Long-Term Persistence of the Floating Bull Kelp Durvillaea Antarctica From
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Zealand's Genetic Diversity
1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses). -
Akatore Study Published in Earth and Planetary
Earth and Planetary Science Letters 520 (2019) 18–25 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Kelp DNA records late Holocene paleoseismic uplift of coastline, southeastern New Zealand ∗ Elahe Parvizi a, Dave Craw b, , Jonathan M. Waters a a Zoology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand b Geology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand a r t i c l e i n f o a b s t r a c t Article history: Holocene paleoseismic activity on the Akatore Fault zone, southeastern New Zealand, has caused uplift Received 20 January 2019 of a 23 km section of coastline by several metres. Prominent relict shoreline terraces are preserved at Received in revised form 4 May 2019 6 m and 3 m above the present sea level, and the latter terrace was formed 1000-1400 yrs BP. The Accepted 22 May 2019 main fault strand farther inland has 6 mof late Holocene vertical offset, but the relationships between Available online xxxx coastal offsets and fault offsets are not understood. There is no preserved geological evidence on the Editor: J.-P. Avouac coastline to distinguish between incremental uplift (e.g., numerous centimetre-scale events) and major, Keywords: metre-scale, uplift events: a distinction that is important for evaluating regional paleoseismicity. We have paleoseismology used genetic characterisation of populations of live kelp, Durvillaea antarctica growing along the shoreline neotectonics to investigate whether or not there has been a catastrophic uplift event, greater than the two metre tidal fault range, that was sufficient to extirpate intertidal kelp populations. -
Founder Effects Drive the Genetic Structure of Passively Dispersed Aquatic Organisms
A peer-reviewed version of this preprint was published in PeerJ on 11 December 2018. View the peer-reviewed version (peerj.com/articles/6094), which is the preferred citable publication unless you specifically need to cite this preprint. Montero-Pau J, Gómez A, Serra M. 2018. Founder effects drive the genetic structure of passively dispersed aquatic invertebrates. PeerJ 6:e6094 https://doi.org/10.7717/peerj.6094 1 Founder effects drive the genetic structure of passively 2 dispersed aquatic invertebrates 3 4 Javier Montero-Pau1,2, 3,#, Africa Gómez2 and Manuel Serra1 5 1 Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, A.O.22085, 6 46071, Valencia, Spain 7 2 Department of Biological Sciences, University of Hull, Hull, HU6 7RX, UK 8 3 Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), 9 Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain 10 11 12 #Corresponding author: 13 Javier Montero-Pau, Institute for the Conservation and Breeding of Agricultural Biodiversity 14 (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia (Spain) 15 Phone: (+34) 963878847 16 [email protected] 17 18 Running title (45 characters): 19 Founder effects and local adaptation 20 1 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3254v2 | CC BY 4.0 Open Access | rec: 13 Jul 2018, publ: 13 Jul 2018 21 Abstract 22 Populations of passively dispersed organisms in continental aquatic habitats typically show high 23 levels of neutral genetic differentiation despite their high dispersal capabilities. Several 24 evolutionary factors, including founder events, local adaptation, and life cycle features such as 25 high population growth rates and the presence of propagule banks, have been proposed to be 26 responsible for this paradox. -
The Halogenated Metabolism of Brown Algae
The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage To cite this version: Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage. The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance. Marine drugs, MDPI, 2010, 8, pp.988. hal-00987044 HAL Id: hal-00987044 https://hal.archives-ouvertes.fr/hal-00987044 Submitted on 5 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mar. Drugs 2010, 8, 988-1010; doi:10.3390/md8040988 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre 1,2,*, Philippe Potin 1,2, Catherine Leblanc 1,2 and Ludovic Delage 1,2 1 Université Pierre et Marie Curie-Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France; E-Mails: [email protected] (P.P.); [email protected] (C.L.); [email protected] (L.D.) 2 CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-298-292-361; Fax: +33-298-292-385. -
Gas Composition of Developing Pneumatocysts in Bull Kelp Nereocystis Luetkeana (Phaeophyceae)1
J. Phycol. 56, 1367–1372 (2020) © 2020 Phycological Society of America DOI: 10.1111/jpy.13037-19-219 NOTE GAS COMPOSITION OF DEVELOPING PNEUMATOCYSTS IN BULL KELP NEREOCYSTIS LUETKEANA (PHAEOPHYCEAE)1 Lauran M. Liggan ,2 and Patrick T. Martone Department of Botany and Biodiversity Research Centre, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada The subtidal kelp Nereocystis luetkeana (hereafter The bull kelp Nereocystis luetkeana (hereafter Nereo- Nereocystis) maintains an upright stature by producing a cystis) builds unique subtidal forests in the Northeast single gas-filled float (pneumatocyst) that provides Pacific by having a singular gas-filled float called a buoyancy. The ability of Nereocystis pneumatocysts to pneumatocyst, which enables the kelp’s flexible thal- inflate with gas underwater is peculiar, and the gas lus to remain upright and vertical in the water col- composition of pneumatocysts has been the topic of umn (Arzee et al. 1985). The ability of this seaweed several studies over the last 100 years. Past studies of to create an air-tight reservoir and inflate underwa- pneumatocyst gases only examined large sporophytes, ter is remarkable, and the gas composition of Nereo- leaving open questions about the origins of these gases cystis pneumatocysts has been the topic of several and how gas composition may change during studies during the first half of the 20th century (Frye development. In this study, we use developmental time et al. 1915, Langdon 1917, Langdon and Gailey as a means to understand the origin and physiological 1920, Rigg and Henry 1935, Rigg and Swain 1941). mechanisms that give rise to different gases within Past studies found that 20–25% of gas sampled from ~ Nereocystis pneumatocysts. -
Rapid Radiation of Southern Ocean Shags in Response to Receding Sea Ice 2 3 Running Title: Blue-Eyed Shag Phylogeography 4 5 Nicolas J
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456742; this version posted August 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Rapid radiation of Southern Ocean shags in response to receding sea ice 2 3 Running title: Blue-eyed shag phylogeography 4 5 Nicolas J. Rawlence1, *, Alexander T. Salis1, 2, Hamish G. Spencer1, Jonathan M. Waters1, 6 Lachie Scarsbrook1, Richard A. Phillips3, Luciano Calderón4, Timothée R. Cook5, Charles- 7 André Bost6, Ludovic Dutoit1, Tania M. King1, Juan F. Masello7, Lisa J. Nupen8, Petra 8 Quillfeldt7, Norman Ratcliffe3, Peter G. Ryan5, Charlotte E. Till1, 9, Martyn Kennedy1,* 9 1 Department of Zoology, University of Otago, Dunedin, New Zealand. 10 2 Australian Centre for Ancient DNA, University of Adelaide, South Australia, Australia. 11 3 British Antarctic Survey, Natural Environment Research Council, United Kingdom. 12 4 Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Argentina. 13 5 FitzPatrick Institute of African Ornithology, Department of Biological Sciences, University 14 of Cape Town, South Africa. 15 6 CEBC-CNRS, UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers en Bois, 16 France. 17 7 Justus Liebig University, Giessen, Germany. 18 8 Organisation for Tropical Studies, Skukuza, South Africa. 19 9 School of Human Evolution and Social Change, Arizona State University, Arizona, USA. 20 21 Prepared for submission as a research article to Journal of Biogeography 22 23 * Corresponding authors: [email protected]; [email protected] 24 25 ACKNOWLEDGEMENTS 26 This work was supported with funding from the University of Otago. -
Keynote and Oral Papers1. Algal Diversity and Species Delimitation
European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: http://www.tandfonline.com/loi/tejp20 Keynote and Oral Papers To cite this article: (2015) Keynote and Oral Papers, European Journal of Phycology, 50:sup1, 22-120, DOI: 10.1080/09670262.2015.1069489 To link to this article: http://dx.doi.org/10.1080/09670262.2015.1069489 Published online: 20 Aug 2015. Submit your article to this journal Article views: 76 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tejp20 Download by: [University of Kiel] Date: 22 September 2015, At: 02:13 Keynote and Oral Papers 1. Algal diversity and species delimitation: new tools, new insights 1KN.1 1KN.2 HOW COMPLEMENTARY BARCODING AND GENERATING THE DIVERSITY - POPULATION GENETICS ANALYSES CAN UNCOVERING THE SPECIATION HELP SOLVE TAXONOMIC QUESTIONS AT MECHANISMS IN FRESHWATER AND SHORT PHYLOGENETIC DISTANCES: THE TERRESTRIAL MICROALGAE EXAMPLE OF THE BROWN ALGA Š PYLAIELLA LITTORALIS Pavel kaloud ([email protected]) Christophe Destombe1 ([email protected]), Department of Botany, Charles