Technicolor Cinematography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Color Theory for Painting Video: Color Perception
Color Theory For Painting Video: Color Perception • http://www.ted.com/talks/lang/eng/beau_lotto_optical_illusions_show_how_we_see.html • Experiment • http://www.youtube.com/watch?v=y8U0YPHxiFQ Intro to color theory • http://www.youtube.com/watch?v=059-0wrJpAU&feature=relmfu Color Theory Principles • The Color Wheel • Color context • Color Schemes • Color Applications and Effects The Color Wheel The Color Wheel • A circular diagram displaying the spectrum of visible colors. The Color Wheel: Primary Colors • Primary Colors: Red, yellow and blue • In traditional color theory, primary colors can not be mixed or formed by any combination of other colors. • All other colors are derived from these 3 hues. The Color Wheel: Secondary Colors • Secondary Colors: Green, orange and purple • These are the colors formed by mixing the primary colors. The Color Wheel: Tertiary Colors • Tertiary Colors: Yellow- orange, red-orange, red-purple, blue-purple, blue-green & yellow-green • • These are the colors formed by mixing a primary and a secondary color. • Often have a two-word name, such as blue-green, red-violet, and yellow-orange. Color Context • How color behaves in relation to other colors and shapes is a complex area of color theory. Compare the contrast effects of different color backgrounds for the same red square. Color Context • Does your impression od the center square change based on the surround? Color Context Additive colors • Additive: Mixing colored Light Subtractive Colors • Subtractive Colors: Mixing colored pigments Color Schemes Color Schemes • Formulas for creating visual unity [often called color harmony] using colors on the color wheel Basic Schemes • Analogous • Complementary • Triadic • Split complement Analogous Color formula used to create color harmony through the selection of three related colors which are next to one another on the color wheel. -
Toland Asc Digital Assistant
TOLAND ASC DIGITAL ASSISTANT PAINTING WITH LIGHT or more than 70 years, the American Cinematographer Manual has been the key technical resource for cinematographers around the world. Chemical Wed- ding is proud to be partners with the American Society of Cinematographers in bringing you Toland ASC Digital Assistant for the iPhone or iPod Touch. FCinematography is a strange and wonderful craft that combines cutting-edge technology, skill and the management of both time and personnel. Its practitioners “paint” with light whilst juggling some pretty challenging logistics. We think it fitting to dedicate this application to Gregg Toland, ASC, whose work on such classic films as Citizen Kane revolutionized the craft of cinematography. While not every aspect of the ASC Manual is included in Toland, it is designed to give solutions to most of cinematography’s technical challenges. This application is not meant to replace the ASC Manual, but rather serve as a companion to it. We strongly encourage you to refer to the manual for a rich and complete understanding of cin- ematography techniques. The formulae that are the backbone of this application can be found within the ASC Manual. The camera and lens data have largely been taken from manufacturers’ speci- fications and field-tested where possible. While every effort has been made to perfect this application, Chemical Wedding and the ASC offer Toland on an “as is” basis; we cannot guarantee that Toland will be infallible. That said, Toland has been rigorously tested by some extremely exacting individuals and we are confident of its accuracy. Since many issues related to cinematography are highly subjective, especially with re- gard to Depth of Field and HMI “flicker” speeds, the results Toland provides are based upon idealized scenarios. -
CINERAMA: the First Really Big Show
CCINEN RRAMAM : The First Really Big Show DIVING HEAD FIRST INTO THE 1950s:: AN OVERVIEW by Nick Zegarac Above left: eager audience line ups like this one for the “Seven Wonders of the World” debut at the Cinerama Theater in New York were short lived by the end of the 1950s. All in all, only seven feature films were actually produced in 3-strip Cinerama, though scores more were advertised as being shot in the process. Above right: corrected three frame reproduction of the Cypress Water Skiers in ‘This is Cinerama’. Left: Fred Waller, Cinerama’s chief architect. Below: Lowell Thomas; “ladies and gentlemen, this is Cinerama!” Arguably, Cinerama was the most engaging widescreen presentation format put forth during the 1950s. From a visual standpoint it was the most enveloping. The cumbersome three camera set up and three projector system had been conceptualized, designed and patented by Fred Waller and his associates at Paramount as early as the 1930s. However, Hollywood was not quite ready, and certainly not eager, to “revolutionize” motion picture projection during the financially strapped depression and war years…and who could blame them? The standardized 1:33:1(almost square) aspect ratio had sufficed since the invention of 35mm celluloid film stock. Even more to the point, the studios saw little reason to invest heavily in yet another technology. The induction of sound recording in 1929 and mounting costs for producing films in the newly patented 3-strip Technicolor process had both proved expensive and crippling adjuncts to the fluidity that silent B&W nitrate filming had perfected. -
The Search for Spectators: Vistavision and Technicolor in the Searchers Ruurd Dykstra the University of Western Ontario, [email protected]
Kino: The Western Undergraduate Journal of Film Studies Volume 1 | Issue 1 Article 1 2010 The Search for Spectators: VistaVision and Technicolor in The Searchers Ruurd Dykstra The University of Western Ontario, [email protected] Abstract With the growing popularity of television in the 1950s, theaters experienced a significant drop in audience attendance. Film studios explored new ways to attract audiences back to the theater by making film a more totalizing experience through new technologies such as wide screen and Technicolor. My paper gives a brief analysis of how these new technologies were received by film critics for the theatrical release of The Searchers ( John Ford, 1956) and how Warner Brothers incorporated these new technologies into promotional material of the film. Keywords Technicolor, The Searchers Recommended Citation Dykstra, Ruurd (2010) "The Search for Spectators: VistaVision and Technicolor in The Searchers," Kino: The Western Undergraduate Journal of Film Studies: Vol. 1 : Iss. 1 , Article 1. Dykstra: The Search for Spectators The Search for Spectators: VistaVision and Technicolor in The Searchers by Ruurd Dykstra In order to compete with the rising popularity of television, major Hollywood studios lured spectators into the theatres with technical innovations that television did not have - wider screens and brighter colors. Studios spent a small fortune developing new photographic techniques in order to compete with one another; this boom in photographic research resulted in a variety of different film formats being marketed by each studio, each claiming to be superior to the other. Filmmakers and critics alike valued these new formats because they allowed for a bright, clean, crisp image to be projected on a much larger screen - it enhanced the theatre going experience and brought about a re- appreciation for film’s visual aesthetics. -
10. the Extraordinarily Stable Technicolor Dye-Imbibition Motion
345 The Permanence and Care of Color Photographs Chapter 10 10. The Extraordinarily Stable Technicolor Dye-Imbibition Motion Picture Color Print Process (1932–1978) Except for archival showings, Gone With the He notes that the negative used to make Wind hasn’t looked good theatrically since the existing prints in circulation had worn out [faded]. last Technicolor prints were struck in 1954; the “That negative dates back to the early ’50s 1961 reissue was in crummy Eastman Color when United Artists acquired the film’s distri- (the prints faded), and 1967’s washed-out bution rights from Warner Bros. in the pur- “widescreen” version was an abomination.1 chase of the old WB library. Four years ago we at MGM/UA went back to the three-strip Tech- Mike Clark nicolor materials to make a new internegative “Movies Pretty as a Picture” and now have excellent printing materials. All USA Today – October 15, 1987 it takes is a phone call to our lab to make new prints,” he says.3 In 1939, it was the most technically sophisti- cated color film ever made, but by 1987 Gone Lawrence Cohn With the Wind looked more like Confederates “Turner Eyes ’38 Robin Hood Redux” from Mars. Scarlett and Rhett had grown green Variety – July 25, 1990 and blue, a result of unstable film stocks and generations of badly duplicated prints. Hair The 45-Year Era of “Permanent” styles and costumes, once marvels of spectral Technicolor Motion Pictures subtlety, looked as though captured in Crayola, not Technicolor. With the introduction in 1932 of the Technicolor Motion Not anymore. -
The General Idea Behind Editing in Narrative Film Is the Coordination of One Shot with Another in Order to Create a Coherent, Artistically Pleasing, Meaningful Whole
Chapter 4: Editing Film 125: The Textbook © Lynne Lerych The general idea behind editing in narrative film is the coordination of one shot with another in order to create a coherent, artistically pleasing, meaningful whole. The system of editing employed in narrative film is called continuity editing – its purpose is to create and provide efficient, functional transitions. Sounds simple enough, right?1 Yeah, no. It’s not really that simple. These three desired qualities of narrative film editing – coherence, artistry, and meaning – are not easy to achieve, especially when you consider what the film editor begins with. The typical shooting phase of a typical two-hour narrative feature film lasts about eight weeks. During that time, the cinematography team may record anywhere from 20 or 30 hours of film on the relatively low end – up to the 240 hours of film that James Cameron and his cinematographer, Russell Carpenter, shot for Titanic – which eventually weighed in at 3 hours and 14 minutes by the time it reached theatres. Most filmmakers will shoot somewhere in between these extremes. No matter how you look at it, though, the editor knows from the outset that in all likelihood less than ten percent of the film shot will make its way into the final product. As if the sheer weight of the available footage weren’t enough, there is the reality that most scenes in feature films are shot out of sequence – in other words, they are typically shot in neither the chronological order of the story nor the temporal order of the film. -
Digital Refocusing with Incoherent Holography
Digital Refocusing with Incoherent Holography Oliver Cossairt Nathan Matsuda Northwestern University Northwestern University Evanston, IL Evanston, IL [email protected] [email protected] Mohit Gupta Columbia University New York, NY [email protected] Abstract ‘adding’ and ‘subtracting’ blur to the point spread functions (PSF) of different scene points, depending on their depth. In Light field cameras allow us to digitally refocus a pho- a conventional 2D image, while it is possible to add blur to tograph after the time of capture. However, recording a a scene point’s PSF, it is not possible to subtract or remove light field requires either a significant loss in spatial res- blur without introducing artifacts in the image. This is be- olution [10, 20, 9] or a large number of images to be cap- cause 2D imaging is an inherently lossy process; the angular tured [11]. In this paper, we propose incoherent hologra- information in the 4D light field is lost in a 2D image. Thus, phy for digital refocusing without loss of spatial resolution typically, if digital refocusing is desired, 4D light fields are from only 3 captured images. The main idea is to cap- captured. Unfortunately, light field cameras sacrifice spa- ture 2D coherent holograms of the scene instead of the 4D tial resolution in order to capture the angular information. light fields. The key properties of coherent light propagation The loss in resolution can be significant, up to 1-2 orders are that the coherent spread function (hologram of a single of magnitude. While there have been attempts to improve point source) encodes scene depths and has a broadband resolution by using compressive sensing techniques [14], spatial frequency response. -
Thanks for Downloading the Sample Chapters
Thanks for Downloading the Sample Chapters Here are the chapters included. The Quick Start chapter, the first in the book, which identifies five quick ways to up the video and audio quality of your webinars and videoconferences. Chapter 5: Simple Lighting Techniques. The easiest way to significantly improve the quality of video produced by webcams and smartphones is to add lighting. You don’t have to spend a fortune; in fact, my go-to setup cost $30. You can read about this and more in this chapter. Chapter 9: Working With Audio on Android Devices. How to add and control a microphone on Android devices. Chapter 14: Working with Onstream Webinars. Audio and video adjustment controls available in Onstream Webinars. After the chapters, I’ve inserted the introduction to the book, and then the table of contents, so you can see what else is covered in the book. Thanks for having a look. Quick Start: Do This, Don’t Do That Figure a. Check your upload speed well in advance; don’t just pray for the best. This chapter contains highlights from various chapters in the book, both as a quick-start reference and as an introduction to the materials covered in the book. As you can see in Figure a, it’s better to check your outbound bandwidth with a tool called Speedtest than to simply pray that your bandwidth is sufficient. Chapter 1 has tables detailing the recommended bitrate for various conferencing and webinar applications, and other, related tips. Note that Speedtest is available as an app for both iOS and Android platforms, so you can check there as well. -
Cinematography
CINEMATOGRAPHY ESSENTIAL CONCEPTS • The filmmaker controls the cinematographic qualities of the shot – not only what is filmed but also how it is filmed • Cinematographic qualities involve three factors: 1. the photographic aspects of the shot 2. the framing of the shot 3. the duration of the shot In other words, cinematography is affected by choices in: 1. Photographic aspects of the shot 2. Framing 3. Duration of the shot 1. Photographic image • The study of the photographic image includes: A. Range of tonalities B. Speed of motion C. Perspective 1.A: Tonalities of the photographic image The range of tonalities include: I. Contrast – black & white; color It can be controlled with lighting, filters, film stock, laboratory processing, postproduction II. Exposure – how much light passes through the camera lens Image too dark, underexposed; or too bright, overexposed Exposure can be controlled with filters 1.A. Tonality - cont Tonality can be changed after filming: Tinting – dipping developed film in dye Dark areas remain black & gray; light areas pick up color Toning - dipping during developing of positive print Dark areas colored light area; white/faintly colored 1.A. Tonality - cont • Photochemically – based filmmaking can have the tonality fixed. Done by color timer or grader in the laboratory • Digital grading used today. A scanner converts film to digital files, creating a digital intermediate (DI). DI is adjusted with software and scanned back onto negative 1.B.: Speed of motion • Depends on the relation between the rate at which -
Guided Tour of Color Space
A Guided Tour of Color Space Charles Poynton This article describes the theory of color repro- dent radiation with different spectral response duction in video, and some of the engineering curves. Because there are exactly three types of compromises necessary to make practical color photoreceptors, three components are cameras and practical coding systems. necessary and sufficient to describe a color, providing that appropriate spectral weighting Video processing is generally concerned with functions are used: Color vision is inherently color represented in three components derived trichromatic. from the scene, usually red, green, and blue or components computed from these. Once red, A fourth type of photoreceptor cell, the rod, is green, and blue components of a scene are also present in the retina. Rods are effective only obtained, color coding systems transform these at extremely low light intensities. Because there components into other forms suitable for is only one type of rod cell, “night vision” cannot processing, recording, and transmission. Accu- perceive color. Image reproduction takes place at rate color reproduction depends on knowledge light levels sufficiently high that the rod recep- of exactly how the physical spectra of the orig- tors play no role. inal scene are transformed into these compo- nents and exactly how the color components are Isaac Newton said, “Indeed rays, properly transformed to physical spectra at the display. expressed, are not colored.” Spectral power distributions (SPDs) exist in the physical world, I use the term luminance and the symbol Y to but color exists only in the eye and the brain. refer to true, CIE luminance, a linear-light quan- tity proportional to physical intensity. -
White Paper the Twilight Zone
White paper The twilight zone …a journey through the magic realm of color spaces, gray shades, color temperatures, just noticeable differences and more Goran Stojmenovik Product Manager Barco Control Rooms division The whole story behind display specifications and human vision (2) Abstract Our world and the displays representing it are not black and white, as someone might think when seeing a display spec consisting only of luminance and contrast. There is much more, there is a whole world of gray shades, color spaces, color temperatures, contrast sensitivities, just noticeable differences. Knowing what “brightness” and “luminance” are and being able to distinguish them, knowing what influences on-screen contrast of a display, and knowing how the eye adapts to changes in luminance levels – these are factors you should have learned from the first part of this white paper. Here, we will go into deeper waters of human vision, to explain when we perceive a display as a good display, and what are the requirements posed by the human visual system to create a good display. Page 1 of 9 www.barco.com White paper The twilight zone Display requirements and human vision Gamma When we talk about brightness and contrast, we cannot THE GAMMA DETERMINES THE skip the famous “gamma.” For one specified contrast, BRIGHTNESS OF THE MID-GRAY we know it’s the brightest white and darkest black that SHADES matter. But, what about all the in-between? This is the region of the gray shades. They are produced by tilting the liquid crystal molecules with a voltage (in LCD displays), or by modulating the amount of time a certain DMD mirror is on during one frame (in DLP projection displays). -
Kelvin Color Temperature
KELVIN COLOR TEMPERATURE William Thompson Kelvin was a 19th century physicist and mathematician who invented a temperature scale that had absolute zero as its low endpoint. In physics, absolute zero is a very cold temperature, the coldest possible, at which no heat exists and kinetic energy (movement) ceases. On the Celsius scale absolute zero is -273 degrees, and on the Fahrenheit scale it is -459 degrees. The Kelvin temperature scale is often used for scientific measurements. Kelvins, as the degrees are now called, are derived from the actual temperature of a black body radiator, which means a black material heated to that temperature. An incandescent filament is very dark, and approaches being a black body radiator, so the actual temperature of an incandescent filament is somewhat close to its color temperature in Kelvins. The color temperature of a lamp is very important in the television industry where the camera must be calibrated for white balance. This is often done by focusing the camera on a white card in the available lighting and tweaking it so that the card reads as true white. All other colors will automatically adjust so that they read properly. This is especially important to reproduce “normal” looking skin tones. In theatre applications, where it is only important for colors to read properly to the human eye, the exact color temperature of lamps is not so important. Incandescent lamps tend to have a color temperature around 3200 K, but this is true only if they are operating with full voltage. Remember that dimmers work by varying the voltage pressure supplied to the lamp.