, 2015; Lipka et al., 2015). The microtubule consists of microtubules, actin filaments, membrane compartments component of the phragmoplast consists of two aligned arrays that and associated proteins. The phragmoplast forms between daughter flank the so-called phragmoplast midzone, where cell plate assembly nuclei during the transition from anaphase to telophase. As cells are takes place (Fig. 1). The initial phragmoplast has a disk shape with a commonly larger than the originally formed phragmoplast, the diameter that approximately equals that of the daughter nuclei construction of the cell plate requires phragmoplast expansion. (Fig. 1); however, the parental cell is generally wider. For example, This expansion depends on microtubule polymerization at the the length of a cambium cell exceeds the diameter of the disk-shaped phragmoplast forefront (leading zone) and loss at the back (lagging phragmoplast during late anaphase by up to 100 fold (Larson, 1994).
    [Show full text]
  • An Essential Gene for Fruiting Body Initiation in the Basidiomycete Coprinopsis Cinerea Is Homologous to Bacterial Cyclopropane Fatty Acid Synthase Genes
    Genetics: Published Articles Ahead of Print, published on December 1, 2005 as 10.1534/genetics.105.045542 An essential gene for fruiting body initiation in the basidiomycete Coprinopsis cinerea is homologous to bacterial cyclopropane fatty acid synthase genes Yi Liu*,1, Prayook Srivilai†, Sabine Loos*,2, Markus Aebi*, Ursula Kües† * Institute for Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland † Molecular Wood Biotechnology, Institute for Forest Botany, Georg-August University Göttingen, D-37077 Göttingen, Germany 1 Present address: Laboratorio di Differenziamento Cellulare, Centro di Biotecnologie Avanzate, Largo R. Benzi 10, 16132 Genova, Italy 2 Present address: Hans Knöll Institut Jena e.V., Junior Research Group Bioorganic Synthesis, Beutenbergstr. 11a, D-07745 Jena, Germany Sequence data from this article have been deposited with the EMBL/Genbank Data Libraries under accession nos. AF338438 1 Running title: An essential fruiting initiation gene Key words: hyphal knots, primordia, sexual development, ∆24-sterol-C-methyltransferase, lipid modification Corresponding author: U. Kües, Georg-August University Göttingen, Institute for Forest Botany, Section Molecular Wood Biotechnology, Büsgenweg 2, D-37077 Göttingen, Germany Tel: ++49-551-397024 Fax: ++49-551-392705 e-mail: [email protected] 2 ABSTRACT The self-compatible Coprinopsis cinerea homokaryon AmutBmut produces fruiting bodies without prior mating to another strain. Early stages of fruiting body development include the dark- dependent formation of primary hyphal knots and their light-induced transition to the more compact secondary hyphal knots. The AmutBmut UV mutant 6-031 forms primary hyphal knots, but development arrests at the transition state by a recessive defect in the cfs1 gene, isolated from a cosmid library by mutant complementation.
    [Show full text]
  • Evolution of Genomic Expression
    C H A P T E R 5 Evolution of Genomic Expression Bernardo Lemos, Christian R. Landry, Pierre Fontanillas, Susan P. Renn, Rob Kulathinal, Kyle M. Brown, and Daniel L. Hartl Introduction Genomic regulation is key to cellular differentiation, tissue morphogenesis, and development. Increasing evidence indicates that evolutionary diversity of phenotypes—from cellular to organismic—may also be, in large part, the result of variation in the regulation of genomic expression. In this chapter we explore the complexity of gene regulation from the perspective of single genes and whole genomes. The first part describes the major factors affecting gene expression levels, from rates of gene transcrip- tion—as mediated by promoter–enhancer interactions and chromatin mod- ifications—to rates of mRNA degradation. This description underscores the multiple levels at which genomic expression can be regulated as well as the complexity and variety of mechanisms used. We then briefly describe the major experimental and computational biology techniques for analyzing gene expression variation and its underlying causes. The final section reviews our understanding of the role of regulatory variation in evolution, including the molecular evolution and population genetics of noncoding DNA, as well as the inheritance and phenotypic evolution of levels of mRNA abundance. The Complex Regulation of Genomic Expression The regulation of gene expression is a complex and dynamic process. It is not a simple matter to turn a gene on and off, let alone precisely regulate its level of expression. Regulation can be accomplished through various mech- anisms at nearly every step of the process of gene expression. Furthermore, each mechanism may require a variety of elements, including DNA sequences, RNA molecules, and proteins, acting in combination to deter- 2 Chapter Five Evolution of Genomic Expression 3 mine the final amount, timing, and location of functional gene product.
    [Show full text]
  • Part Ii - Molecular Biology
    PART II - MOLECULAR BIOLOGY Module VII Nature of Genetic Materials Modern concept of gene (Cistron, muton, recon, viral genes). Brief account of the following-- Split genes (introns and exons), Junk genes, Pseudogenes, Overlapping genes, Transposons The term gene was introduced by Johanssen in 1909. Prior to him Mendel had used the word factor for a specific, distinct, particulate unit of inheritance that takes part in expression of a trait. Johanssen has defined gene as an elementary unit of inheritance which can be assigned to a particular trait. Morgan’s work suggested gene to be the shortest segment of chromosome which can be separated through crossing over, can undergo mutation and influence expression of one or more traits. Presently, a gene is defined as a unit of inheritance composed of a segment of DNA or chromosome situated at a specific locus (gene locus) which carries coded information associated with a specific function and can undergo crossing over as well as mutation. A gene is: A unit of genetic material which is able to replicate, It is a unit of recombination, i.e., capable of undergoing crossing over, A unit of genetic material which can undergo mutation, A unit of heredity connected with somatic structure or function that leads to a phenotypic expression. Modern concept of gene (Cistron, muton, recon, viral genes). After the discovery of DNA, the gene has been defined as cistron, recon and muton. The classical gene is the smallest unit that could undergo a mutational change. A gene further divided into smaller units of function, mutation and recombination.
    [Show full text]