Raxibacumab: Potential Role in the Treatment of Inhalational Anthrax

Total Page:16

File Type:pdf, Size:1020Kb

Raxibacumab: Potential Role in the Treatment of Inhalational Anthrax Infection and Drug Resistance Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Raxibacumab: potential role in the treatment of inhalational anthrax Carlos E Kummerfeldt Abstract: Anthrax is a highly contagious and potentially fatal human disease caused by Bacillus Division of Pulmonary, Critical anthracis, an aerobic, Gram-positive, spore-forming rod-shaped bacterium with worldwide Care, Allergy and Sleep Medicine, distribution as a zoonotic infection in herbivore animals. Bioterrorist attacks with inhalational Medical University of South anthrax have prompted the development of more effective treatments. Antibodies against anthrax Carolina, Charleston, SC, USA toxin have been shown to decrease mortality in animal studies. Raxibacumab is a recombinant human monoclonal antibody developed against inhalational anthrax. The drug received approval after human studies showed its safety and animal studies demonstrated its efficacy for treatment as well as prophylaxis against inhalational anthrax. It works by preventing binding of the protec- tive antigen component of the anthrax toxin to its receptors in host cells, thereby blocking the For personal use only. toxin’s deleterious effects. Recently updated therapy guidelines for Bacillus anthracis recom- mend the use of antitoxin treatment. Raxibacumab is the first monoclonal antitoxin antibody made available that can be used with the antibiotics recommended for treatment of the disease. When exposure is suspected, raxibacumab should be given with anthrax vaccination to aug- ment immunity. Raxibacumab provides additional protection against inhalational anthrax via Video abstract a mechanism different from that of either antibiotics or active immunization. In combination with currently available and recommended therapies, raxibacumab should reduce the morbidity and mortality of inhalational anthrax. Keywords: anthrax, monoclonal antibody, protective antigen, raxibacumab Introduction Infection and Drug Resistance downloaded from https://www.dovepress.com/ by 137.108.70.14 on 19-Jan-2020 In December 2012, the United States Food and Drug Administration (FDA) approved raxibacumab for treatment of and prophylaxis against inhalational anthrax.1 Its labeled uses are to treat inhalational anthrax in combination with appropriate antibacterial drugs, and for prophylaxis when alternative therapies are not appropriate or available.2 For its approval, the FDA granted fast track designation, priority review, orphan product Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: designation, and applied the Animal Efficacy Rule. Under this rule, medications are http://dvpr.es/1rmzddX given FDA approval based on efficacy findings from adequate and well controlled animal studies when it is not feasible or ethical to conduct studies in human subjects.3 Inhalational anthrax is a rare and lethal disease, so efficacy studies are unethical and prohibited in humans. Correspondence: Carlos E Kummerfeldt After the bioterrorist attacks of September 2001, which resulted in eleven confirmed Division of Pulmonary, Critical Care, cases of inhalational anthrax and five fatalities, the US government enacted new Allergy and Sleep Medicine, Medical University of South Carolina, 96 Jonathan rules and regulations to encourage pharmaceutical industry development of medical Lucas St, Suite 812-CSBMSC countermeasures against bioterrorist threats.4,5 The Project Bioshield Act was signed 630, Charleston, SC 29425-6300, USA Email [email protected] into law on July 2004 and provided funding for the development of raxibacumab. submit your manuscript | www.dovepress.com Infection and Drug Resistance 2014:7 101–109 101 Dovepress © 2014 Kummerfeldt. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further http://dx.doi.org/10.2147/IDR.S47305 permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php Powered by TCPDF (www.tcpdf.org) 1 / 1 Kummerfeldt Dovepress Under Project Bioshield, the pharmaceutical company, The vegetative state is the replicating form that exists dur- Human Genome Sciences (GlaxoSmithKline, Research ing active infection. Herbivore mammals typically acquire Triangle Park, NC, USA) was awarded a contract to develop the infection after ingestion of spores, with transmission to and deliver human immune globulin against anthrax.5 The humans upon contact with contaminated animal products. reason for commissioning the development of passive Infection in humans results in four recognized forms immunity is that current recommendations for therapy and of the disease, depending on the route of entry, ie, cutane- exposure prophylaxis have limitations.6,7 ous, gastrointestinal, injection, and inhalational anthrax.13,14 Cutaneous anthrax is the most common and frequently Why is raxibacumab needed? resolves spontaneously. Initially, a painless or pruritic papule Current therapy guidelines recommend use of antibiotics appears, and is surrounded by edema. The papule progresses that are highly effective against Bacillus anthracis, but until to a vesicle, rupturing and creating an ulcer covered by a recently did not recommend administration of antitoxin ther- black eschar that sloughs 2–3 weeks later. Gastrointestinal apy. Patients die due to toxin-induced disease despite effective anthrax occurs after ingestion of contaminated meat. Spores antibiotic use that kills the bacteria.8 Toxin levels are highest germinate, resulting in oropharyngeal and gastrointestinal during initial presentation and decline with early antibiotic ulceration, followed by regional lymphadenopathy, edema, administration.9 The Anthrax Vaccine Adsorbed (BioThrax®; sepsis, necrosis, and perforation. Ascites can also occur. Emergent BioSolutions Inc., Rockville, MD, USA) licensed for Patients develop nausea, vomiting, bloody diarrhea, and use in the USA requires at least 4 weeks to develop sufficient ultimately pain resulting in an acute abdomen. Intravenous protective immunity.7 Exposed patients are at risk of disease or intramuscular drug use results in injectional anthrax despite receiving immunization, given the bacteria’s short where the typical black eschar is absent. Patients develop incubation period of at least 4 days after inhalation. Another subcutaneous lesions that lead to sepsis. Inhalational anthrax concern is adherence with the recommended 2-month oral occurs after inhaled spores are phagocytosed by alveolar antibiotic regimens against exposure prophylaxis. In a study macrophages that carry the spores to hilar and mediastinal For personal use only. of antibiotic adherence among postal workers in Washington lymph nodes where they germinate. Germination results in after the terrorist attacks of 2001, only 40% of those sampled hemorrhagic mediastinitis, bilateral hemorrhagic pleural reported full adherence, while another 18% had completely effusions, dyspnea, hypotension, shock, and death. Patients discontinued their prophylaxis.10 The US Centers for Disease initially present with influenza-like symptoms during the first Control and Prevention recently updated their guidelines in 4 days, but rapidly progress to respiratory failure.13,14 2014 and support the use of antitoxin therapy (either raxi- The anthrax genome is comprised of a single covalently bacumab or anthrax immune globulin) in combination with closed chromosome. It contains two virulent plasmids, pXO1 antimicrobial drug treatment in any patient for whom there is and pXO2, responsible for synthesizing the immunologi- a high level of clinical suspicion for inhalational anthrax. They cally inert capsule and the anthrax toxin, respectively.15 The acknowledge that optimal timing of antitoxin administration capsule is composed of poly-γ-D-glutamyl amino acids and 11 16,17 Infection and Drug Resistance downloaded from https://www.dovepress.com/ by 137.108.70.14 on 19-Jan-2020 remains unknown given the lack of data. protects the bacteria from phagocytosis. The anthrax Thus, passive immunity in the form of protective anti- toxin is composed of two binary combinations, each con- bodies has a role in treatment as well as post-exposure taining a common binding component known as protective prophylaxis against inhalational anthrax. This review dis- antigen (PA). The other two components, edema factor and cusses raxibacumab (Abthrax®, GlaxoSmithKline), the first lethal factor, are enzymes. PA combines