Roadside Geology of Taiwan: a Field Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computer-Assisted System in Stress Radiography for Anterior Cruciate Ligament Injury with Correspondent Evaluation of Relevant Diagnostic Factors
diagnostics Article Computer-Assisted System in Stress Radiography for Anterior Cruciate Ligament Injury with Correspondent Evaluation of Relevant Diagnostic Factors Chien-Kuo Wang 1, Liang-Ching Lin 2, Yung-Nien Sun 3, Cheng-Shih Lai 1, Chia-Hui Chen 4,* and Cheng-Yi Kao 1,* 1 Department of Medical Imaging, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 1 University Rd, Tainan 704, Taiwan; [email protected] (C.-K.W.); [email protected] (C.-S.L.) 2 Department of Statistics, National Cheng Kung University, No. 1 University Rd, Tainan 704, Taiwan; [email protected] 3 Department of Computer Science and Information Engineering, National Cheng Kung University, No. 1 University Rd, Tainan 704, Taiwan; [email protected] 4 Department of Medical Imaging and Radiological Sciences, I-Shou University, No.8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan * Correspondence: [email protected] (C.-H.C.); [email protected] (C.-Y.K.); Tel.: +886-7-6151100#7802 (C.-H.C.); +886-6-2766108 (C.-Y.K.); Fax: +886-7-6155150 (C.-H.C.); +886-6-2766608 (C.-Y.K.) Abstract: We sought to design a computer-assisted system measuring the anterior tibial translation in stress radiography, evaluate its diagnostic performance for an anterior cruciate ligament (ACL) tear, and assess factors affecting the diagnostic accuracy. Retrospective research for patients with both Citation: Wang, C.-K.; Lin, L.-C.; knee stress radiography and magnetic resonance imaging (MRI) at our institution was performed. A Sun, Y.-N.; Lai, C.-S.; Chen, C.-H.; complete ACL rupture was confirmed on an MRI. -
Genetic Variability and Divergence of Neutrodiaptomus Tumidus Kiefer 1937
Young et al. Zoological Studies 2014, 53:22 http://www.zoologicalstudies.com/content/53/1/22 RESEARCH ARTICLE Open Access Genetic variability and divergence of Neutrodiaptomus tumidus Kiefer 1937 (Copepoda: Calonida) among 10 subpopulations in the high mountain range of Taiwan and their phylogeographical relationships indicated by mtDNA COI gene Shuh-Sen Young1*, Yan-Ying Lee1 and Min-Yun Liu2 Abstract Background: In the mountain area of Taiwan, we investigated 10 subpopulations of Neutrodiaptomus tumidus Kiefer 1937 living in isolated alpine ponds or lakes. We used mitochondrial DNA cytochrome C oxidase subunit I (COI) sequence as molecular marker to investigate the population genetic structure and their phylogeographical relationships. Results: We obtained 179 sequences from 10 subpopulations and found 94 haplotypes. Nucleotide composition was AT-rich. Haplotype diversity (Hd) and nucleotide diversity (π) indicated significant genetic differences between subpopulations (Hd = 0.131 ~ 0.990; π = 0.0002 ~ 0.0084); genetic differentiation index (Fst) and gene flow index (Nm) also exhibited significant genetic diversification between subpopulations (Fst = 0.334 ~ 0.997; Nm =0~1).Using Tajima’s D and Fu and Li’s D*andF* as neutrality tests, we found that the nucleotide variation within the population was consistent with the neutral theory except in the JiaLuoHu subpopulation. The JiaLuoHu subpopulation significantly deviated from the neutral theory and was speculated to have experienced a bottleneck effect. According to the phylogenetic tree, these alpine lake subpopulations could be divided into four phylogroups (northern region, Xueshan group, central region, and southwestern region). Xueshan group contains one subpopulation, DuRongTan, which is a unique group relative to other groups. -
Bulletin FEBRUARY 2013
ISSUE 51- 52 Bulletin FEBRUARY 2013 Kaohsiung Exhibition & Convention Center BANGKOK BEIJING HONG KONG SHANGHAI SINGAPORE TAIWAN CONTENTS AWARDS AND RECOGNITIONS 01 MAA Bulletin Issue 51- 52 February 2013 BIM PROJECT CASE STUDY 12 MAA TAIPEI NEW OFFICE 13 PROJECTS 1ST MAY 2011 TO 29TH 14 FEBRUARY 2012 Founded in 1975, MAA is a leading engineering and consulting service provider in the East and Southeast Asian region with a broad range PROFESSIONAL ACTIVITIES 22 of focus areas including infrastructure, land resources, environment, - PROFESSIONAL ACTIVITIES buildings, and information technology. - PROFESSIONAL AWARDS/HONORS - SEMINARS AND CONFERENCE - TECHNICAL PUBLICATIONS To meet the global needs of both public and private clients, MAA has developed sustainable engineering solutions - ranging from PERSONNEL PROFILES 26 conceptual planning, general consultancy, engineering design to project management. MAA employs 1000 professional individuals with offices in the Greater China Region (Beijing, Hong Kong, Shanghai, Taiwan), Mekong Region (Bangkok), and Southeast Asian Region (Singapore), creating a strong professional network in East/Southeast Asia. MAA’s business philosophy is to provide professional services that will become an asset to our clients with long lasting benefits in this rapidly changing social-economic environment. ASSET represents five key components that underlineMAA ’s principles of professional services: Advanced Technology project Safety client’s Satisfaction ISO 9001 and LAB CERTIFICATIONS Economical Solution Timely -
Investing in Asia Pacific 2018
Investing in Asia Pacific 2018 Taiwan Audit / Tax / Advisory Smart decisions. Lasting value. Table of Contents Business Climate .................................................................................. 3 Getting to Know this Asia-Pacific Hub .................................................. 3 10 Investment Advantages in Taiwan ................................................... 6 Advantageous Environment .............................................................. 10 A Transparent, Friendly Tax System.................................................... 10 Highly Professional Workforce ........................................................... 16 Stable Development of Finance and Foreign Exchange.................... 21 Vibrant Lifestyle .................................................................................. 25 A Handy Guide to Visas and Residency............................................. 25 Appendix I Company Establishment ................................................. 30 Appendix II Offices for Investment Services .................................... 36 Business Climate Taiwan is located at the southernmost point of Northeast Asia, at the center of the East Asian island arc and the western edge of the Pacific Ocean, with Japan and the Ryukyu Islands to the north and the Philippines to the south. It is not only an important Asia-Pacific trade and logistics hub but also a major strategic base. Across its 36,000 km2 are diverse natural elements and rich cultures. Getting to Know this Asia-Pacific Hub A Diverse -
Geology of the Berne Quadrangle Black Hills South Dakota
Geology of the Berne Quadrangle Black Hills South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-F Prepared partly on behalf of the U.S. Atomic Energy Commission Geology of the Berne Quadrangle Black Hills South Dakota By JACK A. REDDEN PEGMATITES AND OTHER PRECAMBRIAN ROCKS IN THE SOUTHERN BLACK HILLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-F Prepared partly on behalf of the U.S. Atomic Energy Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 CONTENTS Page Page Abstract._ _-------------_-___________-_____________ 343 Pegmatites Continued Introduction.______________________________________ 344 Mineralogy __ _____________-___-___-_-------_--- 378 Previous work__________________________________ 345 Origin.- --___-____-_-_-_---------------------_ 380 Fieldwork and acknowledgments._-_-_--__________ 345 Paleozoic and younger rocks. ________________________ 381 Geologic setting____--__-______________________ ____ 345 Deadwood Formation, __________________________ 381 Metamorphic rocks_________________________________ 347 Englewood Formation.. _ __________--____-_-__--_ 381 Stratigraphic units west of Grand Junction fault___- 347 Pahasapa Limestone- _______-_____.__-----_-- - 381 Vanderlehr Formation.._____________________ 347 Quaternary and Recent deposits. _________________ 382 Biotite-plagioclase gneiss.________________ -
Transfer of Manis Crassicaudata, M. Pentadactyla, M. Javanica from Appendix II to Appendix I
