Token Bus Occur in Real‐Time with Minimum Delay, and at the Same Speed As the Objects Moving Along the Assembly Line

Total Page:16

File Type:pdf, Size:1020Kb

Token Bus Occur in Real‐Time with Minimum Delay, and at the Same Speed As the Objects Moving Along the Assembly Line Introduction • LANs have a direct application in factory automation and process control, where nodes are computers controlling the manufacturing Chap ter 12 process. • In this type of application, processing must Token Bus occur in real‐time with minimum delay, and at the same speed as the objects moving along the assembly line. 2 Introduction Introduction • Ethernet is not suitable for this purpose, • Token Bus is the solution to this type of because the number of collisions is not problem. predictable and delay in sending data from the • It combines the physical configuration of control center to the computers along the Ethernet (a bus topology) and the collision‐ assembly line is not a fixed value. free (predictable delay) feature of Token Ring. • Token Ring is not suitable either, because an • It is a physical bus operating as a logical ring assembly line resembles a bus topology and using tokens. not a ring topology. 3 4 Figure 12-1 Physical Versus Logical Topology A Token Bus Network • The logical ring is formed based on the physical address of the stations in descending order. • Each station considers the station with the immediate lower address as the next station and the station with the immediate higher address as the previous station. • The station with the lowest address considers the station with the highest address the next station, and the station with the highest address considers the station with the lowest address the previous station. 5 6 Token Passing Token Passing • To control access to the shared medium, a • After sending all its frames or after the time small token frame circulates from station to period expires (whichever comes first), the station in the logical ring. station releases the token to the next station. • If a station has data frame to send, it keeps • The token frame contains the address of the next the token and sends its data frame. station in the logical ring, because Token Bus is physically a bus and the token is received by all • To prevent monopolization of the medium by stations. any one station, each station can only keep • Only the next station in the lillogical ring has the the token for a specified period of time. right to keep the token and sends its data frames. 7 8 Figure 12-2 a and b Figure 12-2 c and d Token Passing in a Token Bus Network Token Passing in a Token Bus Network 9 10 Figure 12-3 Service Classes Queues for Service Classes • In Token Bus all stations have the same priority. • But each station can categorize its data into four classes: 0, 2, 4, and 6. Class 0 has the lowest priority and class 6 has the highest. • If a station does not classify its data, all data belong to class 6. • If a station wants to classify its data, it should have four queues, one for each class. 11 12 Timers Ring Management • To handle different data classes, Token Bus defines • The whole Token Bus protocol depends on the four timers: THT, TRT4, TRT2 and TRT0. maintenance of the logical ring and the • The token holding timer (THT) is set to the maximum controlling of the token. time that a station can send class 6 data. The setting • The logical ring must be maintained when of this timer is the same for all stations. – a station leaves the ring; • The toke n rotatio n ttesimers ((,TRT4, TRT2, aadnd TRT0) – a station joins the ring; are set to the maximum token circulation tome plus – a token is lost; the time to send either class 4, 2, or 0 data. E.g. if – more than one token is created; TRT4 = 20 µs and it takes 18 µs for a token to come back, the station has 2 µs to send class‐4 data if any. – the ring is initialized at startup. 13 14 Figure 12-4 Ring Management Ring Management • For management purpose, seven specilial frames are used: 1. Token 2. claim‐token 3. set‐successor 4.solic iit‐successor‐1 5. solicit‐successor‐2 6. resolve‐contention Different Types Of Procedures Used In Ring Management 7. who‐follows 15 16 Removing Stations Voluntary Leaving • When a sttitation leaves the ring, its predecessor • Assume 5 sttitations (A → B → C → D → E → A) are in a should be informed to bypass that station and Token Bus. If station C leaves the ring voluntarily, the reform the logical ring. procedure is as fllfollows: 1. Station C waits until it receives a token from its • → → → → → Assume 5 stations (A B C D E A) predecessor (station B) are in a Token Bus. If C leaves the ring, its 2. Station C sends a set‐successor frame to station B predecessor (B) shldhould know how to lilllogically identifying station D as the successor to station B rebuild the ring (A → B → D → E → A). 3. B updates its record to set its successor to D • A station may leave the ring either voluntarily 4. Station C sends the token to station D or unexpectedly (due to a malfunction). 5. Sta tion C leaves the ring 17 18 Unexpected Leaving Unexpected Leaving • Assume 5 stations (A → B → C → D → E → A) Steps to follow after station B sends a token to are in a Token Bus. If station C leaves the ring station C: unexpectedly (due to a malfunction), station C 1) Station B listens for activity on the bus. If station C cannot inform station B of the problem, and is fiifunctioning, B will sense actiiivity on the bus, and station B needs to find out by itself. the following steps do not occur. • When station B sends a token to station C, it 2) If B does not sense any activity on the bus, it waits a always follows a procedure to monitor the bus predetermined amount of time (response window activity and to make sure station C is time). If there is no news, B sends the token again functioning properly (see next slide). to be sure that there is no transmission problem. 19 20 Unexpected Leaving Adding Stations (Case 1) 3) If B does not hear anything during the second • Each station in the ring must provide an opportunity response window time, it assumes C is not working. periodically for other stations to join the ring. B sends a who‐follows control frame containing the • Case 1: If the joining station’s address is within the address of C, trying to find the next station after C. range of the addresses of the stations already in the 4) Station D responds with a set‐successor frame and ring, the following procedure is followed: specifies itself as the successor of station B. 1) A toke n hoodldin g statio n sends a soli ci t‐successor‐ 5) Station B now changes its records and defines D to 1 frame, containing the address of the sender be its successor. and its successor, as an invitation to stations that 6) Station B sends a token to station D. want to join the ring. 21 22 Adding Stations (Case 1) Adding Stations (Case 1) 2) The token holding station waits a response window The added station also sets its predecessor (inviting time. A station whose address is between the station) and successor (previous successor of the addresses of the sender and its successor can inviting station) and becomes part of the ring. respond with a set‐successor frame. 5) If there is more than one respp,onse, the inviting 3) If the inviting station receives no response during station sends a resolve‐contention frame and waits the response window time, it closes the window for four response window times. and sends the token to its successor in the ring. 6) Each station who has sent a set‐successor frame 4) If the inviting station receives a respp,onse, it changes earlier responds to the resolve‐contention frame in its successor to the responding station and sends one of the response windows according to the first the token to it. two bits of its address (see Table 12‐1). 23 24 Table 12-1 Response to Resol u tion-Contention Frame Adding Stations (Case 1) 7) If two or more stations respond in the same First two bits Responding Waiting time response window, collision will occur again. The window inviting station then sends another resolve‐ 00 1 None contention frame. This time only stations involved in the second collision may respond based on their 01 2 One response window time second two address bits. 10 3 Two response window time 8) Step 7 will be repeated if there are more collisions. 11 4 Three response window time Since no two stations have identical address bits, finally one station will be added to the ring. 25 26 Adding Stations (Case 2) Token Recovery • Case 2: If a station has an address outside the range • A token may get lost due to: of the addresses of the stations already in the ring, it must wait for an invitation from the station with the – The ring is set up for the first time; lowest address. The following steps occur: – The token holding station fails and takes the token • When the tktoken hldiholding sttitation has the ltlowest down with itself; address in the ring, it sends solicit‐successor‐2 frame, – The token is corrupted and discarded by the dfiidefining its own address and the ltlargest address in receiving station. the ring. A station with an address smaller than the • Token‐recovery procedure is used to generate iitiinviting sttitation or larger than the ltlargest address in a new token (see next slide).
Recommended publications
  • 1) What Is the Name of an Ethernet Cable That Contains Two
    1) What is the name of an Ethernet cable that contains two electrical conductors ? A coaxial cable 2) What are the names of the two common conditions that degrade the signals on c opper-based cables? Crosstal and attenuation 3) Which topology requires the use of terminators? Bus 4) Which of the following topologies is implemented only logically, not physical ly? Ring 5) How many wire pairs are actually used on a typical UTP Ethernet network? Two 6) What is the name of the process of building a frame around network layer info rmation? Data encapsulation 7) Which of the connectors on a network interface adapter transmits data in para llel? The System bus connector 8) Which two of the following hardware resources do network interface adapters a lways require? I/O port address and IRQ 9) What is the name of the process by which a network interface adapter determin es when it should transmit its data over the network? Media Access Control 10) Which bus type is preferred for a NIC that will be connected to a Fast Ether net network? PCI 11) A passive hub does not do which of the following? Transmit management information using SNMP 12) To connect two Ethernet hubs together, you must do which of the following? Connect the uplink port in one hub to a standard port on the other 13) Which term describes a port in a Token Ring MAU that is not part of the ring ? Intelligent 14) A hub that functions as a repeater inhibits the effect of____________? Attenuation 15) You can use which of the following to connect two Ethernet computers togethe r using UTP
    [Show full text]
  • Upcoming Standards in Wireless Local Area Networks
    Preprint: http://arxiv.org/abs/1307.7633 Original Publication: UPCOMING STANDARDS IN WIRELESS LOCAL AREA NETWORKS Sourangsu Banerji Department of Electronics & Communication Engineering, RCC-Institute of Information Technology, India Email: [email protected] ABSTRACT: Network technologies are However out of every one of these standards, traditionally centered on wireline solutions. WLAN and recent developments in WLAN Wireless broadband technologies nowadays technology will be our main subject of study in this particular paper. The IEEE 802.11 is the most provide unlimited broadband usage to users widely deployed WLAN technology as of today. that have been previously offered simply to Another renowned counterpart is the HiperLAN wireline users. In this paper, we discuss some of standard by ETSI. These two technologies are the upcoming standards of one of the emerging united underneath the Wireless Fidelity (Wi-fi) wireless broadband technology i.e. IEEE alliance. In literature though, IEEE802.11 and Wi- 802.11. The newest and the emerging standards fi is used interchangeably and we will also continue with the same convention in this fix technology issues or add functionality that particular paper. A regular WLAN network is will be expected to overcome many of the associated with an Access Point (AP) in the current standing problems with IEEE 802.11. middle/centre and numerous stations (STAs) are connected to this central Access Point (AP).Now, Keywords: Wireless Communications, IEEE there are just two modes in which communication 802.11, WLAN, Wi-fi. normally takes place. 1. Introduction Within the centralized mode of communication, The wireless broadband technologies were communication to/from a STA is actually carried developed with the objective of providing services across by the APs.
    [Show full text]
  • An Analysis of IEEE 802.16 and Wimax Multicast Delivery
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2007-09 An analysis of IEEE 802.16 and WiMAX multicast delivery Staub, Patrick A. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/3203 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS AN ANALYSIS OF IEEE 802.16 AND WIMAX MULTICAST DELIVERY by Patrick A. Staub September, 2007 Thesis Advisor: Bert Lundy Second Reader: George Dinolt Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 2007 Master’s Thesis 4. TITLE AND SUBTITLE An Analysis of IEEE 802.16 and WiMAX 5. FUNDING NUMBERS Multicast Delivery 6. AUTHOR(S) Patrick A. Staub 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.
    [Show full text]
  • System Performance of Wireless Sensor Network Using Lora…
    Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.016922 Article System Performance of Wireless Sensor Network Using LoRa–Zigbee Hybrid Communication Van-Truong Truong1, Anand Nayyar2,* and Showkat Ahmad Lone3 1Faculty of Electrical and Electronic Engineering, Duy Tan University, Da Nang, 550000, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam 2Graduate School, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Information Technology, Duy Tan University, Da Nang, Vietnam 3Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Jeddah Campus, KSA *Corresponding Author: Anand Nayyar. Email: [email protected] Received: 15 January 2021; Accepted: 17 February 2021 Abstract: Wireless sensor network (WSN) is considered as the fastest growing technology pattern in recent years because of its applicability in var- ied domains. Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway. Ensuring communications in heterogeneous WSNs, is a critical issue that needs to be studied. In this research paper, we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communi- cation. Specifically, two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway. The overall system integrates many different sensors in terms of types, communication protocols, and accuracy, which can be used in many applications in realistic environments such as on land, under water, or in the air. In addition to this, a synchronous man- agement software on ThingSpeak Web server and Blynk app is designed.