with edema factor human monoclonal antibody approved for treatment and to form edema toxin, and in a similar way with lethal factor prophylaxis against inhalational anthrax. to form lethal toxin. PA is a protein that mediates binding to its receptors in the cell membrane of host cells. Binding to Pathophysiology of anthrax either a high-affinity or low-affinity receptor (ANTXR1/2) B. anthracis is a large rod-shaped, aerobic, Gram-positive, that may or may not require a coreceptor (LRP6) occurs, with spore-forming bacterium that exists in a spore or vegetative subsequent transformation of PA, resulting in pore formation state. The spore is
Recommended publications
  • AHFS Pharmacologic-Therapeutic Classification System
    AHFS Pharmacologic-Therapeutic Classification System Abacavir 48:24 - Mucolytic Agents - 382638 8:18.08.20 - HIV Nucleoside and Nucleotide Reverse Acitretin 84:92 - Skin and Mucous Membrane Agents, Abaloparatide 68:24.08 - Parathyroid Agents - 317036 Aclidinium Abatacept 12:08.08 - Antimuscarinics/Antispasmodics - 313022 92:36 - Disease-modifying Antirheumatic Drugs - Acrivastine 92:20 - Immunomodulatory Agents - 306003 4:08 - Second Generation Antihistamines - 394040 Abciximab 48:04.08 - Second Generation Antihistamines - 394040 20:12.18 - Platelet-aggregation Inhibitors - 395014 Acyclovir Abemaciclib 8:18.32 - Nucleosides and Nucleotides - 381045 10:00 - Antineoplastic Agents - 317058 84:04.06 - Antivirals - 381036 Abiraterone Adalimumab; -adaz 10:00 - Antineoplastic Agents - 311027 92:36 - Disease-modifying Antirheumatic Drugs - AbobotulinumtoxinA 56:92 - GI Drugs, Miscellaneous - 302046 92:20 - Immunomodulatory Agents - 302046 92:92 - Other Miscellaneous Therapeutic Agents - 12:20.92 - Skeletal Muscle Relaxants, Miscellaneous - Adapalene 84:92 - Skin and Mucous Membrane Agents, Acalabrutinib 10:00 - Antineoplastic Agents - 317059 Adefovir Acamprosate 8:18.32 - Nucleosides and Nucleotides - 302036 28:92 - Central Nervous System Agents, Adenosine 24:04.04.24 - Class IV Antiarrhythmics - 304010 Acarbose Adenovirus Vaccine Live Oral 68:20.02 - alpha-Glucosidase Inhibitors - 396015 80:12 - Vaccines - 315016 Acebutolol Ado-Trastuzumab 24:24 - beta-Adrenergic Blocking Agents - 387003 10:00 - Antineoplastic Agents - 313041 12:16.08.08 - Selective
    [Show full text]
  • ANTHRASIL™ Safely and Effectively
    53 Weight-based Pediatric Dose Body Weight Vials per Dosea Body Weight Vials per Dose (kg) (kg) 1 HIGHLIGHTS OF PRESCRIBING INFORMATION <5 1 25 to <35 4 <10 1 35 to <50 5 10 to <18 2 50 to <60 6 These highlights do not include all the information needed to use 2 18 to <25 3 ≥60 7 ANTHRASIL™ safely and effectively. See full prescribing information for 3 aSelect initial dose based on clinical severity. Dose may be doubled for severe ANTHRASIL. 4 cases in patients >5 kg. 5 ANTHRASIL [Anthrax Immune Globulin Intravenous (Human)], sterile 54 6 Administer ANTHRASIL by slow intravenous infusion using an infusion solution for infusion 55 7 pump (maximum 2 mL per minute). 56 8 Initial U.S. Approval: March 24, 2015 57 9 ---------------------DOSAGE FORMS AND STRENGTHS---------------------- 10 58 59 Each single-use vial contains a minimum potency of ≥60 units by Toxin 11 WARNING: INTERACTIONS WITH GLUCOSE MONITORING 60 Neutralization Assay (TNA) (3). 12 SYSTEMS AND THROMBOSIS 61 13 See full prescribing information for complete boxed warning. 62 -------------------------------CONTRAINDICATIONS------------------------------ 14 • Maltose in immune globulin products, including ANTHRASIL, may give 63 • History of anaphylactic or severe systemic reaction to human immune 15 falsely high blood glucose levels with some blood point-of-care glucose 64 globulins (4) 16 testing systems (for example those based on the GDH-PQQ or glucose-dye- 65 • IgA deficiency with antibodies against IgA and a history of IgA 17 oxidoreductase methods) resulting in inappropriate administration of insulin 66 hypersensitivity (4) 18 and life-threatening hypoglycemia. To avoid interference by maltose 67 19 contained in ANTHRASIL, perform blood glucose measurements in patients 68 -----------------------WARNINGS AND PRECAUTIONS------------------------ 20 receiving ANTHRASIL with a glucose-specific method (monitor and test 21 strips).
