MSE 3143 Ceramic Materials

Total Page:16

File Type:pdf, Size:1020Kb

MSE 3143 Ceramic Materials MSE 3143 Ceramic Materials Crystal Structures of Ceramics Assoc.Prof. Dr. Emre YALAMAÇ Res.Asst. B.Şölen AKDEMİR 2017-2018 Fall 1 OUTLINE ATOMS, ELECTRONIC STRUCTURE OF ATOMS, INTERATOMIC BONDS THE CRYSTAL STRUCTURES AND PROPERTIES OF CERAMICS 2 ATOMS, ELECTRONIC STRUCTURE OF ATOMS, INTERATOMIC BONDS The Atom Energy Levels, Orbital and Quantum Numbers Electron distribution and Orbital Diagram Ionic Diameter Interatomic Bonds Electronegativity and Polar Bonds 3 THE ATOM 4 ENERGY LEVELS, ORBITAL AND QUANTUM NUMBERS Energy levels (shell): A shell specifies the energy levels of the atom and defines as n Lower energy levels (subshell): Atomic energy levels are composed of lower energy levels or subshells. It is defined as orbitals and every subshells has specific notations, n and l l : 0 s l : 1 p l : 2 d l : 3 f Orbital: An orbital is specified by n, l, and ml, and can contain a maximum of two electrons with opposite spins Carter, C.B.; Norton, M.G.; ’’Ceramic Materials: Science and Engineering’’, Springer, 2007 5 ENERGY LEVELS, ORBITAL AND QUANTUM NUMBERS Quantum Numbers Four quantum numbers are necessary to specify the state of any electron: 1. n principal quantum number 2. l orbital shape, or orbital angular momentum, quantum number 3. ml orbital orientation, or orbital magnetic, quantum number 4. ms spin, or spin magnetic, quantum number Carter, C.B.; Norton, M.G.; ’’Ceramic Materials: Science and Engineering’’, Springer, 2007 6 ENERGY LEVELS, ORBITAL AND QUANTUM NUMBERS Quantum Numbers Are these numbers important for ceramics ? The answer, of course, is YES. The color of a ceramic, such as ruby, derives directly from transitions between energy levels. The energy levels are the result of which orbitals are occupied and their relative energies. We use transitions for chemical analysis of ceramics—certain transitions are allowed (quantum mechanical selection rules). Magnetism relates directly to the spin of the electrons. If we have more spins up than down then we have magnetization. Atomic arrangements in covalently bonded ceramics can be understood by considering hybridization of atomic orbitals. It is the sp3 hybridization of atomic orbitals in carbon that allows the tetrahedral arrangement of atoms in diamond. The s and the p in sp3 refer to the atomic orbitals. 7 ELECTRON DISTRIBUTION AND ORBITAL DIAGRAM • Electrons are settled at orbitals according to lowering the energy of atom • These electrons are located in compliance with Pauli exclusion principle: No two electrons in an atom can have the same set of four quantum numbers # Electron distribution is shown as: nl Example: 1s1 and 1s2 8 ELECTRON DISTRIBUTION AND ORBITAL DIAGRAM Orbital Diagram electron spin and the lower shell group IONIC DIAMETER • Cations are smaller than the atoms which they form • For isoelectronic cations; the higher the ionic charge the smaller the ionic radius • Anions are bigger than the atoms which they are formed. For isoelectronic anions; the higher the ionic charge the greater the ionic radius 10 INTERATOMIC BONDS • Interatomic bonds form the internal structure by holding atoms together. • Most properties of materials are highly depend on their internal structures. • Elastic modulus Strong • Thermal expansion • Strength bond • Melting point • Interatomic bonds are originated from electrostatic attraction or coulomb forces between oppositely charged particles. Net For neutral # of # of electrical atoms electrons protons charge 0 11 INTERATOMIC BONDS • Elements with unfilled electron shells are not as stable interact with other atoms in a controlled fashion such that electrons are shared or exchanged between these atoms to achieve stable full outer shells. • In discussing ceramics, we usually think of the material in terms of ions; ions with the same sign always repel one another due to the Coulomb force. • Atoms have specific potential energies individually. This potential energy decreases during bond formation, reaches minimum at equilibrium condition. Therefore stable structure forms. 