    [Show full text]
  • 13 Embedded Communication Protocols
    13 Embedded Communication Protocols Distributed Embedded Systems Philip Koopman October 12, 2015 © Copyright 2000-2015, Philip Koopman Where Are We Now? Where we’ve been: •Design • Distributed system intro • Reviews & process • Testing Where we’re going today: • Intro to embedded networking – If you want to be distributed, you need to have a network! Where we’re going next: • CAN (a representative current network protocol) • Scheduling •… 2 Preview “Serial Bus” = “Embedded Network” = “Multiplexed Wire” ~= “Muxing” = “Bus” Getting Bits onto the wire • Physical interface • Bit encoding Classes of protocols • General operation • Tradeoffs (there is no one “best” protocol) • Wired vs. wireless “High Speed Bus” 3 Linear Network Topology BUS • Good fit to long skinny systems – elevators, assembly lines, etc... • Flexible - many protocol options • Break in the cable splits the bus • May be a poor choice for fiber optics due to problems with splitting/merging • Was prevalent for early desktop systems • Is used for most embedded control networks 4 Star Network Topologies Star • Can emulate bus functions – Easy to detect and isolate failures – Broken wire only affects one node – Good for fiber optics – Requires more wiring; common for Star current desktop systems • Broken hub is catastrophic • Gives a centralized location if needed – Can be good for isolating nodes that generate too much traffic Star topologies increasing in popularity • Bus topology has startup problems in some fault scenarios • Safety critical control networks moving
    [Show full text]
  • Nomadic Communications
    Nomadic Communications Renato Lo Cigno ANS Group – [email protected] Francesco Gringoli [email protected] http://disi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications Copyright Quest’opera è protetta dalla licenza: Creative Commons Attribuzione-Non commerciale-Non opere derivate 2.5 Italia License Per i dettagli, consultare http://creativecommons.org/licenses/by-nc-nd/2.5/it/ What do you find on the web site • Exam Rules • Exam Details ... should be on ESSE3, but ... • Generic (useful) information • Teaching Material: normally posted at least the day before the lesson • Additional Material and links • Laboratories groups, rules, description and hints • News, Bulletin, How to find and meet me and Francesco, etc. • ... The web site is work in progress (well as of today working badly, but improving) and updated frequently(that’s at least my intention) Please don’t blame ME if you did’t read the last news J Program • Why “Nomadic” – Mobile vs. nomadic – Cellular vs. HotSpot – Local wireless communications • Some rehearsal – Access Control Protocols – Protocols and architectures – Services and primitives – IEEE 802 project – Nomadic communications positioning Program • WLAN – 802.11 Standard – 802.11 MAC – 802.11b/g/a/h/n/ac PHY – QoS and Differentiation enhancement: 802.11e – Mesh networks: 802.11s & other protocols – Other extensions: 802.11f/p/ad/ad/... Program • Ad-Hoc Networks – Stand-Alone WLANs – Routing and multi-hop in Ad-Hoc networks • Vehicular Networks Problems and scenarios – Specific issues
    [Show full text]
  • C:\Andrzej\PDF\ABC Nagrywania P³yt CD\1 Strona.Cdr
    IDZ DO PRZYK£ADOWY ROZDZIA£ SPIS TREFCI Wielka encyklopedia komputerów KATALOG KSI¥¯EK Autor: Alan Freedman KATALOG ONLINE T³umaczenie: Micha³ Dadan, Pawe³ Gonera, Pawe³ Koronkiewicz, Rados³aw Meryk, Piotr Pilch ZAMÓW DRUKOWANY KATALOG ISBN: 83-7361-136-3 Tytu³ orygina³u: ComputerDesktop Encyclopedia Format: B5, stron: 1118 TWÓJ KOSZYK DODAJ DO KOSZYKA Wspó³czesna informatyka to nie tylko komputery i oprogramowanie. To setki technologii, narzêdzi i urz¹dzeñ umo¿liwiaj¹cych wykorzystywanie komputerów CENNIK I INFORMACJE w ró¿nych dziedzinach ¿ycia, jak: poligrafia, projektowanie, tworzenie aplikacji, sieci komputerowe, gry, kinowe efekty specjalne i wiele innych. Rozwój technologii ZAMÓW INFORMACJE komputerowych, trwaj¹cy stosunkowo krótko, wniós³ do naszego ¿ycia wiele nowych O NOWOFCIACH mo¿liwoYci. „Wielka encyklopedia komputerów” to kompletne kompendium wiedzy na temat ZAMÓW CENNIK wspó³czesnej informatyki. Jest lektur¹ obowi¹zkow¹ dla ka¿dego, kto chce rozumieæ dynamiczny rozwój elektroniki i technologii informatycznych. Opisuje wszystkie zagadnienia zwi¹zane ze wspó³czesn¹ informatyk¹; przedstawia zarówno jej historiê, CZYTELNIA jak i trendy rozwoju. Zawiera informacje o firmach, których produkty zrewolucjonizowa³y FRAGMENTY KSI¥¯EK ONLINE wspó³czesny Ywiat, oraz opisy technologii, sprzêtu i oprogramowania. Ka¿dy, niezale¿nie od stopnia zaawansowania swojej wiedzy, znajdzie w niej wyczerpuj¹ce wyjaYnienia interesuj¹cych go terminów z ró¿nych bran¿ dzisiejszej informatyki. • Komunikacja pomiêdzy systemami informatycznymi i sieci komputerowe • Grafika komputerowa i technologie multimedialne • Internet, WWW, poczta elektroniczna, grupy dyskusyjne • Komputery osobiste — PC i Macintosh • Komputery typu mainframe i stacje robocze • Tworzenie oprogramowania i systemów komputerowych • Poligrafia i reklama • Komputerowe wspomaganie projektowania • Wirusy komputerowe Wydawnictwo Helion JeYli szukasz ]ród³a informacji o technologiach informatycznych, chcesz poznaæ ul.
    [Show full text]
  • The Spirit of Wi-Fi
    Rf: Wi-Fi_Text Dt: 09-Jan-2003 The Spirit of Wi-Fi where it came from where it is today and where it is going by Cees Links Wi-Fi pioneer of the first hour All rights reserved, © 2002, 2003 Cees Links The Spirit of Wi-Fi Table of Contents 0. Preface...................................................................................................................................................1 1. Introduction..........................................................................................................................................4 2. The Roots of Wi-Fi: Wireless LANs...................................................................................................9 2.1 The product and application background: networking ..............................................................9 2.2 The business background: convergence of telecom and computers? ......................................14 2.3 The application background: computers and communications ...............................................21 3. The original idea (1987 – 1991).........................................................................................................26 3.1 The radio legislation in the US .................................................................................................26 3.2 Pioneers .....................................................................................................................................28 3.3 Product definition ......................................................................................................................30
    [Show full text]
  • Unit 3 Basics of Network Technology
    UNIT 3 BASICS OF NETWORK TECHNOLOGY Structure 3.0 Objectives 3.1 Introduction 3.2 Network Concept and Classification 3.2.1 Advantages of Networks 3.2.2 Network Classification 3.3 Local Area Network (LAN) Overview 3.3.1 LAN Topologies 3.3.2 LAN Access Methods 3.4 Wide Area Network 3.4.1 WAN Topologies 3.4.2 WAN Switching Methods 3.4.3 WAN Devices/Hardware 3.5 Wireless Technology 3.5.1 WiFi 3.5.2 WiMax 3.6 Summary 3.7 Answers to Self Check Exercises 3.8 Keywords 3.9 References and Further Reading 3.0 OBJECTIVES After going through this Unit, you will be able to: explain the concept of computer networks; understand different application of networks; differentiate between different types of computer networks based on size, connection and functioning; compare the different network topologies used in LAN and WAN; understand the working of LAN access methods; explain the working of networking devices used in WAN; know the importance of using networked system; and understand the concept of wireless technologies and standards. 3.1 INTRODUCTION With the ICT revolution the functioning of organisations has changed drastically. In a networked scenario organisations often need several people (may be at different locations) to input and process data simultaneously. In order to achieve this, a computer-networking model in which a number of separate but interconnected computers do the job has replaced the earlier standalone-computing model. By linking individual computers over 4 7 Network Fundamentals a network their productivity has been increased enormously. A most distinguishing characteristic of a general computer network is that data can enter or leave at any point and can be processed at any workstation.
    [Show full text]
  • IEEE 802.5 (Token Ring) LAN
    IEEE 802.5 (Token Ring) LAN Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF IEEE 802.5 (Token Ring): Ring Topology Shared ring medium: all nodes see all frames Round Robin MAC Protocol: determines which station can transmit A special 3-byte pattern, the token, circulates around the ring perpetually and represents the "right to transmit" This establishes round-robin media access Data flow is unidirectional All data flows in a particular direction around the ring; nodes receive frames from their upstream neighbor and forward them to their downstream neighbor Data rate: 4 or 16 Mbps R R R R IEEE 802.5 (Token Ring) Operation The token bit sequence circulates around the ring. Each station forwards the token if it does not have a frame to transmit. A station with data to send seizes the token (repeater now in transmit state) and begins sending it’s frame. It can transmit for length of time called the Token Hold Time (THT) = 10 mseconds. Each station forwards the frame. The destination station notices its address and saves a copy of the frame as it also forwards the frame. When the sender sees its frame return, it drains it from the ring and reinserts a token. When the last bit of the returning frame has been drained, the repeater switches immediately to the listen state. IEEE 802.5 (Token Ring) using a Hub The star-wired ring topology uses the physical layout of a star in conjunction with the token-passing data transmission method.
    [Show full text]
  • The Network Stack (1) L41 Lecture 5 Dr Robert N
    1/25/17 The Network Stack (1) L41 Lecture 5 Dr Robert N. M. Watson 25 January 2017 Reminder: where we left off last term • Long, long ago, but in a galaxy not so far away: • Lecture 3: The Process Model (1) • Lecture 4: The Process Model (2) • Lab 2: IPC buffer size and the probe effect • Lab 3: Micro-architectural effects of IPC • Explored several implied (and rejected) hypotheses: • Larger IO/IPC buffer sizes amortise system-call overhead • A purely architectural (SW) review dominates • The probe effect doesn’t matter in real-world workloads L41 Lecture 5 – The Network Stack (1) 1 1/25/17 This time: Introduction to Network Stacks Rapid tour across hardware and software: • Networking and the sockets API • Network-stack design principles: 1980s vs. today • Memory flow across hardware and software • Network-stack construction and work flows • Recent network-stack research L41 Lecture 5 – The Network Stack (1) Networking: A key OS function (1) • Communication between computer systems • Local-Area Networks (LANs) • Wide-Area Networks (WANs) • A network stack provides: • Sockets API and extensions • Interoperable, feature-rich, high-performance protocol implementations (e.g., IPv4, IPv6, ICMP, UDP, TCP, SCTP, …) • Security functions (e.g., cryptographic tunneling, firewalls...) • Device drivers for Network Interface Cards (NICs) • Monitoring and management interfaces (BPF, ioctl) • Plethora of support libraries (e.g., DNS) L41 Lecture 5 – The Network Stack (1) 2 1/25/17 Networking: A key OS function (2) • Dramatic changes over 30 years: 1980s: Early packet-switched networks, UDP+TCP/IP, Ethernet 1990s: Large-scale migration to IP; Ethernet VLANs 2000s: 1-Gigabit, then 10-Gigabit Ethernet; 802.11; GSM data 2010s: Large-scale deployment of IPv6; 40/100-Gbps Ethernet ..
    [Show full text]
  • Upcoming Standards in Wireless Local Area Networks
    Preprint: http://arxiv.org/abs/1307.7633 Original Publication: Wireless & Mobile Technologies, Vol. 1, Issue 1, September 2013. [DOI: 10.12691/wmt-1-1-2] Upcoming Standards in Wireless Local Area Networks Sourangsu Banerji Department of Electronics & Communication Engineering, RCC-Institute of Information Technology, India Email: [email protected] ABSTRACT: In this paper, we discuss some widely deployed WLAN technology as of today. of the upcoming standards of IEEE 802.11 i.e. Another renowned counterpart is the HiperLAN Wireless Local Area Networks. The WLANs standard by ETSI. These two technologies are united underneath the Wireless Fidelity (Wi-fi) nowadays provide unlimited broadband usage alliance. In literature though, IEEE802.11 and Wi- to users that have been previously offered fi is used interchangeably and we will also simply to wireline users within a limited range. continue with the same convention in this The newest and the emerging standards fix particular paper. A regular WLAN network is technology issues or add functionality to the associated with an Access Point (AP) in the centre existing IEEE 802.11 standards and will be and numerous stations (STAs) are connected to this central Access Point (AP).There are just two expected to overcome many of the current modes in which communication normally takes standing problems with IEEE 802.11. place. Keywords: Wireless Communications, IEEE Within the centralized mode of communication, 802.11, WLAN, Wi-fi. communication to/from a STA is actually carried across by the APs. There's also a decentralized 1. Introduction mode in which communication between two STAs The wireless broadband technologies were can happen directly without the requirement developed with the objective of providing services associated with an AP in an ad hoc fashion.
    [Show full text]