Largescale Hydrogen Production in Norway - Possible Transition Pathways Towards 2050
Total Page:16
File Type:pdf, Size:1020Kb
2020-00179- Unrestricted Report Largescale hydrogen production in Norway - possible transition pathways towards 2050 Authors: Sigrid Damman (SINTEF), Eli Sandberg (SINTEF), Eva Rosenberg (IFE), Paolo Pisciella (NTNU), Ulf Johansen (SINTEF) Front page illustration: ID 99959199 © Mikalai Manyshau | Dreamstime.com © SINTEF SINTEF Digital SINTEF Digital Address: Report Postboks 4 760 Torgarden NO 7465 Trondheim NORWAY Switchboard- +47 40005T00 info<®sintef.no Largescale hydrogen production in Norway Enterprise /VAT No: NO 919 303 808 MVA - possible transition pathways towards 2050 KEYWORDS: VERSION DATE Hydrogen, Final 2020-02-14 energy, sustainability transition, AUTHOR(S) multilevel Sigrid Damman (SINTEF), Eli Sandberg (SINTEF), Eva Rosengren (IFE), Paolo Pisciella perspective, (NTNU), Ulf Johansen (SINTEF) transition pathways CUENT(S) CLIENT'S REF. Research Council of Norway 255100/E20 PROJECT NO. NUMBER OF PAGES/APPENDICES: 502001265 99 + Appendices ABSTRACT The report presents a case study where qualitative research framed within transition studies and the multi-level perspective (MLP) is used to discuss the role Norwegian hydrogen production may play in sustainable energy transition towards 2050. Ongoing initiatives and stakeholder perspectives on drivers and barriers are discussed. The focus is on the interaction between wider socio-political and market trends and national regime developments, and how this influences the scope for hydrogen production and deployment. The qualitative results are held up against the findings from model-based assessment of two transition scenarios. Our main finding is that hydrogen may be a key to reach the national climate targets. While hydrogen from natural gas with CCS has been associated with the largest potential, the shift towards a renewable and more distributed energy system is opening new opportunities and roles for hydrogen from electrolysis. The hydrogen industry is growing, but still fragmented, and calls for national coordination. Whereas economic and technological barriers have received most attention, the social acceptance of hydrogen as a sustainable zero-emission solution is a critical factor. The transition is currently at a critical tipping point. Systems thinking and increased focus on sociotechnical interactions are required to unleash the market. PREPARED BY SIGNATURE Sigrid Damman ----■> 1 ^7 ""V k. 2_ *'v-\ C -——«---- CHECKED BY SIGNATURE^ Gtff&tøtC Ingeborg Graabak LC{/7'70 c,VSTE4f APPROVED BY SIGNATURE % Anne Rita Bakken NVG REPORT NO. ISBN CLASSIFICATION CLASSIFICATION THIS PAGE ISO 9001: ISO 14001 OHSAS 18001 2020-00179 978-82-14-06295-3 Unrestricted Unrestricted 1 of 100 Table of contents Abbreviations ........................................................................................................................................ 4 1 Introduction .................................................................................................................................. 6 2 Background ................................................................................................................................... 7 2.1 Climate goals and energy policy in Norway ................................................................................... 7 2.2 Perspectives on the energy system towards 2050 ........................................................................ 9 2.3 Hydrogen as energy carrier ............................................................................................................ 9 2.4 Development scenarios for hydrogen towards 2050 .................................................................. 12 3 Analytical approach ..................................................................................................................... 13 3.1 Sustainability transition studies ................................................................................................... 13 3.2 Methods ....................................................................................................................................... 16 4 Hydrogen production in Norway .................................................................................................. 19 4.1 Historical backdrop ...................................................................................................................... 19 4.2 Initiatives to establish largescale hydrogen production .............................................................. 21 4.2.1 VarangerKraft Hydrogen .................................................................................................. 21 4.2.2 TiZir, Tyssedal .................................................................................................................. 22 4.2.3 Norsk H2, Suldal ............................................................................................................... 24 4.2.4 Kvinnherad ....................................................................................................................... 25 4.2.5 Tjeldbergodden ................................................................................................................ 26 4.2.6 Glomfjord ......................................................................................................................... 27 4.3 Comparative assessment ............................................................................................................. 28 5 Opportunities and barriers ........................................................................................................... 32 5.1 Production .................................................................................................................................... 32 5.2 Storage and distribution .............................................................................................................. 37 5.3 Hydrogen in a more distributed and flexible power system ....................................................... 41 5.4 Use in transport ........................................................................................................................... 44 5.5 Use in industry ............................................................................................................................. 50 5.6 Use for heating ............................................................................................................................. 52 6 A multilevel perspective on the scope for hydrogen in Norway's energy transition ........................ 54 6.1 A changing global landscape ........................................................................................................ 54 6.2 National regime developments ................................................................................................... 63 6.3 From niche to industry? ............................................................................................................... 68 PROJECT NO.2 REPORT NO. VERSION 2 of 100 502001265 2020-00179 Final 7 Possible transition pathways ....................................................................................................... 73 7.1 Types of transition pathways ....................................................................................................... 74 7.2 Hydrogen in model-based scenarios for Norway towards 2050 ................................................. 75 7.3 Sequential pathway and role in system change .......................................................................... 83 7.4 A critical tipping point .................................................................................................................. 85 8 Summary and conclusions ............................................................................................................ 87 9 References .................................................................................................................................. 89 APPENDICES 1. REMES model assumptions PROJECT NO.2 REPORT NO. VERSION 3 of 100 502001265 2020-00179 Final Abbreviations ACER Agency for the Cooperation of Energy Regulators AE Alkaline Electrolysis AEM Anion exchange membrane ATR Autothermal reforming BEV Battery Electric Vehicle BIPV Building Integrated PhotoVoltaics CCS Carbon Capture and Storage CEER Council of European Energy Regulators CHP Combined Heat and Power plant CLIMIT Norwegian national funding programme for CCS DOE Department of Energy (United States) ETC Energy Transition Commission ETS EU Emission Trading System FCEV Fuel Cell Electric Vehicle FCH-JU Fuel Cell Hydrogen Joint Undertaking (EU) GDP Gross Domestic Product GoO Guarantee of Origin HAEOLUS Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation HRS Hydrogen Refueling Station Hy2GEN German company, aiming to produce hydrogen globally HYBRIT Hydrogen Breakthrough Iron-making Technology (Swedish initiative) HyNOR Hydrogen highway Norway project, 2003-2012 Hyop Norwegian hydrogen distributor, shut down 2018 IEA International Energy Agency IMO International Maritime Organization IRENA International Renewable Energy Agency IPCC Intergovernmental Panel on Climate Change MLP Multi-Level Perspective LNG Liquid Natural Gas LULUCF Land, Land-Use Change and Forestry MLP Multi-Level Perspective MoZEES Mobility Zero Emission Energy Systems NCEC Norwegian Clean Energy Cluster NEL Norsk Elektrolyse (provider of electrolysers) NETP Nordic Energy Technology Perspectives NIP National Innovation Program for Hydrogen and Fuel