12 INTERATOMIC BONDS We can divide interatomic bonds into two categories: Primary Secondary (strong) bonds (weak) bonds Carter, C.B.; Norton, M.G.; ’’Ceramic Materials: Science and Engineering’’, Springer, 2007 13 INTERATOMIC BONDS Three Chemical Bond Model 14 INTERATOMIC BONDS Ionic Bonding Energy: The importance of lattice energy • Some exothermic reactions surpass some endothermic steps with released energy from formation of Li(s) + F2(g) → LiF(s) • This reaction of energy is the strong attraction of oppositely charged ions each other. + - ° Li (g) + F (g) → LiF(g) ∆퐻 = −755 푘퐽 • Naturally LiF gas molecules could not exist. Because there has to be excessive amount of released energy to form crystal structure by combination of gas ions. + - ∆퐻°= −1050 푘퐽 Li (g) + F (g) → LiF(s) • This energy is called as lattice energy of LiF. ° Lattice energy (∆퐻) is the enthalpy change formed during decomposition of 1 mol of ionic solid to its gas ions. It effects some properties like ionic interaction strength, boiling point, hardness and solubility etc. 15 INTERATOMIC BONDS Bond Exchange Between Periodic Elements • All binary ionic compounds contain metal and non-metal. However not all metals could form binary ionic compounds with all non-metals. The bond model between berilium (Be) and Ex.: chloride (Cl) is more similar to covalent bonding rather than ionic bonding. 16 INTERATOMIC BONDS Bond Exchange Between Periodic Elements Ionic and Covalent Bonding Compounds • In most ceramic materials ionic and covalent bonding exist together. CaSO • Composed of both ionic and covalent bonds. 4 Atomic (gypsum) Number of 16 (Having 6 electrons at its outer shell) Sulfide Bonds ionically by giving 2 electrons to the structure While S O Ca Bonds covalently 17 ELECTRONEGATIVITY AND POLAR BONDS • Until now ionic and covalent bonding formed by shared or exchanged electrons is mentioned. • In reality, bonding type of materials exist between these two. • Substantial amount of compounds have polar covalent bonding which means partially ionic and partially covalent. 18 ELECTRONEGATIVITY AND POLAR BONDS Electronegativity Electronegativity is a measure of the strength with which an atom in a molecule attracts electrons. It is the contribution of electrostatic charge. As shown in the above calculation, F atom attracts shared electrons more than H atom. It means that floride is more electronegative than hydrogen. Therefore while the end of the F atom charges negatively, the end of the H atom charges positively. These partial charges cause increase in the bonding energy. 19 ELECTRONEGATIVITY AND POLAR BONDS Electronegativity Carter, C.B.; Norton, M.G.; ’’Ceramic Materials: Science and Engineering’’, Springer, 2007 20 Crystal Structure Ceramic Structures and Stable Ionic Radius THE CRYSTAL STRUCTURES Cordination Numbers ve Types AND Pauling Rules PROPERTIES OF CERAMICS Polymorphism AX - Type Crystal Structures AmXp - Type Crystal Structures AmBnXp - Type Crystal Structures Silicate Structures Carbon Structures 21 CRYSTAL STRUCTURES • Atoms bond together in metals and ceramics in distinct geometric arrangements that repeat throughout the material to form a crystal structure. The crystal structure that results depends upon the type of atomic bonding, the size of the atoms (or ions), and the electrical charge of the ions. • The smallest grouping of atoms that shows the geometry of the structure (and can be stacked as repeating units to form a crystal of the structure) is referred to as the unit cell. • Unit cell is defined as 3 different vectors having origin at the corner of a rectangular coordinate system with axial lengths and interaxial angles. 22 CRYSTAL STRUCTURES – Bravais Lattices 23 CERAMIC STRUCTURES AND STABLE IONIC RADIUS • Ceramics are composed of at least two elements (metallic and non-metallic). • Because of having more components, it has more complex crystal structures than metals. • Atomic bonding ranges from purely ionic to totally covalent (most of them exhibit combinations of two) • In ionic bonding, metal ions (cations) are charged positively. Because they give their valance electrons to negatively charged non-metallic ions (anions). 24 CERAMIC STRUCTURES AND STABLE IONIC RADIUS • Ionic radius of anions and cations (rA and rC, respectively) are critical parameters effects the crystal structure. • The metallic ions, or cations, are positively charged, because they have given up their valence electrons to the nonmetallic ions, or anions, which are negatively charged. • Because the metallic elements give up electrons when ionized, cations are ordinarily smaller than anions, and, consequently, the ratio rC/rA is less than unity. • Stable ceramic crystal structures form when those anions surrounding a cation are all in contact with that cation as shown in the figure W.D.,Callister; D.G.,Rethwisch; Material Science and Engineering, 8th Edition, John Wiley&Sons, Inc., 2011 25 CORDINATION NUMBERS VE TYPES • The coordination number (i.e., number of anion nearest neighbors for a cation) is related to the cation–anion radius ratio. • For a specific coordination number, there is a critical or minimum rC/rA ratio. This ratio may be determined from pure geometrical considerations (Tetrahedral) • The relationships between coordination number and cation–anion radii ratios are based on geometrical considerations and assuming “hard sphere” ions • The most common coordination numbers for ceramics are 4, 6 and 8 (Oktahedral) W.D.,Callister; D.G.,Rethwisch; Material Science
Recommended publications
  • Crystal Structures
    Crystal Structures Academic Resource Center Crystallinity: Repeating or periodic array over large atomic distances. 3-D pattern in which each atom is bonded to its nearest neighbors Crystal structure: the manner in which atoms, ions, or molecules are spatially arranged. Unit cell: small repeating entity of the atomic structure. The basic building block of the crystal structure. It defines the entire crystal structure with the atom positions within. Lattice: 3D array of points coinciding with atom positions (center of spheres) Metallic Crystal Structures FCC (face centered cubic): Atoms are arranged at the corners and center of each cube face of the cell. FCC continued Close packed Plane: On each face of the cube Atoms are assumed to touch along face diagonals. 4 atoms in one unit cell. a 2R 2 BCC: Body Centered Cubic • Atoms are arranged at the corners of the cube with another atom at the cube center. BCC continued • Close Packed Plane cuts the unit cube in half diagonally • 2 atoms in one unit cell 4R a 3 Hexagonal Close Packed (HCP) • Cell of an HCP lattice is visualized as a top and bottom plane of 7 atoms, forming a regular hexagon around a central atom. In between these planes is a half- hexagon of 3 atoms. • There are two lattice parameters in HCP, a and c, representing the basal and height parameters Volume respectively. 6 atoms per unit cell Coordination number – the number of nearest neighbor atoms or ions surrounding an atom or ion. For FCC and HCP systems, the coordination number is 12. For BCC it’s 8.
    [Show full text]
  • Crystal Structure of a Material Is Way in Which Atoms, Ions, Molecules Are Spatially Arranged in 3-D Space
    Crystalline Structures – The Basics •Crystal structure of a material is way in which atoms, ions, molecules are spatially arranged in 3-D space. •Crystal structure = lattice (unit cell geometry) + basis (atom, ion, or molecule positions placed on lattice points within the unit cell). •A lattice is used in context when describing crystalline structures, means a 3-D array of points in space. Every lattice point must have identical surroundings. •Unit cell: smallest repetitive volume •Each crystal structure is built by stacking which contains the complete lattice unit cells and placing objects (motifs, pattern of a crystal. A unit cell is chosen basis) on the lattice points: to represent the highest level of geometric symmetry of the crystal structure. It’s the basic structural unit or building block of crystal structure. 7 crystal systems in 3-D 14 crystal lattices in 3-D a, b, and c are the lattice constants 1 a, b, g are the interaxial angles Metallic Crystal Structures (the simplest) •Recall, that a) coulombic attraction between delocalized valence electrons and positively charged cores is isotropic (non-directional), b) typically, only one element is present, so all atomic radii are the same, c) nearest neighbor distances tend to be small, and d) electron cloud shields cores from each other. •For these reasons, metallic bonding leads to close packed, dense crystal structures that maximize space filling and coordination number (number of nearest neighbors). •Most elemental metals crystallize in the FCC (face-centered cubic), BCC (body-centered cubic, or HCP (hexagonal close packed) structures: Room temperature crystal structure Crystal structure just before it melts 2 Recall: Simple Cubic (SC) Structure • Rare due to low packing density (only a-Po has this structure) • Close-packed directions are cube edges.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Crystal Structure
    Physics 927 E.Y.Tsymbal Section 1: Crystal Structure A solid is said to be a crystal if atoms are arranged in such a way that their positions are exactly periodic. This concept is illustrated in Fig.1 using a two-dimensional (2D) structure. y T C Fig.1 A B a x 1 A perfect crystal maintains this periodicity in both the x and y directions from -∞ to +∞. As follows from this periodicity, the atoms A, B, C, etc. are equivalent. In other words, for an observer located at any of these atomic sites, the crystal appears exactly the same. The same idea can be expressed by saying that a crystal possesses a translational symmetry. The translational symmetry means that if the crystal is translated by any vector joining two atoms, say T in Fig.1, the crystal appears exactly the same as it did before the translation. In other words the crystal remains invariant under any such translation. The structure of all crystals can be described in terms of a lattice, with a group of atoms attached to every lattice point. For example, in the case of structure shown in Fig.1, if we replace each atom by a geometrical point located at the equilibrium position of that atom, we obtain a crystal lattice. The crystal lattice has the same geometrical properties as the crystal, but it is devoid of any physical contents. There are two classes of lattices: the Bravais and the non-Bravais. In a Bravais lattice all lattice points are equivalent and hence by necessity all atoms in the crystal are of the same kind.
    [Show full text]
  • The American Mineralogist Crystal Structure Database
    American Mineralogist, Volume 88, pages 247–250, 2003 The American Mineralogist crystal structure database ROBERT T. DOWNS* AND MICHELLE HALL-WALLACE Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A. ABSTRACT A database has been constructed that contains all the crystal structures previously published in the American Mineralogist. The database is called “The American Mineralogist Crystal Structure Database” and is freely accessible from the websites of the Mineralogical Society of America at http://www.minsocam.org/MSA/Crystal_Database.html and the University of Arizona. In addition to the database, a suite of interactive software is provided that can be used to view and manipulate the crystal structures and compute different properties of a crystal such as geometry, diffraction patterns, and procrystal electron densities. The database is set up so that the data can be easily incorporated into other software packages. Included at the website is an evolving set of guides to instruct the user and help with classroom education. INTRODUCTION parameters; (5) incorporating comments from either the origi- The structure of a crystal represents a minimum energy con- nal authors or ourselves when changes are made to the origi- figuration adopted by a collection of atoms at a given tempera- nally published data. Each record in the database consists of a ture and pressure. In principle, all the physical and chemical bibliographic reference, cell parameters, symmetry, atomic properties of any crystalline substance can be computed from positions, displacement parameters, and site occupancies. An knowledge of its crystal structure. The determination of crys- example of a data set is provided in Figure 1.
    [Show full text]
  • Crystal Structures and Symmetries
    Crystal Structures and Symmetries G. Roth This document has been published in Manuel Angst, Thomas Brückel, Dieter Richter, Reiner Zorn (Eds.): Scattering Methods for Condensed Matter Research: Towards Novel Applications at Future Sources Lecture Notes of the 43rd IFF Spring School 2012 Schriften des Forschungszentrums Jülich / Reihe Schlüsseltechnologien / Key Tech- nologies, Vol. 33 JCNS, PGI, ICS, IAS Forschungszentrum Jülich GmbH, JCNS, PGI, ICS, IAS, 2012 ISBN: 978-3-89336-759-7 All rights reserved. B 1 Crystal Structures and Symmetries G. Roth Institute of Crystallography RWTH Aachen University Contents B 1 Crystal Structures and Symmetries ................................................1 1.1 Crystal lattices ...................................................................................2 1.2 Crystallographic coordinate systems ..............................................4 1.3 Symmetry-operations and -elements...............................................7 1.4 Crystallographic point groups and space groups ........................10 1.5 Quasicrystals....................................................................................13 1.6 Application: Structure description of YBa2Cu3O7-δ ....................14 ________________________ Lecture Notes of the 43rd IFF Spring School "Scattering Methods for Condensed Matter Research: Towards Novel Applications at Future Sources" (Forschungszentrum Jülich, 2012). All rights reserved. B1.2 G. Roth Introduction The term “crystal” derives from the Greek κρύσταλλος , which was first
    [Show full text]
  • Crystal Structure and Mechanical Properties of Thbc2
    crystals Article Crystal Structure and Mechanical Properties of ThBC2 Xinchun Zhou and Baobing Zheng * College of Physics and Optoelectronic Technology & Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji 721016, China * Correspondence: [email protected]; Tel.: +86-917-3364-258 Received: 6 July 2019; Accepted: 27 July 2019; Published: 29 July 2019 Abstract: Thorium borocarbide compounds have fascinating physical properties and diverse structures, and hence have stimulated great interest. In this work, we determine the ground state structure of ThBC2 by the unbiased structure prediction method based on first-principles calculations. The dynamical and elastic stabilities of our proposed ThBC2 are verified by the calculations of phonon spectrum and elastic constants. To study the mechanical properties fundamentally, we estimated the elastic anisotropy of ThBC2. The results show that the Young’s and shear moduli possess high degree of anisotropy. The ideal strength calculations reveal that ThBC2 readily collapses upon applied stress due to small ideal strengths. The cleavage fracture probably occurs along the [111] direction while slip may easily appear along the [110] direction on the (111) plane for ThBC2. In addition, we provide an atomic explanation for the different characteristics of the strain–stress curves under different strains. Keywords: ThBC2; crystal structure; anisotropic mechanical properties; ideal strength; first-principles calculations 1. Introduction Due to the potential application in fission fuel, actinoid-metal borocarbides are of great interest, especially thorium borocarbide compounds [1–7]. Thorium borocarbide compounds have diversified stoichiometric proportions with different crystal structures due to the flexible B–C framework.
    [Show full text]
  • 1.1 Silicon Crystal Structure
    EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday’s Transistor (1947) Today’s Transistor (2006) Why “Semiconductors”? • Conductors – e.g Metals • Insulators – e.g. Sand (SiO2 ) • Semiconductors – conductivity between conductors and insulators – Generally crystalline in structure • In recent years, non-crystalline semiconductors have become commercially very important Polycrystalline amorphous crystalline What are semiconductors Elements: Si, Ge, C Binary: GaAs, InSb, SiC, CdSe, etc. Ternary+: AlGaAs, InGaAs, etc. Electrons and Holes in Semiconductors Silicon Crystal Structure • Unit cell of silicon crystal is cubic. • Each Si atom has 4 nearest neighbors. 5.43 Å Silicon Wafers and Crystal Planes z z z • The standard notation for crystal planes is y y y based on the cubic unit cell. x x (100) x (011) (111) • Silicon wafers are usually cut along the (100) plane (100) plane with a flat (011) or notch to help orient flat Si (111) plane the wafer during IC fabrication. Bond Model of Electrons and Holes (Intrinsic Si) Si Si Si • Silicon crystal in a two-dimensional Si Si Si representation. Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si • When an electron breaks loose and becomes a conduction electron, a hole is also created. Dopants in Silicon Si Si Si Si Si Si Si As Si Si B Si Si Si Si Si Si Si N-type Si P-type Si • As (Arsenic), a Group V element, introduces conduction electrons and creates N-type silicon, and is called a donor.
    [Show full text]
  • Preparation, Crystal Structure, Properties, and Electronic Band Structure of Tltase3 Christoph L
    Preparation, Crystal Structure, Properties, and Electronic Band Structure of TlTaSe3 Christoph L. Teskea, Wolfgang Benscha, Diana Beneab, Jan Min´arb, Alexander Perlovb, and Hubert Ebertb a Institut f¨ur Anorganische Chemie, Christian-Albrechts-Universit¨at, Otto-Hahn-Platz 6/7, D-24098 Kiel, Germany b M¨unchen, Department Chemie – Physikalische Chemie, Ludwigs-Maximilians-Universit¨at, Butenandtstraße 11, D-81377 M¨unchen Reprint requests to Dr. C. Teske. Fax: +49 431 880 1520. E-mail: [email protected] Z. Naturforsch. 60b, 858 – 866 (2005); received June 10, 2005 TlTaSe3 was prepared from a fused mixture of Tl4Ta2Se11, Ta and Se in the molar ratio 1:2:1. The compound shows dimorphism with H-TlTaSe3, hexagonal, space group P63/mmc, a = 7.2436(6), c = 5.9736(6) A,˚ c/a = 1.213 and O-TlTaSe3, orthorhombic, space group Pnma, a = 9.554(13), b = 3.6244(6), c = 14.7271(17) A.˚ The crystal structure of H-TlTaSe3 is isotypic to BaVSe3 whereas that of O-TlTaSe3 is closely related to the NH4CdCl3-type. Characteristic features of the structures are: 1 2− ∞[TaSe3 ] chains of regular octahedra sharing faces along [001] for the hexagonal form and columns 1 2− of double edge-sharing octahedra ∞[Ta2Se6 ] running along [010] for O-TlTaSe3. The columns are each separated by Tl+ ions with the coordination number CN = 12 and CN = 8 respectively. The structures are compared and discussed in context with other isotypic structures of chalcogenides. The orthorhombic modification O-TlTaSe3 is a semiconductor while H-TlTaSe3 shows conventional metallic behaviour. The electronic structures of both modifications are discussed on the base of band structure calculations performed within the framework of density functional theory.
    [Show full text]
  • Crystal Structures of Minerals in the Lower Mantle
    6 Crystal Structures of Minerals in the Lower Mantle June K. Wicks and Thomas S. Duffy ABSTRACT The crystal structures of lower mantle minerals are vital components for interpreting geophysical observations of Earth’s deep interior and in understanding the history and composition of this complex and remote region. The expected minerals in the lower mantle have been inferred from high pressure‐temperature experiments on mantle‐relevant compositions augmented by theoretical studies and observations of inclusions in natural diamonds of deep origin. While bridgmanite, ferropericlase, and CaSiO3 perovskite are expected to make up the bulk of the mineralogy in most of the lower mantle, other phases such as SiO2 polymorphs or hydrous silicates and oxides may play an important subsidiary role or may be regionally important. Here we describe the crystal structure of the key minerals expected to be found in the deep mantle and discuss some examples of the relationship between structure and chemical and physical properties of these phases. 6.1. IntrODUCTION properties of lower mantle minerals [Duffy, 2005; Mao and Mao, 2007; Shen and Wang, 2014; Ito, 2015]. Earth’s lower mantle, which spans from 660 km depth The crystal structure is the most fundamental property to the core‐mantle boundary (CMB), encompasses nearly of a mineral and is intimately related to its major physical three quarters of the mass of the bulk silicate Earth (crust and chemical characteristics, including compressibility, and mantle). Our understanding of the mineralogy and density,
    [Show full text]
  • Engineering Materials and Processes Lecture 4 – Crystal Structure of Metals
    Engineering Materials and Processes Lecture 4 – Crystal Structure of Metals Grains after acid etching: Wikipedia Crystal Structure of Metals Reference Text Section Higgins RA & Bolton, 2010. Materials for Engineers and Technicians, Ch 4 5th ed, Butterworth Heinemann Additional Readings Section Sheedy, P. A, 1994. Materials : Their properties, testing and selection Ch 1 Callister, W. Jr. and Rethwisch, D., 2010, Materials Science and Ch 3 Engineering: An Introduction, 8th Ed, Wiley, New York. Engineering Materials and Processes Crystal Structure of Metals Crystals are the lattice structure that metal atoms form when they become solid. In engineering, crystals of metal are called grains. Grains in cast aluminium www.spaceflight.esa.int Engineering Materials and Processes Solid, Liquid, Gas Everything can exist as either solid, liquid or gas. (state). This depends on temperature and pressure. Mercury freezes at -9°C and boils (to form a gas or vapour) at 357°C at 1 atm. Liquid Mercury: Wikipedia At the other end of the scale, tungsten melts at 3410°C and ° Mercury vapour streetlights: theage.com.au boils at 5930 C. Engineering Materials and Processes Classification of Materials by State • Solid: Rigid structure of atoms (or molecules). A regular pattern of atoms is called a crystal (ceramics) or a grain (metals). Random is called amorphous (some plastics). Low temperature all materials freeze (become solid). • Liquid: A liquid is a substance that flows (fluid) but does not compress easily. Solids become liquid when heated to their melting point (fusion) • Gas: A gas is a compressible fluid, that expands to fill its container. At high temperature all materials vapourise to a gas.
    [Show full text]
  • Crystal Structure CRYSTAL STRUCTURES
    Crystal Structure CRYSTAL STRUCTURES Lecture 2 A.H. Harker Physics and Astronomy UCL Lattice and Basis Version: June 6, 2002; Typeset on October 30, 2003,15:28 2 1.4.8 Fourteen Lattices in Three Dimensions Version: June 6, 2002; Typeset on October 30, 2003,15:28 3 System Type Restrictions Triclinic P a =6 b =6 c, α =6 β =6 γ Monoclinic P,C a =6 b =6 c, α = γ = 90◦ =6 β Orthorhmobic P,C,I,F a =6 b =6 c, α = β = γ = 90◦ Tetragonal P,I a = b =6 c, α = β = γ = 90◦ Cubic P,I,F1 a = b = c, α = β = γ = 90◦ Trigonal P a = b = c, α = β = γ < 120◦, =6 90◦ Hexagonal P a = b =6 c, α = β = 90◦, γ = 120◦ No need to learn details except for cubic, basic ideas of hexagonal. Version: June 6, 2002; Typeset on October 30, 2003,15:28 4 1.4.9 Cubic Unit Cells Primitive Unit Cells of cubic system Simple cubic: cube containing one lattice point (or 8 corner points each shared among 8 cubes: 8 × 1 8 = 1). Body centred cubic: 2 points in cubic cell Version: June 6, 2002; Typeset on October 30, 2003,15:28 5 Rhombohedral primitive cell of body centred cubic system. Face centred cubic: 4 points in cubic cell (8 corner points shared 8 1 1 ways, 6 face points shared 2 ways: 8 × 8 + 6 × 2 = 4. Version: June 6, 2002; Typeset on October 30, 2003,15:28 6 Rhombohedral primitive cell of face centred cubic system.
    [Show full text]