    [Show full text]
  • Phage Display-Based Strategies for Cloning and Optimization of Monoclonal Antibodies Directed Against Human Pathogens
    Int. J. Mol. Sci. 2012, 13, 8273-8292; doi:10.3390/ijms13078273 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Phage Display-based Strategies for Cloning and Optimization of Monoclonal Antibodies Directed against Human Pathogens Nicola Clementi *,†, Nicasio Mancini †, Laura Solforosi, Matteo Castelli, Massimo Clementi and Roberto Burioni Microbiology and Virology Unit, “Vita-Salute” San Raffaele University, Milan 20132, Italy; E-Mails: [email protected] (N.M.); [email protected] (L.S.); [email protected] (M.C.); [email protected] (M.C.); [email protected] (R.B.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-2-2643-5082; Fax: +39-2-2643-4288. Received: 16 March 2012; in revised form: 25 June 2012 / Accepted: 27 June 2012 / Published: 4 July 2012 Abstract: In the last two decades, several phage display-selected monoclonal antibodies (mAbs) have been described in the literature and a few of them have managed to reach the clinics. Among these, the anti-respiratory syncytial virus (RSV) Palivizumab, a phage-display optimized mAb, is the only marketed mAb directed against microbial pathogens. Palivizumab is a clear example of the importance of choosing the most appropriate strategy when selecting or optimizing an anti-infectious mAb. From this perspective, the extreme versatility of phage-display technology makes it a useful tool when setting up different strategies for the selection of mAbs directed against human pathogens, especially when their possible clinical use is considered.
    [Show full text]
  • The Effect of Raxibacumab on the Immunogenicity of Anthrax Vaccine Adsorbed: a Phase
    The effect of raxibacumab on the immunogenicity of anthrax vaccine adsorbed: a Phase IV, randomised, open-label, parallel-group, non-inferiority study Nancy Skoura, PhD1, Jie Wang-Jairaj, MD2, Oscar Della Pasqua MD2, Vijayalakshmi Chandrasekaran, MS1, Julia Billiard, PhD1, Anne Yeakey, MD3, William Smith, MD4, Helen Steel, MD2, Lionel K Tan, FRCP2 1GlaxoSmithKline, Inc. Collegeville, PA, USA 2GlaxoSmithKline. Stockley Park West, Middlesex, UK 3GlaxoSmithKline, Inc. Rockville, MD, USA 4AMR, at University of TN Medical Center, Knoxville, TN; New Orleans Center for Clinical Research (NOCCR), USA Author for Correspondence: Dr Lionel K Tan GlaxoSmithKline Stockley Park West 1–3 Ironbridge Road Uxbridge Middlesex UB11 1BT UK Email: [email protected] Tel: +44 (0)7341 079 683 1 Abstract: 340/350 Body text: 4321/4500 words including Research in Context Table/Figures: 2/4 References: 30 2 Abstract Background Raxibacumab is a monoclonal antibody (Ab) which binds protective antigen (PA) of Bacillus anthracis and is approved for treatment and post-exposure prophylaxis (PEP) of inhalational anthrax. Anthrax vaccine adsorbed (AVA), for anthrax prophylaxis, consists primarily of adsorbed PA. This post-approval study evaluated the effect of raxibacumab on immunogenicity of AVA. Methods In this open-label, parallel-group, non-inferiority study in three centres in the USA, healthy volunteers (aged 18–65 years) with no evidence of PA pre-exposure were randomised 1:1 to receive either subcutaneous 0·5 mL AVA on Days 1, 15, and 29 or raxibacumab intravenous infusion (40 mg/kg) immediately before AVA on Day 1, followed by AVA only on Days 15 and 29.