Prop. 11.13 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II Other proposals A. Proposal Transfer of Manis crassicaudata, M. pentadactyla, M. javanica from Appendix II to Appendix I. B. Proponents India, Nepal, Sri Lanka and the United States of America C. Supporting Statement 1. Taxonomy 1.1 Class: Mammalia 1.2 Order: Pholidota 1.3 Family: Manidae 1.4 Genus: Manis crassicaudata Gray, 1827 Manis javanica Desmarest, 1822 Manis pentadactyla Linneaus, 1758 1.5 Scientific synonyms: 1.6 Common names: English: (Manis crassicaudata) - Indian pangolin (Manis javanica) - Malayan pangolin (Manis pentadactyla) - Chinese pangolin French: (Manis crassicaudata) - Grand pangolin de l’Inde (Manis javanica) - Pangolin malais (Manis pentadactyla) - Pangolin de Chino Spanish: (Manis crassicaudata) - Pangolín indio (Manis javanica) - Pangolín malayo (Manis pentadactyla) - Pangolín Chino 1.7 Code numbers: Manis crassicaudata: A-108.001.001.001 Manis javanica: A-108.001.001.003 Manis pentadactyla: A-108.001.001.005 2. Biological Parameters 2.1 Distribution Manis crassicaudata occurs in the Indian sub-continent from eastern Pakistan, through much of India (south of the Himalayas), Bangladesh, and Sri Lanka, and, possibly, Myanmar and extreme western China (IUCN 1996, WCMC et al. 1999). Additional details on the distribution of this species are provided in Appendix A. Manis javanica occurs in tropical Southeast Asia. Although the northern and western limits of its range are very poorly defined, it has been recorded in much of Indonesia, Malaysia, the Philippines (Palawan Province), the southern half of Indo-China, much of Thailand and southern Myanmar (Nowak 1991, WCMC et al. 1999). It may also occur in Bangladesh and southwest Prop. -
170307 Yummy Taiwan-161202-1-D
Phone: 951-9800 Toll Free:1-877-951-3888 E-mail: [email protected] www.airseatvl.com 50 S. Beretania Street, Suite C - 211B, Honolulu, HI 96813 Belly-God's Yummy Yummy Tour: Taiwan Series Second Taste of Formosa ***Unforgettable Culinary Delicacies*** Taiwan Cities Covered: Taoyuan (Taipei), Nantou, Chiayi, Kaohsiung, Taitung, Hualien, Yilan (Jiaoxi) Tour Package Includes * International Flight from Honolulu Traveling Dates: * Deluxe Hotel Accommodations (Based on Double Occupancy) * Admissions and All Meals as Stated Mar 7– 15, 2017 Circle Island Tour to Visit 3 Most Popular Ranking Scenic Spots in Taiwan: (9 Days) * • Sun Moon Lake with Boat Ride • Alishan (Mt. Ali) National Scenic Area with Forest Railway • Taroko Marble Gorge Price per person: Hands-on Experience: * • Paper Making • Bubble Milk Tea Natural Hot Spring Hotels (3 Nights) $ * 2,688 Night Market Incl: Tax & Fuel Charge * Local Specialty: Shaoxing Cuisine, Fruit Meal, Green Tea * Cuisine, All You Can Eat Hot Pot, Truku Cuisine, Crock Pot Soup, Single Supp: $700 Taiwanese Dim Sum…. "Ni Hao" or "Welcome" to Taiwan! During Taiwan’s long history, prehistoric people, indigenous tribes, Dutch, Spanish, Japanese, and Han Chinese have successively occupied Taiwan, creating a varied culture and developing different local customs and traditions along the way. We will encounter all aspects of this beautiful country's multifaceted cultures. In Taiwan, cooking techniques from all areas of China have merged: the Taiwanese have not only mastered the traditional local Chinese specialties, but have also used traditional techniques to develop new culinary treats. We will taste many different kinds of cuisines here. Taiwan is also ranked among the world's top hot spring sites: the island Onsen Spa can proudly regard itself as one of the regions with the highest concentration and greatest variety of hot springs in the world. -
DEPARTMENT of the INTERIOR U.S. GEOLOGICAL SURVEY Notes
DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Notes on Sedimentary Basins in China Report of the American Sedimentary Basins Delegation to the People's Republic of China A. W. Bally 1 , I-Ming Chou2, R. Clayton3, H. P. Eugster4, S. Kidwell5, L. D. Meckel6, R. T. Ryder7, A. B. Watts8, A. A. Wilson9 1. Rice University, Houston 2. U. S. Geological Survey, Reston 3. California Institute of Technology, Pasadena 4. Johns Hopkins University, Baltimore 5. University of Chicago 6. L. D. Meckel Company, Houston 7. U. S. Geological Survey, Reston 8. Lament Doherty Geological Observatory, Columbia University, New York 9. National Academy of Sciences, Washington Open-File Report 86-327 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editiorial standards. 1986 NOTICE The views expressed in this report are those of the members of the Sedimentary Basins Delegation and are in no way the official views of the Committee on Scholarly Communication with the People's Republic of China or its sponsoring organizations the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council. The visit consisting of a bilateral workshop and field trip was part of the exchange program between the two countries and was supported by the National Academy of Sciences in the United States and the China Association for Science and Technology in China, with the Chinese Petroleum Society bearing special responsibilities as host. U.S. funding was provided by the National Science Foundation. The Committee on Scholarly Communication with the People's Republic of China was founded in 1966 by the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council. -