Univrsity in Prague, Alexandre Geoffroy1 ([email protected]), Prague 12801, Czech Republic Line Le Gall2 ([email protected]), Stéphane Mauger3 ([email protected]) and Myriam Valero4 Species are one of the fundamental units of biology, ([email protected]) comparable to genes or cells. Understanding the general patterns and processes of speciation can facilitate the 1Station Biologique de Roscoff, Sorbonne Universités, formulation and testing of hypotheses in the most impor- Université Pierre et Marie Curie, CNRS, Roscoff tant questions facing biology today, including the fitof 29688, France; 2Institut de Systématique, Evolution, organisms to their environment and the dynamics and Biodiversité, UMR 7205 CNRS-EPHE-MNHN-UPMC, patterns of organismal diversity. -
The Ecology of Chemical Defence in a Filamentous
THE ECOLOGY OF CHEMICAL DEFENCE IN A FILAMENTOUS MARINE RED ALGA NICHOLAS A. PAUL A thesis submitted to the University of New South Wales for the degree of Doctor of Philosophy July 2006 i ACKNOWLEDGEMENTS··························································································································· iii CHAPTER 1. GENERAL INTRODUCTION ..........................................................................1 NATURAL PRODUCTS CHEMISTRY OF MACROALGAE ...............................................................2 THE RED ALGAE ........................................................................................................................2 ECOLOGICAL ROLES OF SECONDARY METABOLITES ................................................................3 i) Chemical mediation of interactions with herbivores ........................................................3 ii) Chemical mediation of interactions with fouling organisms ............................................4 ULTRASTRUCTURE OF SPECIALISED CELLS AND STRUCTURES.................................................5 RESOURCE ALLOCATION TO SECONDARY METABOLITE PRODUCTION.....................................6 THESIS AIMS ..............................................................................................................................7 CHAPTER 2. CHEMICAL DEFENCE AGAINST BACTERIA IN ASPARAGOPSIS ARMATA: LINKING STRUCTURE WITH FUNCTION.......................................................9 INTRODUCTION ..........................................................................................................................9 -
A Roadmap for Island Biology: 50 Fundamental Questions After 50&
Journal of Biogeography (J. Biogeogr.) (2017) 44, 963–983 SPECIAL A roadmap for island biology: PAPER 50 fundamental questions after 50 years of The Theory of Island Biogeography Jairo Patino~ 1,2* , Robert J. Whittaker3,4 , Paulo A.V. Borges2 , Jose Marıa Fernandez-Palacios5, Claudine Ah-Peng6, Miguel B. Araujo 4,7,8, Sergio P. Avila 9, Pedro Cardoso2,10, Josselin Cornuault11, Erik J. de Boer12, Lea de Nascimento5, Artur Gil2, Aaron Gonzalez-Castro1, Daniel S. Gruner13, Ruben Heleno14, Joaquın Hortal8,15, Juan Carlos Illera16, Christopher N. Kaiser-Bunbury17, Thomas J. Matthews2,18, Anna Papadopoulou19 , Nathalie Pettorelli20, Jonathan P. Price21, Ana M. C. Santos2,8,22, Manuel J. Steinbauer23 , Kostas A. Triantis2,24, Luis Valente25, Pablo Vargas26, Patrick Weigelt27 and Brent C. Emerson1,28 1Island Ecology and Evolution Research Group, ABSTRACT Instituto de Productos Naturales y Aims The 50th anniversary of the publication of the seminal book, The Theory Agrobiologıa, (IPNA-CSIC), La Laguna, 2 of Island Biogeography, by Robert H. MacArthur and Edward O. Wilson, is a Tenerife, Canary Islands, Spain, Centre for Ecology, Evolution and Environmental timely moment to review and identify key research foci that could advance Changes (cE3c)/Azorean Biodiversity Group, island biology. Here, we take a collaborative horizon-scanning approach to University of the Azores, Angra do Heroısmo identify 50 fundamental questions for the continued development of the field. 3 and Ponta Delgada, Azores, Portugal, School Location Worldwide. of Geography and the Environment, University of Oxford, South Parks Road, Oxford, UK, Methods We adapted a well-established methodology of horizon scanning to 4Center for Macroecology, Evolution and identify priority research questions in island biology, and initiated it during the Climate, University of Copenhagen, Island Biology 2016 conference held in the Azores. -
Macroalgae (Seaweeds)