    [Show full text]
  • A Review of the Efficacy of FDA-Approved B. Anthracis Anti
    toxins Review A Review of the Efficacy of FDA-Approved B. anthracis Anti-Toxin Agents When Combined with Antibiotic or Hemodynamic Support in Infection- or Toxin-Challenged Preclinical Models Zoe Couse 1, Xizhong Cui 1, Yan Li 1, Mahtab Moayeri 2, Stephen Leppla 2 and Peter Q. Eichacker 1,* 1 Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; [email protected] (Z.C.); [email protected] (X.C.); [email protected] (Y.L.) 2 National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; [email protected] (M.M.); [email protected] (S.L.) * Correspondence: [email protected] Abstract: Anti-toxin agents for severe B. anthracis infection will only be effective if they add to the benefit of the two mainstays of septic shock management, antibiotic therapy and titrated hemody- namic support. Both of these standard therapies could negate benefits related to anti-toxin treatment. At present, three anthrax anti-toxin antibody preparations have received US Food and Drug Adminis- tration (FDA) approval: Raxibacumab, Anthrax Immune Globulin Intravenous (AIGIV) and ETI-204. Each agent is directed at the protective antigen component of lethal and edema toxin. All three agents were compared to placebo in antibiotic-treated animal models of live B. anthracis infection, and Raxibacumab and AIGIV were compared to placebo when combined with standard hemodynamic support in a 96 h canine model of anthrax toxin-associated shock. However, only AIG has actually Citation: Couse, Z.; Cui, X.; Li, Y.; been administered to a group of infected patients, and this experience was not controlled and offers Moayeri, M.; Leppla, S.; Eichacker, P.Q.
    [Show full text]
  • The Project Bioshield Act: Issues for the 112Th Congress
    The Project BioShield Act: Issues for the 112th Congress Frank Gottron Specialist in Science and Technology Policy March 13, 2012 Congressional Research Service 7-5700 www.crs.gov R42349 CRS Report for Congress Prepared for Members and Committees of Congress The Project BioShield Act: Issues for the 112th Congress Summary In 2004, Congress passed the Project BioShield Act (P.L. 108-276) to provide the federal government with new authorities related to the development, procurement, and use of medical countermeasures against chemical, biological, radiological, and nuclear (CBRN) terrorism agents. As the expiration of some of these authorities approaches, Congress is considering whether these authorities have sufficiently contributed to national preparedness to merit extension. The Project BioShield Act provides three main authorities: (1) guaranteeing a federal market for new CBRN medical countermeasures, (2) permitting emergency use of countermeasures that are either unapproved or have not been approved for the intended emergency use, and (3) relaxing regulatory requirements for some CBRN terrorism-related spending. The Department of Health and Human Services (HHS) has used each of these authorities. The HHS obligated approximately $2.5 billion to guarantee a government market for countermeasures against anthrax, botulism, radiation, and smallpox. The HHS allowed the emergency use of several unapproved products, including during the 2009 H1N1 influenza pandemic. The HHS used expedited review authorities to approve contracts and grants related to CBRN countermeasure research and development. The Department of Homeland Security (DHS) Appropriations Act, 2004 (P.L. 108-90) advance- appropriated $5.593 billion to acquire CBRN countermeasures through Project BioShield for FY2004-FY2013. Through FY2012, subsequent Congresses have removed $1.876 billion from this account through rescissions and transfers, more than one-third of the advance appropriation.
    [Show full text]
  • RAXIBACUMAB Safely and Effectively
    HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all of the information needed to use RAXIBACUMAB safely and effectively. See full prescribing information --------------------DOSAGE FORMS AND STRENGTHS---------------- for RAXIBACUMAB. Single-use vial contains 1700 mg/34 mL (50 mg/mL) raxibacumab solution. (3) RAXIBACUMAB injection, for intravenous use Initial U.S. Approval: 2012 ----------------------------- CONTRAINDICATIONS--- ---------------------- None. (4) -------------------------- INDICATIONS AND USAGE--- ------------------- Raxibacumab is indicated for the treatment of adult and pediatric patients with ----------------------WARNINGS AND PRECAUTIONS--- --------------- inhalational anthrax due to Bacillus anthracis in combination with appropriate Infusion reactions may occur. Premedicate with diphenhydramine. Slow or antibacterial drugs, and for prophylaxis of inhalational anthrax when interrupt infusion and administer treatment based on severity of the reaction. alternative therapies are not available or are not appropriate. (1) (5.1) Limitations of Use: The effectiveness of raxibacumab is based solely on efficacy studies in -----------------------------ADVERSE REACTIONS--- ---------------------- animal models of inhalational anthrax. (1.2, 14.1) Common adverse reactions in healthy adult subjects (≥1.5%) were: rash, pain There have been no studies of raxibacumab in the pediatric population. in extremity, pruritus, and somnolence. (6.1) Dosing in pediatric patients was derived using a population PK approach.
