Estudio Del Barco Viga De Un Buque Mediante Diversos Métodos Numéricos

Total Page:16

File Type:pdf, Size:1020Kb

Estudio Del Barco Viga De Un Buque Mediante Diversos Métodos Numéricos UNIVERSIDAD POLITÉCNICA DE CARTAGENA Estudio del barco viga de un buque mediante diversos métodos numéricos. Aplicación a un Ro-Ro. GRADO EN ARQUITECTURA NAVAL E INGENIERÍA DE SISTEMAS MARINOS Autor: Clara Salmerón Bermúdez Directora del trabajo: Sonia Busquier Sáez Codirector del trabajo: Juan Ruiz Álvarez AGRADECIMIENTOS Primero de todo, me gustaría agradecer a mis tutores de TFG, por la ayuda prestada para poder llevar a cabo este proyecto. He aprendido mucho, y admiro la pasión y la entrega que realizáis día a día por vuestro trabajo y por vuestros alumnos. A Marta, Yesenia, Borja, Victoria, Germán, Samuel y Nico, por haberme acompañado y apoyado desde el principio y durante todos estos años para seguir adelante. Sé que este no será el fin de nuestras historias. Y a las nuevas amistades, por permitirme entrar en vuestras vidas y descubrir nuevos mundos. Por último, a mi familia, por el apoyo incondicional sin el que no hubiese podido realizar estos estudios. 2 OBJETIVOS Este trabajo se plantea con el objetivo de simplificar y generalizar el cálculo del Barco Viga estudiado. La idea surge a partir de la motivación por aprender a emplear el lenguaje de MATLAB en mayor profundidad y ser capaz de diseñar una interfaz gráfica útil y simple de uso para el usuario, de forma que se puedan analizar los resultados obtenidos. En el cálculo del Barco Viga, se emplean frecuentemente integrales definidas de funciones que pueden llegar a ser complejas, es por esto por lo que se emplean métodos de cuadratura que nos ayudan a obtener soluciones próximas a la real. Para buques de gran eslora y formas complejas, esto puede llegar a ser costoso desde el punto de vista computacional. Es por esto por lo que se pretende simplificar estos cálculos mediante la interfaz propuesta. Otro objetivo propuesto es la capacidad de aplicar esta programación al buque seleccionado para el proyecto y obtener los resultados después de realizar un alargamiento del buque. Este alargamiento se plantea con el objetivo de aumentar la capacidad de carga, y la posibilidad de aplicar un método estadístico de cálculo de potencia que nos permite determinar si el motor instalado es adecuado, también realizaremos el estudio del buque viga para esta situación del buque ya alargado. El método estadístico empleado para el cálculo de la resistencia al avance del buque también tendrá una interfaz gráfica propia, ya que resulta interesante ver de forma gráfica los resultados obtenidos, de esta forma se permite simplificar los cálculos como se ha comentado anteriormente. 4 Índice 1 Motivación ................................................................................................................. 11 2 Introducción ............................................................................................................... 12 2.1 Historia del arte ................................................................................................ 14 3 Nociones Previas ........................................................................................................ 20 3.1 Dimensiones principales del buque ................................................................. 21 3.2 Otras definiciones de características del buque ............................................... 24 3.3 Características hidrostáticas del buque ............................................................ 25 3.4 Definiciones sobre resistencia de materiales ................................................... 27 3.5 Características de las olas ................................................................................ 28 3.6 Componentes de la resistencia al avance ......................................................... 30 4 Introducción a MATLAB .......................................................................................... 31 5 Estudio del barco-viga ............................................................................................... 34 5.1 Curva de pesos ................................................................................................. 36 5.2 Curva de empujes ............................................................................................. 37 5.3 Curva de cargas ................................................................................................ 37 6 Resistencia al avance ................................................................................................. 38 6.1 Resistencia viscosa, RV ................................................................................... 39 6.2 Resistencia de los apéndices, RAP .................................................................... 39 6.3 Resistencia por formación de olas, RW ............................................................ 