Fun in Taiwan! the Best Guide to Taiwan
Fun in Taiwan! The Best Guide to Taiwan Cosmos Culture Ltd. Tel: +886-(0)2-2365-9739 Fax: +886-(0)2-2365-9835 Website: www.cosmoselt.com Email: [email protected] ISBN: 978-986-318-098-2 First Published 2014 Copyright © 2014 by Cosmos Culture Limited All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, whether it be electronic, mechanical, photocopying, recording, scanning, or otherwise, without prior written permission of the authors. Author • Andrew Crosthwaite Proofreader • Cheryl Robbins, Zachary Fillingham Editor • Peggy Ting Graphic designer • Peggy Ting 2 Table of Contents Unit 1 Taiwan— The Big Picture 8 Reading Dialogs Chapter 1 Reading 10 Taking a trip in Taiwan 14 Landscape and Climate Talking about when to visit Taiwan 15 Chapter 2 Reading 18 Talking about Dutch rule in Taiwan 22 Reflecting on the Past Asking about the Japanese occupation of Taiwan 23 Chapter 3 Reading 26 Chatting about cultural diversity 30 Cultures, People, and Chatting about language 31 Languages Chapter 4 Reading 34 Talking about religion 38 Religious Practice Talking about going to a fortune teller 39 Chapter 5 Reading 42 Talking about Taiwan’s biggest industries 46 Economic Development Talking about unemployment in Taiwan 47 3 Unit 2 Travel and Accommodation 50 Chapter 6 Reading 52 Calling the Taiwan Railways Administration Long-Distance Travel helpline for information about a train journey 56 Asking for advice about getting from Taipei to Tainan 57 Chapter -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Metamorphic Rocks.Pdf
Metamorphism & Metamorphic Rocks (((adapted from Brunkel, 2012) Metamorphic Rocks . Changed rocks- with heat and pressure . But not melted . Change in the solid state . Textural changes (always) . Mineralogy changes (usually) Metamorphism . The mineral changes that transform a parent rock to into a new metamorphic rock by exposure to heat, stress, and fluids unlike those in which the parent rock formed. granite gneiss Geothermal gradient Types of Metamorphism . Contact metamorphism – – Happens in wall rock next to intrusions – HEAT is main metamorphic agent . Contact metamorphism Contact Metamorphism . Local- Usually a zone only a few meters wide . Heat from plutons intruded into “cooler” country rock . Usually forms nonfoliated rocks Types of Metamorphism . Hydrothermal metamorphism – – Happens along fracture conduits – HOT FLUIDS are main metamorphic agent Types of Metamorphism . Regional metamorphism – – Happens during mountain building – Most significant type – STRESS associated with plate convergence & – HEAT associated with burial (geothermal gradient) are main metamorphic agents . Contact metamorphism . Hydrothermal metamorphism . Regional metamorphism . Wide range of pressure and temperature conditions across a large area regional hot springs hydrothermal contact . Regional metamorphism Other types of Metamorphism . Burial . Fault zones . Impact metamorphism Tektites Metamorphism and Plate Tectonics . Fault zone metamorphism . Mélange- chaotic mixture of materials that have been crumpled together Stress (pressure) . From burial -
Philippine Sea Plate Inception, Evolution, and Consumption with Special Emphasis on the Early Stages of Izu-Bonin-Mariana Subduction Lallemand
Progress in Earth and Planetary Science Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction Lallemand Lallemand Progress in Earth and Planetary Science (2016) 3:15 DOI 10.1186/s40645-016-0085-6 Lallemand Progress in Earth and Planetary Science (2016) 3:15 Progress in Earth and DOI 10.1186/s40645-016-0085-6 Planetary Science REVIEW Open Access Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction Serge Lallemand1,2 Abstract We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60–55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ∼54–48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called “fore-arc basalts” (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ∼52–50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere.