Preparation, Crystal Structure, Properties, and Electronic Band Structure of Tltase3 Christoph L

Total Page:16

File Type:pdf, Size:1020Kb

Preparation, Crystal Structure, Properties, and Electronic Band Structure of Tltase3 Christoph L Preparation, Crystal Structure, Properties, and Electronic Band Structure of TlTaSe3 Christoph L. Teskea, Wolfgang Benscha, Diana Beneab, Jan Min´arb, Alexander Perlovb, and Hubert Ebertb a Institut f¨ur Anorganische Chemie, Christian-Albrechts-Universit¨at, Otto-Hahn-Platz 6/7, D-24098 Kiel, Germany b M¨unchen, Department Chemie – Physikalische Chemie, Ludwigs-Maximilians-Universit¨at, Butenandtstraße 11, D-81377 M¨unchen Reprint requests to Dr. C. Teske. Fax: +49 431 880 1520. E-mail: [email protected] Z. Naturforsch. 60b, 858 – 866 (2005); received June 10, 2005 TlTaSe3 was prepared from a fused mixture of Tl4Ta2Se11, Ta and Se in the molar ratio 1:2:1. The compound shows dimorphism with H-TlTaSe3, hexagonal, space group P63/mmc, a = 7.2436(6), c = 5.9736(6) A,˚ c/a = 1.213 and O-TlTaSe3, orthorhombic, space group Pnma, a = 9.554(13), b = 3.6244(6), c = 14.7271(17) A.˚ The crystal structure of H-TlTaSe3 is isotypic to BaVSe3 whereas that of O-TlTaSe3 is closely related to the NH4CdCl3-type. Characteristic features of the structures are: 1 2− ∞[TaSe3 ] chains of regular octahedra sharing faces along [001] for the hexagonal form and columns 1 2− of double edge-sharing octahedra ∞[Ta2Se6 ] running along [010] for O-TlTaSe3. The columns are each separated by Tl+ ions with the coordination number CN = 12 and CN = 8 respectively. The structures are compared and discussed in context with other isotypic structures of chalcogenides. The orthorhombic modification O-TlTaSe3 is a semiconductor while H-TlTaSe3 shows conventional metallic behaviour. The electronic structures of both modifications are discussed on the base of band structure calculations performed within the framework of density functional theory. Key words: Thallium Tantalum Selenide, Crystal Structure, Dimorphic, Properties, Electronic Band Structure Introduction electronic band structure, and some physical properties of TlTaSe3. Recently we reported on the preparation, struc- ture and physical properties of TlTaS3 [1]. This com- Experimental Section pound was prepared by reacting mixtures of Ta pow- Preparation der, Tl2S and sulphur in sealed glass tubes in a tem- ◦ ◦ perature range 445 C ≤ T ≤ 495 C. The investiga- The starting materials were Ta powder (99,7% Riedel- tions revealed an orthorhombic structure closely re- De Ha¨en AG), Tl4Ta2Se11 [3] and Se powder (grey, Riedel- lated to the NH4CdCl3-type (Strukturberichte, type De Ha¨en AG). The selenide was prepared from a mixture of E24) having columns of double edge-sharing octahe- appropriate amounts of Ta and Se with Tl4Ta2Se11 [3] (2:1:1) − 1 2 to give the composition TlTaSe3. This mixture was reacted in dra ∞[Ta2Se6 ]. TlTaS3 is a semiconductor with a nar- ≈ . a flame-sealed glass (DURAN R ) ampoule (argon, reduced row optical band gap Eg 0 78 eV. In addition, a Nu- ◦ clear Magnetic Resonance study of 203Tl and 205Tl was pressure) at 480 C. Starting with a black thin liquid melt the sample began to crystallise after a few hours yielding af- carried out [2]. These results show noticeable intra- ter four days an anthracite bulk of microcrystalline TlTaSe . chain (Tl-Tl) and inter-chain (Tl-Ta) indirect nuclear 3 All attempts to prepare single crystals at elevated tempera- spin-spin interactions. These findings lead to the ques- tures suitable for X-ray investigations were not successful. tion whether the homologous selenide can be prepared Rising the temperature above approximately 550 ◦C pro- and whether it shows the same structural and physical motes decomposition as confirmed by X-ray powder diffrac- properties. In the present article, results of pertinent ex- tion and thermal investigations. Finally, single crystals could perimental and theoretical investigations are presented. be grown from a solution in molten TlBr. A mixture of pow- In particular, we report on the preparation, structure, dered TlTaSe3 (prepared as mentioned above) and TlBr (mo- 0932–0776 / 05 / 0800–0858 $ 06.00 c 2005 Verlag der Zeitschrift f¨ur Naturforschung, T¨ubingen · http://znaturforsch.com C. L. Teske et al. · Preparation, Crystal Structure, Properties, and Electronic Band Structure of TlTaSe3 859 No. 2θobs hkl 2θcalc ∆2θ Irel. dobs dcalc Table 1. X-ray powder diffrac- *1 13.94000213.921 0.0189 22.9 6.3477 6.3563 tion pattern for H-TlTaSe3. 2 14.10210014.107 −0.0047 45.8 6.2753 6.2732 Space group and cell parame- 3 20.51710120.514 0.0034 29.6 4.3253 4.3260 ters see text. (Observed (obs) 4 22.947 ? 1.8 3.8725 and calculated (calc) values, d- 5 24.56311024.559 0.0033 75.1 3.6213 3.6218 spacing values, I refers to inte- 6 28.42920028.433 −0.0037 4.8 3.1370 3.1366 grated intensities scaled in per- 7 29.89300229.891 0.0021 9.1 2.9866 2.9868 centage of the strongest reflec- 8 30.458 ? 1.7 2.9325 tion No. 11. Asterisks (*) indi- *9 30.89910130.881 0.0180 2.2 2.8916 2.8933 cate the reflections assigned to 10 31.514 ? 1.3 2.8366 2H-TaSe2, zero point (refined): 11 32.20520132.208 −0.0035 100.0 2.7773 2.7770 for H-TlTaSe3 z = 0.0178, for 12 32.768 ? 4.4 2.7308 2H-TaSe2 z = −0.0391). 13 33.19210233.196 −0.0027 24.6 2.6969 2.6967 *14 33.22310233.258 −0.0351 19.9 2.6945 2.6917 15 35.517 ? 1.2 2.5255 16 36.225 ? 9.9 2.4778 *17 36.89610336.919 −0.0223 1.4 2.4342 2.4328 18 37.92221037.917 0.0057 12.2 2.3707 2.3710 19 40.92421140.918 0.0065 5.3 2.2034 2.2038 20 41.71220241.725 −0.0132 121.4 2.1636 2.1630 21 43.24130043.231 0.0094 12.8 2.0906 2.0911 22 46.679 ? 5.8 1.94443 23 49.01721249.014 0.0029 8.9 1.8569 1.8570 24 50.34622050.348 −0.0019 24.9 1.8110 1.8109 25 52.55231052.557 −0.0051 7.3 1.7400 1.7399 *26 53.37211053.364 0.0080 3.1 1.7152 1.7155 27 54.190 ? 2.6 1.6912 28 54.55220354.545 0.0073 5.0 1.6809 1.6811 *29 55.44311255.433 0.0100 1.5 1.6559 1.6562 30 57.553 ? 