    [Show full text]
  • Studies on Antitoxin Use for Postexposure Prophylaxis (PEP)
    ACIP Anthrax Vaccine Work Group William Bower, MD, FIDSA Epidemiology Team Lead Bacterial Special Pathogens October 23, 2018 National Center for Emerging and Zoonotic Disease Division of High-Consequence Pathogens and Pathology Outline Overview of anthrax antitoxins Studies on antitoxin use for postexposure prophylaxis (PEP) . Anthrax antitoxin for PEP and survival in animal models . Anthrax antitoxin effect on acquired immunity . Anthrax antitoxin use with anthrax vaccine adsorbed (AVA) Work group discussions Guidance on anthrax antitoxin use for PEP 2 Anthrax Pathogenesis 3 Background – Anthrax Antitoxins There are currently three FDA approved anthrax antitoxins RAXIBACUMAB . Initial U.S. Approval: 2012 . Human IgG1λ monoclonal antibody that binds the protective antigen (PA) component of Bacillus anthracis toxin ANTHRASIL (Anthrax Immune Globulin Intravenous (AIGIV)) . Initial U.S. Approval: 2015 . Purified human IgG containing polyclonal antibodies that bind the protective antigen (PA) component of B. anthracis lethal and edema toxins collected from individuals immunized with AVA ANTHIM (obiltoxaximab) . Initial U.S. Approval: 2016 . Chimeric IgG1 kappa monoclonal antibody that binds the PA component of B. anthracis toxin 4 Background – Anthrax Antitoxins Indications Anthrax antitoxins all have an indication for the treatment of adult and pediatric patients with inhalation anthrax due to B. anthracis in combination with appropriate antimicrobials The monoclonal antitoxins, raxibacumab and obiltoxaximab, are also indicated for
    [Show full text]
  • Boosting Anti-Infective Antibody and Vaccine Development
    ADVERTISEMENT FEATURE YUMAB GmbH www.yumab.com YUMAB: boosting anti-infective antibody and vaccine development YUMAB, a global provider of fully human monoclonal antibody discovery and development, has relocated its headquarters to Germany’s hotspot of infectious research and is advancing new opportunities for the expedited development of prophylactic and therapeutic antibodies and vaccines to fight infectious diseases. Biotechnology company YUMAB, a global provider The combination of deep expertise in infectious of fully human monoclonal antibody (mAb) dis- Therapeutics disease and an advanced fully human mAb discov- covery and development, has recently relocated its ery and development platform makes YUMAB an profile headquarters and research and development labs to ideal partner to drive infectious disease programs Science Campus Braunschweig-South, Germany’s Pathogens YUMAB® PLATFORM Vaccines from basic research to clinical translation. The fully infectious disease research hotspot. YUMAB is now human mAbs developed at YUMAB can be tailored colocated with the Helmholtz Centre of Infection to the specific needs of any kind of mAb develop- Diagnostics Research (HZI), the Leibniz Institute-German ment program, at any stage, and with the properties Collection of Microorganisms and Cell Cultures needed for novel prophylactic or therapeutic strate- (DSMZ) and the German Centre for Infection Research gies against infectious diseases. (DZIF): three world leaders in the fight against infec- Fig. 1| Driving anti-infective mAbs with YUMAB’s tious diseases that provide an ideal environment for fully human mAb and target discovery and Partnering to fight infectious diseases YUMAB to expand its global collaboration network development platform. YUMAB is committed to accelerating the develop- in this space.
    [Show full text]
  • Designated Indication Cumulative List of All Products That Have Received
    Cumulative List of all Products that have received Orphan Designation: Total active designations: 2002 Effecive: 5/5/2009 Generic Name Trade Name Designated Indication treatmentMarketing and/or Approved modification Indication of the Designated Date Market Exculsivity Date following conditions, which are Vaccinia Immune Globulin complications resulting from smallpox (Human) Intravenous CNJ-016 ForTreatment the control of complications and prevention of vacciniaof hemorrhagic vaccination episodes vaccination: Eczema vaccinatum 18.06.2004 01.05.9999 and for surgical prophylaxis in patients with hemophilia Antihemophilic factor A (congenital factor VIII deficiency or classic (recombinant) ReFacto hemophilia). 08.02.1996 01.01.9999 For use as a thyroid blocking agent in For use as a thyroid blocking agent in pediatric patients pediatric patients exposed to Potassium Iodide Oral Solution ThyroShield exposed to radiactive iodine radiactive iodine 17.11.2004 01.01.9999 Treatment (rescue) of respiratory Pulmonary surfactant For the treatment and prevention of respiratory distress distress syndrome in premature replacement, porcine Curosurf syndrome in premature infants. Longinfants. term treatment of children with 02.08.1993 01.01.9999 growth failure due to inadequate Treatment of idiopathic or organic growth hormone secretion of endogenous growth Somatropin (rDNA origin) Saizen deficiency in children with growth failure. Long-termhormone. treatment of growth failure 06.03.1987 01.01.9999 Long-term treatment of children who have growth failure due to a lack of adequate endogenous due to a lack of adequate endogenous growth hormone growth hormone secetion for once- or Somatropin (rDNA origin) Nutropin Depot secretion. twice-a-month administration. 28.10.1999 01.01.9999 Treatment of growth failure in children due to have growth failure due to inadequate Somatropin (rDNA origin) injection Norditropin inadequate growth hormone secretion.
    [Show full text]
  • 1 Supplementary Materials 1 2 Data Sources 3 in Total, 60 Antibodies
    1 Supplementary Materials 2 3 Data Sources 4 In total, 60 antibodies and antibody-based biologics that were approved 5 by the EMA or FDA between 1995 and 2019 were included in our analyses. 6 The excluded antibodies were: (1) the withdrawn or marketing discontinued antibodies 7 or fusion proteins (e.g., muromonab-CD3, efalizumab, tositumomab- 8 I131, daclizumab, catumaxomab, edrecolomab, Nebacumab, and alefacept); (2) 9 antibody-drug conjugates (e.g., brentuximab vedotin, ado-trastuzumab 10 emtansine, inotuzumab ozogamicin, gemtuzumab ozogamicin, 11 and polatuzumab vedotin); (3) bi-specific antibodies (e.g., emicizumab and 12 blinatumomab); (4) antibodies with neither F CL, nor KD information available 13 (e.g., Ibritumomab tiuxetan, efmoroctocog-α, eftrenonacog-α, mogamulizumab, 14 and ustekinumab); (5) single-dosed antibodies that cannot support Css calculation, 15 including abciximab, 16 alemtuzumab, basiliximmab, bezlotoxumab, idarucizumab, obiloxaximab, and 17 raxibacumab; and (6) local dosing and acting antibodies (e.g., aflibercept, ranibizumab, 18 and brolucizumab). 19 We obtained the labeled TDs and dosing regimens from 20 the Drugs@FDA website and the literature. The following information was also 21 collected: (1) molecular weight, (2) administration route, (3) bioavailability (F), (4) in 22 vitro antigen-binding dissociation constant (KD), (5) the antibody systemic clearance 23 (CL), (6) target abundance and half-life, (7) the approved indications, 24 and (8) the mechanism of action. More specifications for these parameters were 25 provided in the Supplementary Table 1. 26 1 27 Supplementary Figure 1 28 29 30 Supplementary Figure 1. Target turnovers are not relevant to TEARs in four 31 disease-target scenarios. Dots represent the mean values.
    [Show full text]
  • Ibm Micromedex® Carenotes Titles by Category
    IBM MICROMEDEX® CARENOTES TITLES BY CATEGORY DECEMBER 2019 © Copyright IBM Corporation 2019 All company and product names mentioned are used for identification purposes only and may be trademarks of their respective owners. Table of Contents IBM Micromedex® CareNotes Titles by Category Allergy and Immunology ..................................................................................................................2 Ambulatory.......................................................................................................................................3 Bioterrorism ...................................................................................................................................18 Cardiology......................................................................................................................................18 Critical Care ...................................................................................................................................20 Dental Health .................................................................................................................................22 Dermatology ..................................................................................................................................23 Dietetics .........................................................................................................................................24 Endocrinology & Metabolic Disease ..............................................................................................26
    [Show full text]