40 6.4 Resistencia de presión producida por el bulbo, RB .......................................... 41 6.5 Resistencia adicional debida a la inmersión del espejo, RTR ........................... 42 6.6 Resistencia debida a la correlación modelo-buque, RA ................................... 42 7 Fundamentos Matemáticos ........................................................................................ 43 7.1 Regla del trapecio ............................................................................................ 44 7.2 Regla de Simpson ............................................................................................ 45 7.3 Fórmulas de Newton-Cotes.............................................................................. 47 8 Funcionalidad y Caso práctico ................................................................................... 51 8.1 Método de Holtrop y selección del motor ....................................................... 53 8.2 Alargamiento del buque ................................................................................... 62 8.3 Cálculo del barco viga ..................................................................................... 64 8.3.1 Aplicación a un ejemplo como base del programa ................................... 66 8.3.2 Aplicación al buque de estudio ................................................................. 70 8.3.3 Condición de equilibrio para aguas tranquilas ......................................... 72 8.3.4 Condición de equilibrio en arrufo ............................................................. 75 8.3.5 Condición de equilibrio en quebranto ...................................................... 78 6 9 Conclusiones .............................................................................................................. 82 10 Bibliografía ................................................................................................................ 84 11 Anexo I ...................................................................................................................... 95 11.1 Programa para la Interfaz de Inicio .............................................................. 95 11.2 Programa para la Interfaz del Método de Holtrop ........................................ 97 11.3 Programa para la Interfaz del Buque – Viga .............................................. 141 11.4 Programa para la obtención de la curva de Cargas .................................... 170 11.5 Programa para la obtención de la curva de Empuje ................................... 172 11.6 Programa para la obtención de la curva de Fuerzas Cortantes mediante el Método de los Trapecios............................................................................................... 176 11.7 Programa para la obtención de la curva de Momentos Flectores mediante el Método de los Trapecios............................................................................................... 178 11.8 Programa para la obtención de la curva de Fuerzas Cortantes mediante el Método de Simpson ...................................................................................................... 180 11.9 Programa para la obtención de la curva de Momentos Flectores mediante el Método de Simpson ...................................................................................................... 186 12 Anexo II ................................................................................................................... 189 13 Anexo III .................................................................................................................. 192 7 Índice de Figuras Figura 1.1 – Buque Ro-Ro Amadeo Matacena. ............................................................. 11 Figura 2.1 - Rampa de popa del buque Tai Ma de Tønsberg. ........................................ 12 Figura 2.2 - Rampa de proa del ferry Nils Holgersson. .................................................. 13 Figura 2.3 - Representación gráfica de las situaciones del buque sobre la ola. .............. 14 Figura 2.4 - Buque Forfashire. ....................................................................................... 14 Figura 2.5 - Robert Fulton. ............................................................................................. 15 Figura 2.6 - Nautilus, el primer submarino de Fulton. ................................................... 16 Figura 2.7 - El buque Clermont. ..................................................................................... 17 Figura 2.8 - Thomas Simpson. ....................................................................................... 17 Figura 2.9 - Thomas Bouch. ........................................................................................... 18 Figura
Recommended publications
  • The Collection
    2014 THE COLLECTION GREAT LAKES SHIPYARD Jensen Maritime Consultants is a full-service naval architecture and marine engineering firm that delivers innovative, comprehensive and high-value engineering solutions to the marine community. 1 THE COLLECTION................................................................................3 60 WORKBOAT.............................................................................5 65 Z-DRIVE TUG...........................................................................7 74 MULTI-PURPOSE TUG...........................................................9 86 Z-DRIVE TUG..........................................................................11 92 ASD TRACTOR TUG.............................................................13 94 Z-DRIVE TUG.........................................................................15 100 Z-DRIVE TUG........................................................................17 100 LNG TUG...............................................................................19 111 MULTI-PURPOSE TUG..........................................................21 150 LINEHAUL TUG...................................................................23 CONTACT US.......................................................................................25 Great Lakes Shipyard is a full-service shipyard for new vessel and barge construction, fabrication, maintenance, and repairs in a state-of-the-art facility that includes a 770-ton mobile Travelift and a 300-ton floating drydock. 2 JENSEN SERIES THE COLLECTION
    [Show full text]
  • 92 Asd Tractor
    2014 JENSEN SERIES 92 ASD TRACTOR TUG GREAT LAKES SHIPYARD Jensen Maritime Consultants is a full-service naval architecture and marine engineering firm that delivers innovative, comprehensive and high-value engineering solutions to the marine community. 1 AT-A-GLANCE.......................................................................................3 ART & SCIENCE....................................................................................5 ENGINEERING EXCELLENCE...........................................................6 PROVEN DESIGN.................................................................................7 ELECTRONICS & NAVIGATION........................................................9 MACHINERY...........................................................................................11 DECK EQUIPMENT.............................................................................12 FIRE-FIGHTING...................................................................................13 SPECIFICATIONS.................................................................................15 CONTACT US.......................................................................................18 Great Lakes Shipyard is a full-service shipyard for new vessel and barge construction, fabrication, maintenance, and repairs in a state-of-the-art facility that includes a 770-ton mobile Travelift and a 300-ton floating drydock. 2 Designed by Jensen Maritime Consultants. Proudly built by Great Lakes Shipyard. The 92’ x 38’ tugboat is built to perform
    [Show full text]
  • Download Our Apps Iphone & Android Joseph Keefe, Editor, [email protected]
    The Information Authority for the Workboat • Offshore • Inland • Coastal Marine Markets Volume 27 • Number 7 arine JULY 2016 M News www.marinelink.com Propulsion Technology Full Speed Ahead with Volvo Penta Insights Propulsion Defined by Bob Kunkel ATB Design Comes of Age Marrying the hull to the propulsion package Emissions Proactive Partnership Produces Environmental Protection MN July16 C2, C3, C4.indd 1 6/20/2016 11:36:17 AM MN July16 Layout 1-17.indd 1 6/20/2016 3:13:24 PM CONTENTS MarineNews July 2016 • Volume 27 Number 7 Credit: Volvo Penta Credit: Volvo INSIGHTS 12 Robert Kunkel LNG? Methanol as fuel? Hybrid systems? Tier 4? MarineNews readers have questions and Bob Kun- kel has answers. Features Credit: Co., Inc Bouchard Transportation REGULATORY COMPLIANCE 24 ATB Design Comes of Age Bouchard’s newest ATB units have been exceeding 20 How Watertight is Your Integrity? performance expectations. Coordination between the design A watertight boat is a beautiful thing. It keeps you team and the propulsion OEM is a major reason why. afl oat in heavy seas. Can you say the same for your By Kathy A. Smith company’s integrity? By Captain Katharine Sweeney 30 Volvo Penta Debuts New Diesel Engine and IPS Volvo Penta’s concerted push into the commercial marine market continues with the introduction of the D8 diesel INSURANCE engine and the new IPS15 propulsion system. 22 Revised PREP Guidelines By Greg Trauthwein Effective June 2016: What You Should Know By Kate Kelley 38 Partnerships Produce Proactive Environmental Protection A forward-thinking approach by environmentally con- PROPULSION: EMISSIONS scious ferry operators produces green ferries that exceed local emission standards.
    [Show full text]
  • Download Caterpillar Parts Catalog
    NEW REPLACEMENT PARTS FOR HEAVY EQUIPMENT Integrated Toolcarrier / Compactor 31 Linear Actuators 50 INDEX Wheel Loader / Integrated Toolcarrier 31 Pressure Sensors 50 All part numbers available are not Vibratory Compactors 31 Magnetic Switches 50 Digital Hour Meters 31 Kickout and Bucket Positioners 50 included. This is not a full catalog. Gauges 32 Speed Sensors 50 INDEX Mechanical Temperature Gauges 32 Solenoids 51 AIR INLET & Electrical Temperature Gauges 32 Starting Motor Solenoids 51 EXHAUST SYSTEM 8 Pressure Transducer 32 Semi Solid Solenoids 51 Electrical Pressure Gauges 32 Fuel Shutoff Solenoids 51 Air Intake/ Exhaust Clamps 8 Mechanical Pressure Gauges 32 Starter Motors 51 Manifolds 8 Ammeters 33 Single Manifolds 8 Vane Air Starter Motors 52 Gas Springs 33 Switches 52 Group Manifolds 9 Steps 33 Mufflers 9 Steps Support 33 DIESEL ENGINE COMPONENTS 53 Muffler Pipes 10 Ignition Switches 33 Engine Blocks 55 Turbochargers 11 Mirrors 33 Custom Engines 55 Turbochargers for Komatsu® 14 Fuel Caps 34 Inframe Overhaul Kits 55 BEARINGS 15 Repair Kit 34 Inframe Overhaul Kits for Composite Bearings 15 Seats 34 Backhoe Applications 56 Premium Inframe Overhaul Kits 56 Sleeve Bearings 16 COOLING SYSTEM 36 Crankshafts 57 Spherical Bearings 16 Oil Coolers 36 Crankshafts for Komatsu® 57 QUALITY WITH VALUE... Tapered Roller Bearings 17 Radiators 37 Engine Bearings 57 TM Cone Bearings 17 Folded Core Radiators 37 Cup Bearings 17 Camshafts 58 Reversible & Standard Fans 38 Lifters 59 GUARANTEED Other Tapered Bearings also Available 18 Standard Fans 38
    [Show full text]
  • AP-900B Asphalt Paver Specalog
    AP-900B Rubber Tire Asphalt Paver Operating weight: with Extend-A-Mat B Screed 17 900 kg 39,350 lb with Pavemaster B Screed 16 300 kg 35,800 lb Hopper Capacity 6,1 cu m 215 cu ft Standard Paving Width 3,05 m 10 ft Maximum Paving Range: with Extend-A-Mat B Screed 2,44 - 7,37 m 8 - 24 ft 2 in with Pavemaster B Screed 2,44 - 9,14 m 8 - 30 ft Caterpillar® Diesel Engine Model 3116T is a high-tech six cylinder diesel engine designed to provide quiet performance, high reliability, easy servicing and excellent fuel economy. Turbocharged for top performance and efficiency especially at high altitudes. Transverse-mounted engine provides better cooling performance and greater accessibility for service. Meets EPA/CARB emissions engine regulations. Low sound emission complies with major regulatory rules according to Caterpillar sound pad test results. Heavy duty unit-type fuel injection and low pressure fuel lines minimize opportunity for fuel leaks. Intake manifold heater preheats incoming air for quick cold-weather starting. Hydrostatic Drive System Efficient hydraulic drive system eliminates chains and other mechanical linkages between diesel engine and final drive components. Fully hydrostatic transmission provides Dual-Displacement efficient, low-maintenance operation. Propel Motors Anti-slip/balance propel system assures either wheel will continue to drive even if the other wheel is slipping. Separate propel circuit for each drive wheel provides positive traction. Infinite speed selection within the pave and travel speed ranges. Optional front wheel assist enhances rimpull on soft bases. Single-Speed Variable-Displacement Planetary Drive Propel Pumps 2 Operator’s Station Single operator's station designed for comfort and optimum efficiency.
    [Show full text]
  • Caterpillar Machine Fluids Recommendations
    SEBU6250-15 January 2008 Caterpillar Machine Fluids Recommendations i01658146 Important Safety Information Most accidents that involve product operation, maintenance and repair are caused by failure to observe basic safety rules or precautions. An accident can often be avoided by recognizing potentially hazardous situations before an accident occurs. A person must be alert to potential hazards. This person should also have the necessary training, skills and tools to perform these functions properly. Improper operation, lubrication, maintenance or repair of this product can be dangerous and could result in injury or death. Do not operate or perform any lubrication, maintenance or repair on this product, until you have read and understood the operation, lubrication, maintenance and repair information. Safety precautions and warnings are provided in this manual and on the product. If these hazard warnings are not heeded, bodily injury or death could occur to you or to other persons. The hazards are identified by the “Safety Alert Symbol” and followed by a “Signal Word” such as “DANGER”, “WARNING” or “CAUTION”. The Safety Alert “WARNING” label is shown below. The meaning of this safety alert symbol is as follows: Attention! Become Alert! Your Safety is Involved. The message that appears under the warning explains the hazard and can be either written or pictorially presented. Operations that may cause product damage are identified by “NOTICE” labels on the product and in this publication. Caterpillar cannot anticipate every possible circumstance that might involve a potential hazard. The warnings in this publication and on the product are, therefore, not all inclusive. If a tool, procedure, work method or operating technique that is not specifically recommended by Caterpillar is used, you must satisfy yourself that it is safe for you and for others.
    [Show full text]
  • Evaluation of Integrated Electric Plants for Great Lakes Self-Unloaders
    Integrated Electric Plants in Future Great Lakes Self-Unloaders Type of Report: Final PI: Assistant Professor David J. Singer Phone: 734-764-4509 FAX: 734-936-8820 e-mail: [email protected] Co-PI: Professor Emeritus Michael G. Parsons Phone: 734-945-2886 FAX: 734-936-8820 e-mail: [email protected] Date: March 28, 2011 University of Michigan Department of Naval Architecture and Marine Engineering 2600 Draper Drive Ann Arbor, MI 48109-2145 This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the Great Lakes Maritime Research Institute. This report does not contain a standard or specified technique. The authors and the Great Lakes Maritime Research Institute do not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to this report. Research funded in part by the Great Lakes Maritime Research Institute. This study was supported by the U.S. Department of Transportation, Office of the Secretary, Grant # DTMA1-G-10001. 1 Integrated Electric Plants in Future Great Lakes Self-Unloaders Michael G. Parsons1, David J. Singer2, and Samuel J. Denomy3 _______________________________________________________________________________________________________ The feasibility and potential benefits of using Integrated Electric Plants in future Great Lakes self-unloaders are evaluated. Integrated Electric Plants, the all-electric ship, utilize electrical propulsion motors and central station power generation that powers all propulsion, thruster, self-unloading equipment and other ship service needs. Integrated Electric Plants have become the plant of choice in many recent naval vessels, cruise ships, high technology cargo vessels and special purpose vessels, such as offshore supply and service vessels and icebreakers.
    [Show full text]
  • H:\My Documents\Article.Wpd
    Vehicle Data Codes as of 1/26/2010 Press CTRL + F to prompt the search field. VEHICLE DATA CODES TABLE OF CONTENTS 1--LICENSE PLATE TYPE (LIT) FIELD CODES 1.1 LIT FIELD CODES FOR REGULAR PASSENGER AUTOMOBILE PLATES 1.2 LIT FIELD CODES FOR AIRCRAFT 1.3 LIT FIELD CODES FOR ALL-TERRAIN VEHICLES AND SNOWMOBILES 1.4 SPECIAL LICENSE PLATES 1.5 LIT FIELD CODES FOR SPECIAL LICENSE PLATES 2--VEHICLE MAKE (VMA) AND BRAND NAME (BRA) FIELD CODES 2.1 VMA AND BRA FIELD CODES 2.2 VMA, BRA, AND VMO FIELD CODES FOR AUTOMOBILES, LIGHT-DUTY VANS, LIGHT- DUTY TRUCKS, AND PARTS 2.3 VMA AND BRA FIELD CODES FOR CONSTRUCTION EQUIPMENT AND CONSTRUCTION EQUIPMENT PARTS 2.4 VMA AND BRA FIELD CODES FOR FARM AND GARDEN EQUIPMENT AND FARM EQUIPMENT PARTS 2.5 VMA AND BRA FIELD CODES FOR MOTORCYCLES AND MOTORCYCLE PARTS 2.6 VMA AND BRA FIELD CODES FOR SNOWMOBILES AND SNOWMOBILE PARTS 2.7 VMA AND BRA FIELD CODES FOR TRAILERS AND TRAILER PARTS 2.8 VMA AND BRA FIELD CODES FOR TRUCKS AND TRUCK PARTS 2.9 VMA AND BRA FIELD CODES ALPHABETICALLY BY CODE 3--VEHICLE MODEL (VMO) FIELD CODES 3.1 VMO FIELD CODES FOR AUTOMOBILES, LIGHT-DUTY VANS, AND LIGHT-DUTY TRUCKS 3.2 VMO FIELD CODES FOR ASSEMBLED VEHICLES 3.3 VMO FIELD CODES FOR AIRCRAFT 3.4 VMO FIELD CODES FOR ALL-TERRAIN VEHICLES 3.5 VMO FIELD CODES FOR CONSTRUCTION EQUIPMENT 3.6 VMO FIELD CODES FOR DUNE BUGGIES 3.7 VMO FIELD CODES FOR FARM AND GARDEN EQUIPMENT 3.8 VMO FIELD CODES FOR GO-CARTS 3.9 VMO FIELD CODES FOR GOLF CARTS 3.10 VMO FIELD CODES FOR MOTORIZED RIDE-ON TOYS 3.11 VMO FIELD CODES FOR MOTORIZED WHEELCHAIRS 3.12
    [Show full text]
  • Application to Revise Minor Source Specific Permit AQ0215MSS03 for the Project Description
    Application to Revise Minor Source Specific Permit AQ0215MSS03 for City of Unalaska Dutch Harbor Power Plant Submitted To: Alaska Department of Environmental Conservation Division of Air Quality, Air Permits Program Prepared By: 200 West 34th Avenue, PMB 253, Anchorage, AK 99503 www.hmhconsulting.org December 2019 City of Unalaska, Dutch Harbor Power Plant Application to Revise AQ0215MSS03 December 2019 Table of Contents 1.0 Introduction .......................................................................................................................... 5 1.1 Facility Operations and Permitting History ..................................................................... 5 1.2 Project Purpose and Overview ......................................................................................... 7 1.3 Application Contents ........................................................................................................ 8 1.4 Location and Description of Project Area ........................................................................ 8 2.0 Stationary Source Identification .......................................................................................... 9 3.0 Emission Unit Inventory and Description.......................................................................... 10 4.0 Stationary Source Emissions and Permitting Applicability ............................................... 10 4.1 Applicability of PSD Permitting under 40 CFR 52.21 ................................................... 11 4.1.1 Major Modification
    [Show full text]
  • Tug Boats for Sale Priced to Sell
    BECAUSE PERFORMANCE MATTERS AN INVESTMENT IN YOUR FLEET THAT PAYS FOR ITSELF Independently tested, high-performance hydrodynamic solutions help maximize power while reducing fuel consumption. WWW.NAUTICAN.COM Only ONE Radar clearly stands above the rest! Radar Series Selected by the USCG Cutter Fleet 20.1˝ Color LCD, 23.1˝ Color LCD or Black Box 12kW, 25kW or 50kW X-Band 30kW or 60kW S-Band ➤ Ethernet interswitching of up to four Radars ➤ Display ranges in Nautical Miles (nm) or Statute Miles (sm) ➤ Easy to use menus with trackball control ➤ On-screen “Tow Icon” displays length & width of ➤ Operator selected multi-color target presentation towboat/barges ➤ Available in X-Band and S-Band ➤ Chart overlay with optional CU200 chart card reader* ➤ ARPA — Auto plotting/tracking of 100 targets ➤ Interfaces with MaxSea TimeZero Navigation Software manually or automatically ➤ Backed by Furuno’s Worldwide Service Network ➤ Displays 1,000 AIS targets* ➤ Furuno’s Radar Technology has been awarded “Best Radar” by the National Marine Electronics Association for the past 35 years * Appropriate sensors required EXCLUSIVE: World’s fi rst IMO ECDIS that directly interfaces with Furuno’s FAR2xx7 Radar Series! ELECTRONIC CHART DISPLAY AND INFORMATION SYSTEM One of the outstanding features of Furuno commercial Radars is the Ethernet-based network capability, which makes it possible to create a navigation network with other onboard equipment such as the new FMD3200 ECDIS (Electronic Chart Display and Information System). The Ethernet-based data link makes the data transfer speedy and stable, while keeping maintenance simple. For more information on the New Furuno ECDIS, scan QR Code.