0.8 1.6001 *31 57.99500857.992 0.0026 3.1 1.5890 1.5891 32 59.65722259.662 −0.0056 4.6 1.5486 1.5485 dle of the heating zone while the other end reached just out- side the furnace tube. While keeping the temperature of the mixture just above the melting point of TlBr (480 ◦C), TlBr sublimated to the cooler zone of the glass ampoule. After about three days all TlBr had separated from the mixture leaving behind bunches of slim black shiny crystal needles of TlTaSe3 (Fig. 1). The length L of the needles was in the range of 100 µm ≤ L ≤ 2 mm. Some of these crystals could be isolated and were suitable for single crystal X-ray struc- ture investigations and also for electrical resistivity measure- ments. An EDX analysis indicated the presence of the three elements Tl, Ta and Se with an approximate atomic ratio of 1:1:3, and no bromine was detected. Characterisation Fig. 1. SEM micrograph of O-TlTaSe3 crystals as grown X-ray investigations from a TlBr melt (s. text). X-Ray powder diffraction was carried out on a SIEMENS lar ratio 1:1) was filled into in a glass (DURAN R ) ampoule D5000 diffractometer in the range of 7◦ ≤ 2θ ≤ 60◦ using λ = . ˚ (ca. 18 cm long). After rinsing with dry argon and evacu- Cu-Kα1 ( 1 54056 A) radiation. Surprisingly, the powder ation (p ≈ 8 mbar) it was flame-sealed and placed asym- patterns of the black bulk and that of the crystal needles from metrically inside the tube of a horizontally arranged furnace. the TlBr melt were not identical. The latter resembles that The one end of it with the mixture was located in the mid- of the homologous sulphide TlTaS3 with orthorhombic sym- 860 C. L. Teske et al. · Preparation, Crystal Structure, Properties, and Electronic Band Structure of TlTaSe3 Table 2. Crystal data and structure refinement for Table 4. Anisotropic displacement parameters (A˚ 2) for c O-TlTaSe3 . O-TlTaSe3. The anisotropic displacement factor exponent 2 2 ∗2 ∗ ∗ Empirical formula TlTaSe3 takes the form: −2π [h a U11 + ...+ 2hka b U12], U12 = Formula weight 622.20 U23 = 0. Temperature 293(2) K Atom U U U U ˚ 11 22 33 13 Wavelength 0.71073 A Tl 0.036(1) 0.030(1) 0.049(1) 0.002(1) Crystal system orthorhombic Ta 0.019(1) 0.026(1) 0.030(1) −0.002(1) Space group Pnma Se(1) 0.018(1) 0.019(1) 0.033(1) 0.003(1) = . ( ) ˚ Unit cell dimensions a 9 5540 13 A Se(2) 0.024(1) 0.026(1) 0.030(1) −0.003(1) = . ( ) ˚ b 3 6244 6 A Se(3) 0.016(1) 0.019(1) 0.031(1) 0.000(1) c = 14.7271(17) A˚ Volume 509.96(12) A˚ 3 Z 4 Table 5. Selected interatomic distances (A)˚ for O-TlTaSe3 Density (calculated) 8.10 g/cm3 based on the single crystal data. Estimated standard devia- Absorption coefficient µ 74.2 mm−1 tions are given in parentheses. F(000) 1024 Tl Se1 3.191(2) 1× Se1 Ta 2.5765(13) 2× Crystal size 0.3 × 0.1 × 0.1mm3 × × ◦ ◦ Se2 3.1965(17) 2 Tl 3.191(2) 1 θ-Range for data collection 2.54 – 30.01 Se2 3.2998(17) 2× Tl 3.4526(17) 2× − ≤ ≤ Index ranges 13 h 1, Se3 3.393(2) 1× Se2 Ta 2.3799(19) 1× −5 ≤ k ≤ 5, Se1 3.4526(17) 2× Tl 3.1965(17) 2× −1 ≤ l ≤ 20 Tl 3.6244(6) 2× Tl 3.2998(17) 2× Reflections collected 1764 Ta Se2 2.3799(19) 1× Se3 Ta 2.6066(12) 2× Independent reflections 852 [R(int) = 0.1085] Se1 2.5765(13) 2× Ta 2.8193(19) 1× Completeness to θ = 30.01 100.0% Se3 2.6066(12) 2× Tl 3.393(2) 1× 2 Refinement method Full-matrix least-squares on F Se3 2.8193(19) 1× Min./max.
Recommended publications
  • Crystal Structures
    Crystal Structures Academic Resource Center Crystallinity: Repeating or periodic array over large atomic distances. 3-D pattern in which each atom is bonded to its nearest neighbors Crystal structure: the manner in which atoms, ions, or molecules are spatially arranged. Unit cell: small repeating entity of the atomic structure. The basic building block of the crystal structure. It defines the entire crystal structure with the atom positions within. Lattice: 3D array of points coinciding with atom positions (center of spheres) Metallic Crystal Structures FCC (face centered cubic): Atoms are arranged at the corners and center of each cube face of the cell. FCC continued Close packed Plane: On each face of the cube Atoms are assumed to touch along face diagonals. 4 atoms in one unit cell. a 2R 2 BCC: Body Centered Cubic • Atoms are arranged at the corners of the cube with another atom at the cube center. BCC continued • Close Packed Plane cuts the unit cube in half diagonally • 2 atoms in one unit cell 4R a 3 Hexagonal Close Packed (HCP) • Cell of an HCP lattice is visualized as a top and bottom plane of 7 atoms, forming a regular hexagon around a central atom. In between these planes is a half- hexagon of 3 atoms. • There are two lattice parameters in HCP, a and c, representing the basal and height parameters Volume respectively. 6 atoms per unit cell Coordination number – the number of nearest neighbor atoms or ions surrounding an atom or ion. For FCC and HCP systems, the coordination number is 12. For BCC it’s 8.
    [Show full text]
  • Crystal Structure of a Material Is Way in Which Atoms, Ions, Molecules Are Spatially Arranged in 3-D Space
    Crystalline Structures – The Basics •Crystal structure of a material is way in which atoms, ions, molecules are spatially arranged in 3-D space. •Crystal structure = lattice (unit cell geometry) + basis (atom, ion, or molecule positions placed on lattice points within the unit cell). •A lattice is used in context when describing crystalline structures, means a 3-D array of points in space. Every lattice point must have identical surroundings. •Unit cell: smallest repetitive volume •Each crystal structure is built by stacking which contains the complete lattice unit cells and placing objects (motifs, pattern of a crystal. A unit cell is chosen basis) on the lattice points: to represent the highest level of geometric symmetry of the crystal structure. It’s the basic structural unit or building block of crystal structure. 7 crystal systems in 3-D 14 crystal lattices in 3-D a, b, and c are the lattice constants 1 a, b, g are the interaxial angles Metallic Crystal Structures (the simplest) •Recall, that a) coulombic attraction between delocalized valence electrons and positively charged cores is isotropic (non-directional), b) typically, only one element is present, so all atomic radii are the same, c) nearest neighbor distances tend to be small, and d) electron cloud shields cores from each other. •For these reasons, metallic bonding leads to close packed, dense crystal structures that maximize space filling and coordination number (number of nearest neighbors). •Most elemental metals crystallize in the FCC (face-centered cubic), BCC (body-centered cubic, or HCP (hexagonal close packed) structures: Room temperature crystal structure Crystal structure just before it melts 2 Recall: Simple Cubic (SC) Structure • Rare due to low packing density (only a-Po has this structure) • Close-packed directions are cube edges.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Crystal Structure
    Physics 927 E.Y.Tsymbal Section 1: Crystal Structure A solid is said to be a crystal if atoms are arranged in such a way that their positions are exactly periodic. This concept is illustrated in Fig.1 using a two-dimensional (2D) structure. y T C Fig.1 A B a x 1 A perfect crystal maintains this periodicity in both the x and y directions from -∞ to +∞. As follows from this periodicity, the atoms A, B, C, etc. are equivalent. In other words, for an observer located at any of these atomic sites, the crystal appears exactly the same. The same idea can be expressed by saying that a crystal possesses a translational symmetry. The translational symmetry means that if the crystal is translated by any vector joining two atoms, say T in Fig.1, the crystal appears exactly the same as it did before the translation. In other words the crystal remains invariant under any such translation. The structure of all crystals can be described in terms of a lattice, with a group of atoms attached to every lattice point. For example, in the case of structure shown in Fig.1, if we replace each atom by a geometrical point located at the equilibrium position of that atom, we obtain a crystal lattice. The crystal lattice has the same geometrical properties as the crystal, but it is devoid of any physical contents. There are two classes of lattices: the Bravais and the non-Bravais. In a Bravais lattice all lattice points are equivalent and hence by necessity all atoms in the crystal are of the same kind.
    [Show full text]
  • The American Mineralogist Crystal Structure Database
    American Mineralogist, Volume 88, pages 247–250, 2003 The American Mineralogist crystal structure database ROBERT T. DOWNS* AND MICHELLE HALL-WALLACE Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A. ABSTRACT A database has been constructed that contains all the crystal structures previously published in the American Mineralogist. The database is called “The American Mineralogist Crystal Structure Database” and is freely accessible from the websites of the Mineralogical Society of America at http://www.minsocam.org/MSA/Crystal_Database.html and the University of Arizona. In addition to the database, a suite of interactive software is provided that can be used to view and manipulate the crystal structures and compute different properties of a crystal such as geometry, diffraction patterns, and procrystal electron densities. The database is set up so that the data can be easily incorporated into other software packages. Included at the website is an evolving set of guides to instruct the user and help with classroom education. INTRODUCTION parameters; (5) incorporating comments from either the origi- The structure of a crystal represents a minimum energy con- nal authors or ourselves when changes are made to the origi- figuration adopted by a collection of atoms at a given tempera- nally published data. Each record in the database consists of a ture and pressure. In principle, all the physical and chemical bibliographic reference, cell parameters, symmetry, atomic properties of any crystalline substance can be computed from positions, displacement parameters, and site occupancies. An knowledge of its crystal structure. The determination of crys- example of a data set is provided in Figure 1.
    [Show full text]
  • Crystal Structures and Symmetries
    Crystal Structures and Symmetries G. Roth This document has been published in Manuel Angst, Thomas Brückel, Dieter Richter, Reiner Zorn (Eds.): Scattering Methods for Condensed Matter Research: Towards Novel Applications at Future Sources Lecture Notes of the 43rd IFF Spring School 2012 Schriften des Forschungszentrums Jülich / Reihe Schlüsseltechnologien / Key Tech- nologies, Vol. 33 JCNS, PGI, ICS, IAS Forschungszentrum Jülich GmbH, JCNS, PGI, ICS, IAS, 2012 ISBN: 978-3-89336-759-7 All rights reserved. B 1 Crystal Structures and Symmetries G. Roth Institute of Crystallography RWTH Aachen University Contents B 1 Crystal Structures and Symmetries ................................................1 1.1 Crystal lattices ...................................................................................2 1.2 Crystallographic coordinate systems ..............................................4 1.3 Symmetry-operations and -elements...............................................7 1.4 Crystallographic point groups and space groups ........................10 1.5 Quasicrystals....................................................................................13 1.6 Application: Structure description of YBa2Cu3O7-δ ....................14 ________________________ Lecture Notes of the 43rd IFF Spring School "Scattering Methods for Condensed Matter Research: Towards Novel Applications at Future Sources" (Forschungszentrum Jülich, 2012). All rights reserved. B1.2 G. Roth Introduction The term “crystal” derives from the Greek κρύσταλλος , which was first
    [Show full text]
  • Crystal Structure and Mechanical Properties of Thbc2
    crystals Article Crystal Structure and Mechanical Properties of ThBC2 Xinchun Zhou and Baobing Zheng * College of Physics and Optoelectronic Technology & Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji 721016, China * Correspondence: [email protected]; Tel.: +86-917-3364-258 Received: 6 July 2019; Accepted: 27 July 2019; Published: 29 July 2019 Abstract: Thorium borocarbide compounds have fascinating physical properties and diverse structures, and hence have stimulated great interest. In this work, we determine the ground state structure of ThBC2 by the unbiased structure prediction method based on first-principles calculations. The dynamical and elastic stabilities of our proposed ThBC2 are verified by the calculations of phonon spectrum and elastic constants. To study the mechanical properties fundamentally, we estimated the elastic anisotropy of ThBC2. The results show that the Young’s and shear moduli possess high degree of anisotropy. The ideal strength calculations reveal that ThBC2 readily collapses upon applied stress due to small ideal strengths. The cleavage fracture probably occurs along the [111] direction while slip may easily appear along the [110] direction on the (111) plane for ThBC2. In addition, we provide an atomic explanation for the different characteristics of the strain–stress curves under different strains. Keywords: ThBC2; crystal structure; anisotropic mechanical properties; ideal strength; first-principles calculations 1. Introduction Due to the potential application in fission fuel, actinoid-metal borocarbides are of great interest, especially thorium borocarbide compounds [1–7]. Thorium borocarbide compounds have diversified stoichiometric proportions with different crystal structures due to the flexible B–C framework.
    [Show full text]
  • 1.1 Silicon Crystal Structure
    EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday’s Transistor (1947) Today’s Transistor (2006) Why “Semiconductors”? • Conductors – e.g Metals • Insulators – e.g. Sand (SiO2 ) • Semiconductors – conductivity between conductors and insulators – Generally crystalline in structure • In recent years, non-crystalline semiconductors have become commercially very important Polycrystalline amorphous crystalline What are semiconductors Elements: Si, Ge, C Binary: GaAs, InSb, SiC, CdSe, etc. Ternary+: AlGaAs, InGaAs, etc. Electrons and Holes in Semiconductors Silicon Crystal Structure • Unit cell of silicon crystal is cubic. • Each Si atom has 4 nearest neighbors. 5.43 Å Silicon Wafers and Crystal Planes z z z • The standard notation for crystal planes is y y y based on the cubic unit cell. x x (100) x (011) (111) • Silicon wafers are usually cut along the (100) plane (100) plane with a flat (011) or notch to help orient flat Si (111) plane the wafer during IC fabrication. Bond Model of Electrons and Holes (Intrinsic Si) Si Si Si • Silicon crystal in a two-dimensional Si Si Si representation. Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si • When an electron breaks loose and becomes a conduction electron, a hole is also created. Dopants in Silicon Si Si Si Si Si Si Si As Si Si B Si Si Si Si Si Si Si N-type Si P-type Si • As (Arsenic), a Group V element, introduces conduction electrons and creates N-type silicon, and is called a donor.
    [Show full text]
  • Crystal Structures of Minerals in the Lower Mantle
    6 Crystal Structures of Minerals in the Lower Mantle June K. Wicks and Thomas S. Duffy ABSTRACT The crystal structures of lower mantle minerals are vital components for interpreting geophysical observations of Earth’s deep interior and in understanding the history and composition of this complex and remote region. The expected minerals in the lower mantle have been inferred from high pressure‐temperature experiments on mantle‐relevant compositions augmented by theoretical studies and observations of inclusions in natural diamonds of deep origin. While bridgmanite, ferropericlase, and CaSiO3 perovskite are expected to make up the bulk of the mineralogy in most of the lower mantle, other phases such as SiO2 polymorphs or hydrous silicates and oxides may play an important subsidiary role or may be regionally important. Here we describe the crystal structure of the key minerals expected to be found in the deep mantle and discuss some examples of the relationship between structure and chemical and physical properties of these phases. 6.1. IntrODUCTION properties of lower mantle minerals [Duffy, 2005; Mao and Mao, 2007; Shen and Wang, 2014; Ito, 2015]. Earth’s lower mantle, which spans from 660 km depth The crystal structure is the most fundamental property to the core‐mantle boundary (CMB), encompasses nearly of a mineral and is intimately related to its major physical three quarters of the mass of the bulk silicate Earth (crust and chemical characteristics, including compressibility, and mantle). Our understanding of the mineralogy and density,
    [Show full text]
  • Engineering Materials and Processes Lecture 4 – Crystal Structure of Metals
    Engineering Materials and Processes Lecture 4 – Crystal Structure of Metals Grains after acid etching: Wikipedia Crystal Structure of Metals Reference Text Section Higgins RA & Bolton, 2010. Materials for Engineers and Technicians, Ch 4 5th ed, Butterworth Heinemann Additional Readings Section Sheedy, P. A, 1994. Materials : Their properties, testing and selection Ch 1 Callister, W. Jr. and Rethwisch, D., 2010, Materials Science and Ch 3 Engineering: An Introduction, 8th Ed, Wiley, New York. Engineering Materials and Processes Crystal Structure of Metals Crystals are the lattice structure that metal atoms form when they become solid. In engineering, crystals of metal are called grains. Grains in cast aluminium www.spaceflight.esa.int Engineering Materials and Processes Solid, Liquid, Gas Everything can exist as either solid, liquid or gas. (state). This depends on temperature and pressure. Mercury freezes at -9°C and boils (to form a gas or vapour) at 357°C at 1 atm. Liquid Mercury: Wikipedia At the other end of the scale, tungsten melts at 3410°C and ° Mercury vapour streetlights: theage.com.au boils at 5930 C. Engineering Materials and Processes Classification of Materials by State • Solid: Rigid structure of atoms (or molecules). A regular pattern of atoms is called a crystal (ceramics) or a grain (metals). Random is called amorphous (some plastics). Low temperature all materials freeze (become solid). • Liquid: A liquid is a substance that flows (fluid) but does not compress easily. Solids become liquid when heated to their melting point (fusion) • Gas: A gas is a compressible fluid, that expands to fill its container. At high temperature all materials vapourise to a gas.
    [Show full text]
  • Crystal Structure CRYSTAL STRUCTURES
    Crystal Structure CRYSTAL STRUCTURES Lecture 2 A.H. Harker Physics and Astronomy UCL Lattice and Basis Version: June 6, 2002; Typeset on October 30, 2003,15:28 2 1.4.8 Fourteen Lattices in Three Dimensions Version: June 6, 2002; Typeset on October 30, 2003,15:28 3 System Type Restrictions Triclinic P a =6 b =6 c, α =6 β =6 γ Monoclinic P,C a =6 b =6 c, α = γ = 90◦ =6 β Orthorhmobic P,C,I,F a =6 b =6 c, α = β = γ = 90◦ Tetragonal P,I a = b =6 c, α = β = γ = 90◦ Cubic P,I,F1 a = b = c, α = β = γ = 90◦ Trigonal P a = b = c, α = β = γ < 120◦, =6 90◦ Hexagonal P a = b =6 c, α = β = 90◦, γ = 120◦ No need to learn details except for cubic, basic ideas of hexagonal. Version: June 6, 2002; Typeset on October 30, 2003,15:28 4 1.4.9 Cubic Unit Cells Primitive Unit Cells of cubic system Simple cubic: cube containing one lattice point (or 8 corner points each shared among 8 cubes: 8 × 1 8 = 1). Body centred cubic: 2 points in cubic cell Version: June 6, 2002; Typeset on October 30, 2003,15:28 5 Rhombohedral primitive cell of body centred cubic system. Face centred cubic: 4 points in cubic cell (8 corner points shared 8 1 1 ways, 6 face points shared 2 ways: 8 × 8 + 6 × 2 = 4. Version: June 6, 2002; Typeset on October 30, 2003,15:28 6 Rhombohedral primitive cell of face centred cubic system.
    [Show full text]
  • Diamond Unit Cell
    Diamond Crystal Structure Diamond is a metastable allotrope of carbon where the each carbon atom is bonded covalently with other surrounding four carbon atoms and are arranged in a variation of the face centered cubic crystal structure called a diamond lattice Diamond Unit Cell Figure shows four atoms (dark) bonded to four others within the volume of the cell. Six atoms fall on the middle of each of the six cube faces, showing two bonds. Out of eight cube corners, four atoms bond to an atom within the cube. The other four bond to adjacent cubes of the crystal Lattice Vector and Basis Atoms So the structure consists of two basis atoms and may be thought of as two inter-penetrating face centered cubic lattices, with a basis of two identical carbon atoms associated with each lattice point one displaced from the other by a translation of ao(1/4,1/4,1/4) along a body diagonal so we can say the diamond cubic structure is a combination of two interpenetrating FCC sub lattices displaced along the body diagonal of the cubic cell by 1/4th length of that diagonal. Thus the origins of two FCC sub lattices lie at (0, 0, 0) and (1/4, 1/4,1/4) (a) (b) (aa) Crystallographic unit cell (unit cube) of the diamond structure (bb) The primitive basis vectors of the face centered cubic lattice and the two atoms forming the basis are highlighted. The primitive basis vectors and the two atoms at (0,0,0) and ao(1/4,1/4,1/4) are highlighted in Figure(b)and the basis vectors of the direct Bravais lattice are Where ao denotes the lattice constant of the relaxed lattice.
    [Show full text]