Published July 2008 Environmental Status: Macroalgae (Seaweeds) © Commonwealth of Australia 2008 ISBN 1 876945 34 6 Published July 2008 by the Great Barrier Reef Marine Park Authority This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Great Barrier Reef Marine Park Authority. Requests and inquiries concerning reproduction and rights should be addressed to the Director, Science, Technology and Information Group, Great Barrier Reef Marine Park Authority, PO Box 1379, Townsville, QLD 4810. The opinions expressed in this document are not necessarily those of the Great Barrier Reef Marine Park Authority. Accuracy in calculations, figures, tables, names, quotations, references etc. is the complete responsibility of the authors. National Library of Australia Cataloguing-in-Publication data: Bibliography. ISBN 1 876945 34 6 1. Conservation of natural resources – Queensland – Great Barrier Reef. 2. Marine parks and reserves – Queensland – Great Barrier Reef. 3. Environmental management – Queensland – Great Barrier Reef. 4. Great Barrier Reef (Qld). I. Great Barrier Reef Marine Park Authority 551.42409943 Chapter name: Macroalgae (Seaweeds) Section: Environmental Status Last updated: July 2008 Primary Author: Guillermo Diaz-Pulido and Laurence J. McCook This webpage should be referenced as: Diaz-Pulido, G. and McCook, L. July 2008, ‘Macroalgae (Seaweeds)’ in Chin. A, (ed) The State of the Great Barrier Reef On-line, Great Barrier Reef Marine Park Authority, Townsville. Viewed on (enter date viewed), http://www.gbrmpa.gov.au/corp_site/info_services/publications/sotr/downloads/SORR_Macr oalgae.pdf State of the Reef Report Environmental Status of the Great Barrier Reef: Macroalgae (Seaweeds) Report to the Great Barrier Reef Marine Park Authority by Guillermo Diaz-Pulido (1,2,5) and Laurence J. -
Download Full Article 6.9MB .Pdf File
Memoirs of the Museum of Victoria 52(2): 1 37-262 ( 1 990) ISSN 08 1 4- 1 827 https://doi.org/10.24199/j.mmv.1991.52.02 30 September 1991 AUSTRALASIAN SPECIES OF LIMNORIIDAE (CRUSTACEA: ISOPODA) By Laurie J. Cookson CSIRO Division of Forest Products, Private Bag 10, Clayton, Victoria 3168, Australia Abstract Cookson, L.J., 1991. Australasian species of Limnoriidae (Crustacea: Isopoda). Memoirs of the Museum of Victoria 52: 137-262. Some members of the Limnoriidae are important marine wood-borers. The taxonomy of the family was studied with emphasis on species from the Australasian region. The Lim- noriidae are reduced to two genera: Limnoria Leach and Paralimnoria Menzies. The genus Phycolimnoria is synonymised with Limnoria. Species from Australia are redescribed: Limnoria indica Becker and Kampf, L. insulae Menzies, L. multipunctata Menzies, L. nonsegnis Menzies, L. pfefferi Stebbing, L. plaiy- cauda Menzies, L. quadripunctata Holthuis, L. rugosissima Menzies, L. sublittorale Menzies, L. tripunctata Menzies and L. unicornis Menzies. New species from Australia are: L. agrostisa, L. echidna, L. gibbera, L. glaucinosa, L. orbellum, L. poorei, L. raruslima, L. torquisa and L. uncapedis. The new species L. loricata and L. convexa are also described from The Snares, New Zealand. Species from Papua New Guinea are: Paralimnoria andrewsi (Caiman), P. asterosa Cook- son and Cragg, L. andamanensis Rao and Ganapati, L. indica, L. insulae, L. kautensis Cookson and Cragg, L. multipunctata, L. pfefferi, L. tripunctata and L. unicornis. L. antarctica Pfeffer and L. stephenseni Menzies from Macquarie Island are redes- cribed. Although not found near Australia, L. tuberculata Sowinsky is also redescribed to distin- guish it from L. -
Stranding Dynamics of Floating Bull Kelp Durvillaea Antarctica (Fucales, Phaeophyceae) on Beaches in the Se Pacific1
J. Phycol. 53, 70–84 (2017) © 2016 Phycological Society of America DOI: 10.1111/jpy.12479 THE VARIABLE ROUTES OF RAFTING: STRANDING DYNAMICS OF FLOATING BULL KELP DURVILLAEA ANTARCTICA (FUCALES, PHAEOPHYCEAE) ON BEACHES IN THE SE PACIFIC1 Boris A. Lopez Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Avenida Fuchslocher 1305, Osorno, Chile Erasmo C. Macaya Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografıa, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile Centro FONDAP de Investigaciones en Dinamica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile Fadia Tala Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Centro de Investigacion y Desarrollo Tecnologico en Algas (CIDTA), Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Florence Tellier Departamento de Ecologıa, Facultad de Ciencias, Universidad Catolica de la Santısima Concepcion, Casilla 297, Concepcion, Chile Centro de Investigacion en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Catolica de la Santısima Concepcion, Casilla 297, Concepcion, Chile and Martin Thiel2 Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo,