Performance Analysis of Token Bus Protocol with Maintenance Functions Joon-Nyun Kim Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Performance Analysis of Token Bus Protocol with Maintenance Functions Joon-Nyun Kim Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1987 Performance analysis of token bus protocol with maintenance functions Joon-Nyun Kim Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons, and the Transportation Commons Recommended Citation Kim, Joon-Nyun, "Performance analysis of token bus protocol with maintenance functions " (1987). Retrospective Theses and Dissertations. 8663. https://lib.dr.iastate.edu/rtd/8663 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or 6" X 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. •UMIAccessing the World's Information since 1938 300 North Zeeb Road, Ann Arbor Ml 48106-1346 USA Order Number 8805093 Performance analysis of token bus protocol with maintenance functions Kim, Joon-Nyun, Ph.D. Iowa State University, 1987 UMI 300N.ZeebRd. Ann Arbor, MI 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V . 1. Glossy photographs or pages 2. Colored illustrations, paper or print 3. Photographs with dark background 4. Illustrations are poor copy 5. Pages with black marks, not original copy 6. Print shows through as there is text on both sides of page 7. Indistinct, broken or small print on several pages i/ 8. Print exceeds margin requirements 9. Tightly bound copy with print lost in spine 10. Computer printout pages with indistinct print 11. Page(s) lacking when material received, and not available from school or author. 12. Page(s) seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curling and wrinkled pages 15. Dissertation contains pages with print at a slant, filmed as received \/ 16. Other UMI Performance analysis of token bus protocol with maintenance functions by Joon-Nyun Kim A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department: Electrical Engineering and Computer Engineering Major: Computer Engineering Approved; Signature was redacted for privacy. in ChgA^e of Major Work Signature was redacted for privacy. pbr Department Signature was redacted for privacy. For the Graduate College Iowa State University Ames, Iowa 1987 i i TABLE OF CONTENTS PAGE CHAPTER 1. INTRODUCTION 1 Local Area Network Overview 1 Performance Issue in Local Area Networks 4 Problem Definitions and Research Objectives 6 Outline of Dissertation 10 CHAPTER 2. TOKEN BUS PROTOCOL DESCRIPTION 11 Basic Operation of the Token Bus Protocol 11 Frame Formats of Token Bus Protocol 13 Preamble ...... 14 Start delimiter 14 Frame control 15 Address field 15 Data unit 15 Frame check sequence 16 End delimiter 16 MAC Layer Operation 16 MAC layer functions 17 Basic operations 17 Right to transmit 18 Token passing 18 MAC Layer Internal Structure 19 Interface machine 19 Access control machine ..... 21 Receive machine 21 Transmit machine 21 ACM Finite State Machine Description 22 Offline 22 Idle 22 Demand_in ,24 Demand_delay 24 Claim_token 25 Use_token 25 Await_IFM_response 25 Check_access_class 26 Pass_token 26 Check_token_pass 27 Await_response 27 CHAPTER 3. TOKEN BUS PROTOCOL MAINTENANCE FUNCTIONS ... 28 Ring Initialization 28 Station Addition 29 Station Deletion 31 Token Recovery 31 Receiver Fault Recovery 32 Transmitter Fault Recovery 33 Overhead Analysis of Maintenance Functions 33 i i i Ring initialization ' 33 Station addition 34 Station deletion 34 Token recovery 34 Receiver fault recovery 35 Transmitter fault recovery 35 CHAPTER 4. PERFORMANCE ANALYSIS OF TOKEN BUS PROTOCOL . 36 Token Bus Protocol without Maintenance Functions ... 38 Average cycle time 38 Message delay 40 Token Bus Protocol with Maintenance Functions .... 45 CHAPTER 5. REAL SYSTEM APPLICATION 48 Effect of Maintenance Functions 48 Scenario Study 62 CHAPTER 6. CONCLUSIONS AND FUTURE WORK , ... 66 Conclusions 66 Future Work 69 Simulation modeling 69 Reliability of maintenance functions 69 Statistical performance analysis 70 BIBLIOGRAPHY 71 ACKNOWLEDGEMENT 75 APPENDIX A. MAC CONTROL FRAME FORMATS 76 APPENDIX B. BENCHMARK INPUT DATA 78 iv LIST OF TABLES PAGE TABLE 1., MAC control frame transmission time 46 TABLE 2. Maintenance delays 47 TABLE 3. Recalculated maintenance delay 49 TABLE 4. Ring initialization maintenance delay 56 TABLE 5. Station addition maintenance delay 57 TABLE 6. Station deletion maintenance delay 58 TABLE 7, Token recovery maintenance delay . 59 TABLE 8. Receiver fault recovery maintenance delay ... 60 TABLE 9. Transmitter fault recovery maintenance delay 61 TABLE 10. The worst case maintenance delay 65 V LIST OF FIGURES PAGE FIGURE 1. Bus, ring, and star configurations 2 FIGURE 2. Layer structure of LAN model [31] 5 FIGURE 3. Logical ring on physical bus 12 FIGURE 4. Frame format for token bus protocol 14 FIGURE 5. MAC layer functional partitioning 20 FIGURE 6. ACM finite state machine transition diagram 23 FIGURE 7. Queueing model for token bus logical ring . 37 FIGURE 8, Division of delays for a typical message ... 41 FIGURE 9. A cycle for a polling network 42 FIGURE 10. Ring initialization maintenance delay .... 50 FIGURE 11. Station addition maintenance delay 51 FIGURE 12. Station deletion maintenance delay ...... 52 FIGURE 13. Token recovery maintenance delay 53 FIGURE 14. Receiver fault recovery maintenance delay . 54 FIGURE 15. Transmitter fault recovery maintenance delay 55 FIGURE 16, The worst case maintenance delay 64 1 CHAPTER 1. INTRODUCTION Local Area Network Overview During the past decade, local area networks have become one of the most publicized and controversial topics in the data communications field, that have produced numerous publications [1-8] dealing with various aspects of local area networks. The publicity surrounding local area networks stems from what they are purported to do for an organization; the controversy comes from how they are to do it. Due to the versatility, however, local area networks will play a prominent role in computer communications and distributed processing in the 1980s. Basically, a local area network is an interconnected set of computers which is geographically limited from a distance of several thousand feet to a few miles, and is structured around a high-speed, low-noise connecting link or channel that typically supports data rate of 500 Kbps to 50 Mbps. As illustrated in Figure 1, there are three basic topologies in local area networks: the bus, the ring, and the star. The bus topology is appropriate for transmission medium such as coaxial cable which allows high-impedance taps. In principle, these taps do not affect the medium and 2 a large number of stations can be connected. This topology is particularly suitable for the random accessing techniques. ? ? ? ? Ô Ô Ô .0 FIGURE 1. Bus, ring, and star configurations The ring topology is a sequence of point-to-point links with flow of data in one direction around the ring. In this case, there is a delay due to data processing at each station and for reliability reason, there are provisions to bypass stations if they become inoperative. In both cases of bus and ring, the control of traffic is distributed among stations. 3 In the star topology, the control is concentrated in a central hub where all the data are collected and routed to appropriate stations through high-speed channels. In contrast to this, data are packetized and all packets traverse the same channel in most bus and ring systems, and the path of a given packet carries it past all stations on the network. Thus, although addressing information is still required, routing is unnecessary. The main motivation for local area networking is resource sharing. Resources include not only devices such as computer and printer, but also data files which are costly to duplicate and expensive to maintain. It is often expedient to maintain central files or data banks that are shared by devices at work stations throughout a local area network. In addition to the primary justification for local area networks, there are a number of secondary effects. For example, the distributed resources of a local network provide redundancy for many devices and thus backup in the event of failures. Also, many local area networks provide speed and code conversion that enables equipment from different manufacturers to be connected easily without expensive special purpose interfaces. 4 Performance Issue in Local Area Networks As the interest grows in local area networks, the performance analysis of these networks has become one of the main topics in local network study [9-29].
Recommended publications
  • Part 2: Packet Transmission
    Mesh networks LAN technologies and network topology • Early local networks used dedicated links between each pair of computers LANs and shared media • Some useful properties Locality of reference – hardware and frame details can be tailored for Star, bus and ring topologies each link Medium access control protocols – easy to enforce security and privacy Disadvantages of meshes Links between rooms/buildings • Poor scalability • Many links would follow the same physical path Shared Communication Channels Locality of reference • Shared LANs invented in the 1960s • LANs now connect more computers than any other form of network • Rely on computers sharing a single medium • The reason LANs are so popular is due to • Computers coordinate their access the principle of locality of reference • Low cost – physical locality of reference - computers more • But not suitable for wide area - likely to communicate with those nearby communication delays inhibit coordination – temporal locality of reference - computer is more likely to communicate with the same computers repeatedly 1 LAN topologies • LANs may be categorised according to topology ring bus star Pros and cons Example bus network: Ethernet • Star is more robust but hub may be a • Single coaxial cable - the ether - to which bottleneck computers connect • Ring enables easy coordination but is • IEEE standard specifies details sensitive to a cable being cut – data rates • Bus requires less wiring but is also sensitive – maximum length and minimum separation to a cable being cut – frame formats
    [Show full text]
  • Upcoming Standards in Wireless Local Area Networks
    Preprint: http://arxiv.org/abs/1307.7633 Original Publication: UPCOMING STANDARDS IN WIRELESS LOCAL AREA NETWORKS Sourangsu Banerji Department of Electronics & Communication Engineering, RCC-Institute of Information Technology, India Email: [email protected] ABSTRACT: Network technologies are However out of every one of these standards, traditionally centered on wireline solutions. WLAN and recent developments in WLAN Wireless broadband technologies nowadays technology will be our main subject of study in this particular paper. The IEEE 802.11 is the most provide unlimited broadband usage to users widely deployed WLAN technology as of today. that have been previously offered simply to Another renowned counterpart is the HiperLAN wireline users. In this paper, we discuss some of standard by ETSI. These two technologies are the upcoming standards of one of the emerging united underneath the Wireless Fidelity (Wi-fi) wireless broadband technology i.e. IEEE alliance. In literature though, IEEE802.11 and Wi- 802.11. The newest and the emerging standards fi is used interchangeably and we will also continue with the same convention in this fix technology issues or add functionality that particular paper. A regular WLAN network is will be expected to overcome many of the associated with an Access Point (AP) in the current standing problems with IEEE 802.11. middle/centre and numerous stations (STAs) are connected to this central Access Point (AP).Now, Keywords: Wireless Communications, IEEE there are just two modes in which communication 802.11, WLAN, Wi-fi. normally takes place. 1. Introduction Within the centralized mode of communication, The wireless broadband technologies were communication to/from a STA is actually carried developed with the objective of providing services across by the APs.
    [Show full text]
  • The Design of PROFIBUS-DP HUB Based on FPGA
    International Conference on Computer Science and Service System (CSSS 2014) The Design of PROFIBUS-DP HUB based on FPGA Jiao Ping Zhou Tong Lab. of Networked Control Systems Lab. of Networked Control Systems Shenyang Institute of Automation (SIA), Chinese Shenyang Institute of Automation (SIA), Chinese Academy of Sciences China, Shenyang Academy of Sciences China, Shenyang [email protected] [email protected] Abstract—This paper analyzes the PROFIBUS-DP and specified the standard EIA RS-485, and the traffic rate is physical layer signals states, DP time series and other from 9.6kbps to 12Mbps [2, 3, 6]. characteristics. In the past, PROFIBUS-DP HUB common IEC 1158-2 specified the station number of problems of poor universal apply, shape communication is PROFIBUS-DP is 126 (station address from 0 to 125 contain more time-consuming, required message analysis, Drop frame master and slave station) [4]. In the one segment of etc, this paper propose a new design of PROFIBUS-DP HUB PROFIBUS-DP, the maximum station is 32. DP HUB or DP which based on FPGA. The design contain a detector which Repeater device requires the use, if want to connect more used to monitor the physical layer signal state of the DP bus, stations or change the network topology. As figure shown, use of FPGA synthesis logic signal, could control the direction DP HUB or DP Repeater divided the DP network into many of data flow in the physical layer, and Unrelated with the subnet segments [7]. Each interface of DP HUB is a upper layer protocol, without message analysis, compliance the protocol which used the standard RS-485, and Repeater, which can independently drive a PROFIBUS baudrate-adaptive.
    [Show full text]
  • Field Networking Solutions
    Field Networking Solutions Courtesy of Steven Engineering, Inc. ! 230 Ryan Way, South San Francisco, CA 94080-6370 ! Main Office: (650) 588-9200 ! Outside Local Area: (800) 258-9200 ! www.stevenengineering.com TYPES OF FIELDBUS NETWORKS* Field Networking 101 Features and Benefits of Fieldbus Networks The combination of intelligent field devices, digital bus networks, and various open communications protocols Fieldbus networks provide an array of features and benefits that make them an excellent choice is producing extraordinary results at process plants in nearly all process control environments. around the world. Compared to conventional technology, fieldbus networks deliver the following benefits: Just as our ability to retrieve, share, and analyze data Reduced field wiring costs has increased tremendously by use of the Internet and - Two wires from the control room to many devices PC network technology in our homes and at our desk- Reduced commissioning costs tops, so has our ability to control and manage our - Less time and personnel needed to perform process plants improved. Digital connectivity in process I/O wiring checkouts - No time spent calibrating intermediate signals manufacturing plants provides an infrastructure for the (such as 4-20mA signals) - Digital values are delivered directly from field flow of real-time data from the process level, making it devices, increasing accuracy available throughout our enterprise networks. This data Reduced engineering/operating costs is being used at all levels of the enterprise to provide - Much smaller space required for panels, I/O racks, and connectivity boxes increased process monitoring and control, inventory and - Fewer I/O cards and termination panels for materials planning, advanced diagnostics, maintenance control system equipment - Lower power consumption by control system planning, and asset management.
    [Show full text]
  • Efficiently Triggering, Debugging and Decoding Low-Speed Serial Buses
    Efficiently Triggering, Debugging and Decoding Low-Speed Serial Buses Hello, my name is Jerry Mark, I am a Product Marketing Engineer at Tektronix. The following presentation discusses aspects of embedded design techniques for “Efficiently Triggering, Debugging, and Decoding Low-Speed Serial Buses”. 1 Agenda Introduction – Parallel Interconnects – Transition from Parallel to Serial Buses – High-Speed versus Low-Speed Serial Data Buses Low-Speed Serial Data Buses – Challenges – Technology Reviews – Measurement Solutions Summary 2 In this presentation we will begin by taking a glance at the transition from parallel-to-serial data and the challenges this presents to engineers. Then we will briefly review some of the most widely used low-speed serial buses in industry today and some of their key characteristics. We will turn our attention to the key measurements on these buses. Subsequently, we will present by example how the low-speed serial solution from Tektronix addresses these challenges. 2 Parallel Interconnects Traditional way to connect digital devices used parallel buses Advantages – Simple point-to-point connections – All signals are transmitted in parallel, simultaneously – Easy to capture state of bus (if you have enough channels!) – Decoding the bus is relatively easy Disadvantages – Occupies a lot of circuit board space – All high-speed connections must be the same length – Many connections limit reliability – Connectors may be very large 3 Parallel buses present all of the bits in parallel, as shown in the logic analyzer display. A parallel connection between two ICs can be as simple as point-to-point circuit board traces for each of the data lines. If you can physically probe these lines, it is easy to display the bus state on a logic analyzer or mixed signal oscilloscope.
    [Show full text]
  • Comparison of Network Topologies for Optical Fiber Communication
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 1 Issue 10, December- 2012 Comparison Of Network Topologies For Optical Fiber Communication Mr. Bhupesh Bhatia Ms. Ashima Bhatnagar Bhatia Department of Electronics and Communication, Department of Computer Science, Guru Prem Sukh Memorial College of Engineering, Tecnia Institute of Advanced Studies, Delhi Delhi Ms. Rashmi Ishrawat Department of Computer Science, Tecnia Institute of Advanced Studies, Delhi Abstract advent of the Information age. Optical In this paper, the various network topologies technologies can cost effectively meet have been compared. The signal is analyzed as it corporate bandwidth needs today and passes through each node in each of the network tomorrow. Internet connections offering topology. There is no appreciable signal degradation in the ring network. Also there is bandwidth on demand, to fiber on the increase in Quality factor i.e. signal keeps on LAN. Fiber to the home can provide true improving as it passes through the successiveIJERT IJERTbroadband connectivity for nodes. For the bus topology, the quality of signal telecommuters as well as converged goes on decreasing with increase in the number multimedia offerings for consumers [2]. of nodes and the power penalty goes on increasing. For the star topology, it is observed These different communication networks that received power values of each node at a can be configured in a number of same distance from the hub are same and the topologies. These include a bus, with or performance is same. For the tree topology, it is without a backbone, a star network, a observed that the performance is almost identical ring network, which can be redundant to the performance of ring topology, as signal quality is improved as it passes through the and/ or self-healing, or some successive nodes of the hierarchy.
    [Show full text]
  • C:\Andrzej\PDF\ABC Nagrywania P³yt CD\1 Strona.Cdr
    IDZ DO PRZYK£ADOWY ROZDZIA£ SPIS TREFCI Wielka encyklopedia komputerów KATALOG KSI¥¯EK Autor: Alan Freedman KATALOG ONLINE T³umaczenie: Micha³ Dadan, Pawe³ Gonera, Pawe³ Koronkiewicz, Rados³aw Meryk, Piotr Pilch ZAMÓW DRUKOWANY KATALOG ISBN: 83-7361-136-3 Tytu³ orygina³u: ComputerDesktop Encyclopedia Format: B5, stron: 1118 TWÓJ KOSZYK DODAJ DO KOSZYKA Wspó³czesna informatyka to nie tylko komputery i oprogramowanie. To setki technologii, narzêdzi i urz¹dzeñ umo¿liwiaj¹cych wykorzystywanie komputerów CENNIK I INFORMACJE w ró¿nych dziedzinach ¿ycia, jak: poligrafia, projektowanie, tworzenie aplikacji, sieci komputerowe, gry, kinowe efekty specjalne i wiele innych. Rozwój technologii ZAMÓW INFORMACJE komputerowych, trwaj¹cy stosunkowo krótko, wniós³ do naszego ¿ycia wiele nowych O NOWOFCIACH mo¿liwoYci. „Wielka encyklopedia komputerów” to kompletne kompendium wiedzy na temat ZAMÓW CENNIK wspó³czesnej informatyki. Jest lektur¹ obowi¹zkow¹ dla ka¿dego, kto chce rozumieæ dynamiczny rozwój elektroniki i technologii informatycznych. Opisuje wszystkie zagadnienia zwi¹zane ze wspó³czesn¹ informatyk¹; przedstawia zarówno jej historiê, CZYTELNIA jak i trendy rozwoju. Zawiera informacje o firmach, których produkty zrewolucjonizowa³y FRAGMENTY KSI¥¯EK ONLINE wspó³czesny Ywiat, oraz opisy technologii, sprzêtu i oprogramowania. Ka¿dy, niezale¿nie od stopnia zaawansowania swojej wiedzy, znajdzie w niej wyczerpuj¹ce wyjaYnienia interesuj¹cych go terminów z ró¿nych bran¿ dzisiejszej informatyki. • Komunikacja pomiêdzy systemami informatycznymi i sieci komputerowe • Grafika komputerowa i technologie multimedialne • Internet, WWW, poczta elektroniczna, grupy dyskusyjne • Komputery osobiste — PC i Macintosh • Komputery typu mainframe i stacje robocze • Tworzenie oprogramowania i systemów komputerowych • Poligrafia i reklama • Komputerowe wspomaganie projektowania • Wirusy komputerowe Wydawnictwo Helion JeYli szukasz ]ród³a informacji o technologiach informatycznych, chcesz poznaæ ul.
    [Show full text]
  • Upcoming Standards in Wireless Local Area Networks
    Preprint: http://arxiv.org/abs/1307.7633 Original Publication: Wireless & Mobile Technologies, Vol. 1, Issue 1, September 2013. [DOI: 10.12691/wmt-1-1-2] Upcoming Standards in Wireless Local Area Networks Sourangsu Banerji Department of Electronics & Communication Engineering, RCC-Institute of Information Technology, India Email: [email protected] ABSTRACT: In this paper, we discuss some widely deployed WLAN technology as of today. of the upcoming standards of IEEE 802.11 i.e. Another renowned counterpart is the HiperLAN Wireless Local Area Networks. The WLANs standard by ETSI. These two technologies are united underneath the Wireless Fidelity (Wi-fi) nowadays provide unlimited broadband usage alliance. In literature though, IEEE802.11 and Wi- to users that have been previously offered fi is used interchangeably and we will also simply to wireline users within a limited range. continue with the same convention in this The newest and the emerging standards fix particular paper. A regular WLAN network is technology issues or add functionality to the associated with an Access Point (AP) in the centre existing IEEE 802.11 standards and will be and numerous stations (STAs) are connected to this central Access Point (AP).There are just two expected to overcome many of the current modes in which communication normally takes standing problems with IEEE 802.11. place. Keywords: Wireless Communications, IEEE Within the centralized mode of communication, 802.11, WLAN, Wi-fi. communication to/from a STA is actually carried across by the APs. There's also a decentralized 1. Introduction mode in which communication between two STAs The wireless broadband technologies were can happen directly without the requirement developed with the objective of providing services associated with an AP in an ad hoc fashion.
    [Show full text]
  • Notes-Cn-Unit-3
    UNIT –0 3 ALOHA Unit-03/Lecture-01/ Lecture-02 Static Channel Allocation in LANs and MANs[RGPV/Jun 2010, Jun2014] Frequency Division Multiplexing - Frequency of one channel divided (usually evenly) among n users. Each user appears to have full channel of full frequency/n. Wastes bandwidth when user has nothing to send or receive, which is often the case in data communications. Other users cannot take advantage of unused bandwidth. Time Division Multiplexing - Time of one channel divided (usually evenly) among n users. Each user appears to have full channel for time/n. same problems as FDM. Analysis of Static Channel Allocation - Static allocation is intuitively a bad idea when considering that for an n divisions of a channel, any one user is limited to only 1/n channel bandwidth whether other users where accessing the channel or not. By limiting a user to only a fraction of the available channel, the delay to the user is increased over that if the entire channel were available. Intuitively, static allocation results in restricting one user to one channel even when other channels are available. Consider the following two diagrams, each with one user wanting to transmit 400 bits over a 1 bit per second channel. The left diagram would have a delay 4 times greater than the diagram on the right, delaying 400 seconds using 1 channel versus 100 second delay using the 4 channels. Static Allocation Dynamic Allocation One user with entire channel 1 channel per user up to 4 channels per user Generally we want delay to be small.
    [Show full text]
  • Token Bus Occur in Real‐Time with Minimum Delay, and at the Same Speed As the Objects Moving Along the Assembly Line
    Introduction • LANs have a direct application in factory automation and process control, where nodes are computers controlling the manufacturing Chap ter 12 process. • In this type of application, processing must Token Bus occur in real‐time with minimum delay, and at the same speed as the objects moving along the assembly line. 2 Introduction Introduction • Ethernet is not suitable for this purpose, • Token Bus is the solution to this type of because the number of collisions is not problem. predictable and delay in sending data from the • It combines the physical configuration of control center to the computers along the Ethernet (a bus topology) and the collision‐ assembly line is not a fixed value. free (predictable delay) feature of Token Ring. • Token Ring is not suitable either, because an • It is a physical bus operating as a logical ring assembly line resembles a bus topology and using tokens. not a ring topology. 3 4 Figure 12-1 Physical Versus Logical Topology A Token Bus Network • The logical ring is formed based on the physical address of the stations in descending order. • Each station considers the station with the immediate lower address as the next station and the station with the immediate higher address as the previous station. • The station with the lowest address considers the station with the highest address the next station, and the station with the highest address considers the station with the lowest address the previous station. 5 6 Token Passing Token Passing • To control access to the shared medium, a • After sending all its frames or after the time small token frame circulates from station to period expires (whichever comes first), the station in the logical ring.
    [Show full text]
  • Real-Time Communication Protocols: an Overview∗
    Real-time communication protocols: an overview∗ Ferdy Hanssen and Pierre G. Jansen October 2003 Abstract This paper describes several existing data link layer protocols that provide real-time capabilities on wired networks, focusing on token-ring and Carrier Sense Multiple Access based networks. Existing modifications to provide better real-time capabilities and performance are also described. Finally the pros and cons regarding the At-Home Anywhere project are discussed. 1 Introduction In the past twenty-five years several different, wired networks have been designed and built. But not all of them are dependable, i.e. suitable for accomodating real-time traffic, or traffic with Quality of Service (QoS) requirements. Some were designed with QoS in mind, some had QoS added as an after-thought, and some do not support QoS requirements at all. The most popular wired network architecture used to date, IEEE 802.3 [46], pop- ularly called Ethernet1, does not provide any support for real-time traffic. There are no provisions to reserve bandwidth for a certain connection. Nodes access the network using the CSMA/CD (Carrier Sense Multiple Access with Collision Detect) technique [70]. The CSMA/CD algorithm does not define a collision resolvance protocol of its own. Ethernet uses the BEB (Binary Exponential Back-Off) algo- rithm. This algorithm resolves collisions in a non-deterministic manner, while the first requirement for a network to be called real-time is determinism. The most popular real-time network architecture, Asynchronous Transfer Mode (ATM), is used mostly for internetwork links these days. ATM provides high band- widths and QoS guarantees, but has proven to be too expensive for use as a lo- cal area network.
    [Show full text]
  • COSC460 Report: Medium Access Control Protocols for WDM Optical Networks
    COSC460 Report: Medium access control protocols for WDM optical networks November 6, 2001 Robert Mollard Associate Prof. K. Pawlikowski1 1Supervisor Abstract Wavelength-division multiplexing (WDM) has emerged as the most popular technology for utilising the huge bandwidth of optical fibre. This paper surveys medium access control protocols for the star, bus and ring WDM network topologies. The performance of two recently developed protocols, Pipelining Cyclic Scheduling Algorithm (PCSA) and Reservation/ACK/Transmission Protocol (RATP), is evaluated by stochastic simulation. It was found that RATP’s performance (measured by throughput and de- lay) degrades sharply with the increase in network size, making it impractical for use in metropolitan- or wide-area networks. PCSA does not suffer from this restriction, and can realise a throughput of 1. It also delivers short average packet delays, especially under light to moderate system loads. Keywords: Optical networks, wavelength division multiplexing, medium access control. Contents 1 Introduction 4 1.1Reportstructure........................... 5 2 Exploiting optical bandwidth 6 2.1 Time-division and Code-division multiplexing . 6 2.2 Wavelength-division multiplexing . 7 2.2.1 WDMnetworkclassification................. 7 3 Medium access control protocols 9 4 Previous Work 11 4.1 Indulska and Richards . 11 4.2Montgomery.............................. 11 4.3Li,MaodeandHamdi........................ 11 5 Star Topology 12 5.1Demonstrators............................ 13 5.2MACprotocols............................ 13 5.2.1 AlohaandSlottedAloha.................. 15 5.2.2 I-SA.............................. 15 5.2.3 I-SA*............................. 15 5.2.4 I-TDMA............................ 16 5.2.5 I-TDMA*........................... 16 5.2.6 TDMA-C........................... 16 5.2.7 DT-WDMA.......................... 16 5.2.8 Conflict-free DT-WDMA .
    [Show full text]