    [Show full text]
  • Resolution 2017-63
    MEMORANDUM TO COUNCIL TO: MAYOR AND CITY COUNCIL MEMBERS FROM: DAN WINTERS, DIRECTOR OF PUBLIC UTILITIES THRU: NANCY PETERSON, INTERIM CITY MANAGER DATE: OCTOBER 24, 2017 RE: RESOLUTION 2017-63 – A RESOLUTION OF THE UNALASKA CITY COUNCIL AUTHORIZING THE CITY MANAGER TO ENTER INTO AN AGREEMENT WITH V3 ENERGY, LLC, TO PERFORM THE WIND POWER DEVELOPMENT & INTEGRATION ASSESSMENT PHASE II PROJECT IN THE AMOUNT OF $45,481. SUMMARY: From 2003 to 2005, a Phase 1 analysis of the feasibility for wind energy in Unalaska was conducted by Northern Power Systems. Phase II of that project was never realized due to the inability of windmills of that era to withstand Unalaska’s wind speeds. Due to recent interest by the Unalaska City Council in renewable energy, coupled with the availability of new technology, the City of Unalaska Department of Public Utilities let a Request for Qualifications (RFQ) for Phase II of the Wind Power Development and Integration Assessment Project. Resolution No. 2017-63 will award the Phase II work to V3 Energy, LLC for $45,481 PREVIOUS COUNCIL ACTION: In 2003, Unalaska City Council approved the Wind Integration Assessment Project through Ordinance 2003-11. In FY2018 Council funded the Wind Power Development and Integration Assessment Project through Capital Budget Ordinance 2017-07 by providing $200,000 from the General Fund. BACKGROUND: In 1999, a Wind Energy Feasibility Study of Unalaska was conducted for the State of Alaska’s Division of Energy. In 2000, the US Department of Energy conducted an Energy Assessment for Unalaska as potential sites for future wind turbine development, in which Unalaska was ruled out due to the potential of excessively high wind speeds.
    [Show full text]
  • Rigamarole Fall 2014S
    RIGAMAROLE FALL 2014 ISSUE NO. 33 RIGAMAROLE FALL 2014 ISSUE NO. 33 A LETTER FROM MARC EDWARDS, TURNS TEN PRESIDENT AND CHIEF EXECUTIVE OFFICER RIGAMAROLE 02 AN EXTRAORDINARY ENDEAVOR 42 BARGES TO BEHEMOTHS Early in 2014 the Ocean Endeavor was scheduled Diamond Offshore traces the Company’s begin- With this issue, Diamond Offshore commemorates ten years of publishing to move to Romanian waters, in anticipation of nings to the earliest days of the offshore drilling Rigamarole in its current format. This anniversary provides an apt planned ExxonMobil and OMV Petrom exploration industry. Today, after decades of innovation and occasion to reflect upon what has happened in our industry during the wells in the area. But before any drill bit could bite opportunistic multiple-company and rig acquisi- into the silty sea bottom, the rig had to go through tions, Diamond Offshore provides contract drilling past ten years, and more importantly, what might lie ahead. a series of carefully planned, perfectly executed services to the energy industry around the globe steps to get there. and is a leader in deepwater drilling. From a personal perspective, this edition is of particular Diamond’s talented employees’ contribution is so relevance as it’s my first since joining Diamond Offshore important. This is what contributes to the Diamond as President and CEO in March of this year. I have Difference and will get us across the line first. We will communicated my thoughts regularly with the Diamond emerge from this cycle with an even brighter shine. 24 A FLEET TO MATCH THE MARKETS 48 ENDEAVOR(ING) TO SUCCEED Ten years ago, Diamond Offshore’s approach to The shipyard phase of the Ocean Endeavor organization since I came on board, but I’ll take the As we look to the future, it is also important that fleet building was much as it is today.
    [Show full text]