<<

ElectricandGasolineVehicleLifecycleCostandEnergy-Use Model

ReportfortheCaliforniaAirResourcesBoard

FINALREPORT

UCD -ITS -RR -99-4

April2000

MarkA.Delucchi [email protected]

with(listedalphabetically):

AndyBurke TimLipman MarshallMiller

InstituteofTransportationStudies UniversityofCalifornia Davis,California95616 TABLEOFCONTENTS

TABLEOFCONTENTS ...... i ACKNOWLEDGMENTS ...... vi

OVERVIEWOFTHEDESI GNANDLIFECYCLECOS TMODELFOR FUEL -CELL,BATTERY,GASOLINE,ANDALTERNATIVE -FUEL VEHICLES ...... 1 INTRODUCTION ...... 1 Overviewofthedocumentation ...... 1 WHATTHEMODELDOES ...... 2 Typesofvehiclesinthemodel ...... 2 Outputofthemodel ...... 2 DISCUSSIONOFMODELI NGINPUTSANDMETHOD S...... 4 Vehiclemanufacturingandretailcost ...... 4 Thebattery ...... 5 Energyuse:overview ...... 6 Energyuse:vehicleefficiency ...... 7 Energyuse:vehicleperformance ...... 7 Otherownershipandoperatingcosts ...... 8 Financialparametersforvehiclepurchase ...... 10 ANEXAMPLEOFTHEWORKINGOFTHEMODEL ...... 10

MODEL OFVEHICLEWEIGHTANDCOST ...... 12 OVERVIEWOFTHEANALY SIS...... 12 WEIGHTANDMANUFACTUR ING COSTOFESCORTAND TAURUS ICEV AND EV(EXCEPT EV DRIVETRAINANDBATTE RIES ) ...... 13 Partsgroupsinthe1989model -yearmanufacturing -costand weightanalysis ...... 13 Totalweightand totalmanufacturingcost ...... 16 Manufacturingcostbypartsgroup ...... 17 Adjustmentstothe1989weightandcostbaseline ...... 19 WEIGHTANDCOSTOF EV DRIVETRAINANDBATTE RY ...... 26 WeightoftheEVdrivetrain ...... 26 WeightoftheEVtractionbattery ...... 27 Costoftheelectricdrivetrain ...... 33 Costofthetractionbattery,auxiliaries,andelectricity ...... 36 DIVISIONCOSTS ,CORPORATECOSTS ,CORPORATEPROFIT,DEALER COST ,ANDFINALRETAILCOS T ...... 42 Overview ...... 42 Divisioncosts(engineering,testing,advertising,etc.) ...... 42 Corporatecosts(exe cutives,capital,researchand development,thecostofmoney,andtrueprofit) ...... 44

i Factoryinvoice(pricetodealer) ...... 45 Dealercosts ...... 46 Totalretailcosts ...... 48 LIFEANDSALVAGEVALU EOFVEHICLESANDVE HICLESUBSYSTEMS ...... 49 Lifetimeofvehicles,frompurchasetodisposal(miles) ...... 49 Lifetimeofvehicles,frompurchasetodisposal(years) ...... 52 LifetimeofEVcomponentsexceptbattery,frompurchaseto disposal...... 53 Batterylifecyclemodel ...... 54 Salvagevalueattheendofthelifeofthevehicle ...... 61

MODELOF VEHICLEENERGYUSE ...... 63 OVERVIEW ...... 63 Descriptionofthedrivecycleenergyconsumptionmodel ...... 63 Thebasecasedrivecycle ...... 64 Vehicleenergyconsumption:calculatedresultsforthe drivecycle ...... 64 CALCULATIONOFPARAM ETERVALUESINTHED RIVECYCLEENERGY CONSUMPTIONMODEL ...... 68 Indicatedthermalefficiency ...... 68 Totalnetenergyrequiredforeachsegmentofdrivecycle(kJ atenginepistonheadorfuel -cellterminals) ...... 71 Energycapacityofthebattery ...... 72 Poweratenginecrankshaftorfuel -cellorbatteryterminals ...... 74 Tota lresistiveenergyatthewheels ...... 75 Translationalandrotationalinertialenergy ...... 76 Airresistance ...... 79 Rollingfriction ...... 82 Gradework ...... 84 Enginefriction ...... 85 Revolutionsoftheengineormotor ...... 89 Air -conditioningenergy ...... 91 Averageelectricalpowerforauxilia riesandaccessories, excludingairconditioning ...... 93 Batteryheating ...... 94 Once -throughefficiencyfromthebattery(orotherenergy - storagesystem)orfuel -celltothewheels(excluding storagedeviceitself) ...... 96 Accelerationanddistance ...... 96 MODELOFVEH ICLEPERFORMANCE ...... 97 Overview ...... 97 Theperformancecalculation ...... 98 Estimationoftheaverageavailablepoweroverthe performancetest,giventhemaximumpower ...... 99

ii Calculatedfuel -cellorbatteryorenginepowerrequiredto delivertheaccelerationofgasoline vehicle ...... 101 Calculatedaveragevelocityinperformancetest ...... 102

PERIODICOWNERSHIPANDOPERATINGCOSTS ...... 103 MAINTENANCEANDREPA IRCOSTS ...... 103 Introduction ...... 103 Whatwecountasmaintenanceandrepaircostsforlight - dutyvehicles(LDVs) ...... 103 Maint enanceandrepaircostsforlight -dutygasolineICEVs in1992...... 105 Comparisonwithotherestimates ...... 113 [Other]methodologicalissues ...... 116 Constructingayear-by -yearmaintenanceandrepaircost schedule ...... 117 Maintenanceandrepaircostsforelectricvehicles ...... 118 Ourassumptionsformaintenanceandrepair ...... 119 Doconsumersrecognizeandevaluatemaintenanceand repaircosts? ...... 121 INSURANCE ...... 122 Overview ...... 122 Dataoninsurancepremiums ...... 122 MonthlypremiumsforEVsandICEVs ...... 124 Deductibleandother ...... 128 Thecostper mileofinsurance ...... 128 OTHERPERIODICCOSTS ANDPARAMETERS ...... 129 Fuelandelectricity ...... 129 Thelifecyclecostofhomerecharging:offboardchargerand dedicatedhigh -powercircuit ...... 131 Replacementtires ...... 134 Vehicleregistration ...... 136 Vehicleinspectionfee ...... 137 Oi l...... 137 Parking,tolls,fines,andaccessories ...... 138 Federal,state,andlocalexcisetaxes ...... 138 Themileageaccumulationschedule ...... 138 FINANCIALPARAMETERS ...... 139 Overview ...... 139 Down -paymentonthecar(fractionoffullvehicleselling price) ...... 140 Calculatedle ngthoffinancingperiodforcarsboughton loan(months) ...... 140 Calculatedfractionofnewcarbuyerswhotakeoutaloanto buyanewvehicle ...... 140

iii Calculatedrealannualinterestrateonloansforbuyinga newcar,beforetaxes ...... 141 Realannualinterestrate thatwouldhavebeenearnedonthe moneyusedfortransportationexpenditures,before taxes ...... 142 Effective(average)incometaxoninterest,afterdeductions ...... 142 Realannualinterestratethatwouldhavebeenearnedon cashusedfortransportationexpenditu res,aftertaxes ...... 143 CALCULATINGTHECOST PERMILE ...... 143

RESULTS ...... 146 PRESENTATIONOFRESUL TS ...... 146 DISCUSSION ...... 147 Initialcost:base -caseresults ...... 147 Lifecyclecost(break-evengasolineprice):base -caseresults ...... 147 Scenarioanalyses ...... 148 CONCLUSIONS...... 151

REFERENCES ...... 152

TABLE 1.MANUFACTURINGCOSTOF THEBASELINE ICEV S ...... 167 TABLE 2.THECOSTOFMEETINGE MISSIONSTANDARDS ...... 170 A.PROJECTEDCOSTOFMEE TING CALIFORNIAEMISSIONS TANDARDS ...... 170 B.EMISSIONSTANDARDSFO RLIGHT -DUTY MOTORVEHICLES ...... 170 TABLE 3.THEINCREMENTAL MSRP OFFUEL -ECONOMYIMPROVING TECHNOLOGIESFORTHE FORD TAURUS (1990$)...... 171 TABLE 4.ESTIMATESOFMANUFACT URING-COSTMARKUPS ...... 172 TABLE 5.MODELINGOFCUMULATIVE VMT ASAFUNCTIONOFYEA RSOF LIFE ...... 174 TABLE 6. THEAGGREGATED FUDS...... 176 TABLE 7.FUELUSEATIDLE ...... 179 TABLE 8.ESTIMATESOFYEAR -BY -YEARSCHEDULEDANDU NSCHEDULED MAINTENANCECOSTSFO RTHREEVEHICLETYPE S,BASEDON FHWA(1984) ...... 181 A.ORIGINAL FHWA(1984) ESTIMATES (1984$)...... 181 B.FHWA(1984) TRANSFOR MEDTOENTIRE U.S.IN1997...... 182 TABLE 9.U.S.AVERAGEANNUALEXPEN DITURESPERVEHICLE ,FROM CONSUMEREXPENDITURE SURVEYS ,1984-1997 ...... 183 TABLE 10.ESTIMATEDANDASSUMED MAINTENANCEANDREP AIRCOSTS FOR ICEV SANDBATTERY -POWERED EV S,ASAFUNCTIONOF VEH ICLE VMT(1997) ...... 185

FIGURE 1.MODELINGOFENERGYFL OWSINTHEBATTERY ...... 186

iv APPENDIXA:MODELING BATTERYANDDRIVETR AIN PARAMETERS ...... 187 INTRODUCTION ...... 187 BATTERYMODELS ...... 187 Batteryefficiency ...... 187 Batterydesigntrade -offs ...... 192 BATTERY DATA ...... 193 Pb/acidbattery ...... 193 Nickelmetal-hydride“Gen2”battery ...... 194 Nickelmetal-hydride“Gen4”battery ...... 196 Li -Ionbattery ...... 196 Li -Al/Fe -Sbattery ...... 198 VEHICLE DRIVETRAIN ...... 198 Motor,inverter,andtransmissionefficiencymaps ...... 198 Idleanddecelerationfuelconsumption ...... 199

TABLE A-1.SPECIFICENERGY (W H/KG ) ASAFUNCTIONOFSPE CIFICPOWER (W/KG )...... 202 TABLE A-2.BATTERYCOSTPERKGA SAFUNCTIONOFTHE SPECIFICENERGY ($/KG )...... 203 TABLE A-3.FUELUSAGEDURINGIDL ECONDITIONS...... 204 TABLE A-4.FUELUSA GEDURINGDECELERATI ONCONDITIONS...... 205

EFFICIENCYMAPSFORF IVEMOTORANDCONTRO LLERSETS ...... 206 ETX -IGE ACINDUCTIONMOTOR ...... 207 ETX -I INVERTER ...... 207 ETX -IIGEPERMANENTMAGNETMOTO R ...... 208 ETX -II INVERTER ...... 208 HUGHES G50ACINDUCTIONMOTOR ...... 209 HUGHES G50ACINVERTER ...... 209 TB -1EATONACINDUCTIONMO TOR ...... 210 TB -1INVERTER ...... 210 GEMEV75-HPACINDUCTIONMOTO R ...... 211 GEMEV75-HPINVERTER ...... 211

TABLESOFRESULTS ...... 212

PB/ACIDBATTERY ...... 213 FordTaurus ...... 213 FordEscort ...... 217 NIMHGEN2BAT TERY ...... 221 FordTaurus ...... 221

v FordEscort ...... 225 LI/IONBATTERY ...... 229 FordTaurus ...... 229 FordEscort ...... 233 NIMHGEN4BATTERY ...... 237 FordTaurus ...... 237 FordEscort ...... 241

vi ACKNOWLEDGMENTS

TheCaliforniaAirResoucesBoard(CARB)fundedourresearch.However, CARBdoes notnecessarilyendorseanyofourmethodsorfindings.Wearesolely responsibleforthematerialherein.

vii OVERVIEWOFTHEDESI GNANDLIFECYCLECOS TMODELFOR FUEL -CELL,BATTERY, GASOLINE,ANDALTERN ATIVE-FUEL VEHICLES

INTRODUCTION

Thedesignandlif ecyclecostmodeldesignsamotorvehicletomeetrangeand performancerequirementsspecifiedbythemodeler,andthencalculatestheinitialretail costandtotallifecyclecostofthedesignedvehicle.Themodelcanbeusedto investigatetherelationsh ipbetweenthelifecyclecost -- thetotalcostofvehicle ownershipandoperationoverthelifeofthevehicle -- andimportantparametersinthe designanduseofthevehicle.

Overviewofthedocumentation Afterthismajoroverviewsection,therearethreeothermajorpartstothe documentationofourmotor -vehiclelifecyclecostandenergy -usemodel:

•themodelofvehiclecostandweight •themodelofvehicleenergyuse •periodicownershipandoperatingcosts.

The modelofvehiclecostandweigh tconsistsofamodelofmanufacturingcost andweight,andamodelofalloftheothercosts -- divisioncosts,corporatecosts,and dealercosts -- thatcomposethetotalretailcost.Themanufacturingcostisthematerials andlaborcostofmakingthe vehicle.Inouranalysis,materialandlaborcostis estimatedforallofthenearly40subsystemsthatmakeupacompletevehicle.Wealso performdetailedanalysesofthemanufacturingcostofthekeyuniquecomponentsof electricvehicles:batteries,fu elcells,fuel -storagesystems,andelectricdrivetrains. The modelofvehicleenergyuse isasecond -by -secondsimulationofallofthe forcesactingonavehicleoveraspecifieddrivecycle.Thepurposeofthismodelisto accuratelydeterminetheamou ntofenergyrequiredtomoveavehicleofparticular characteristicsoveraspecifieddrivecycle,withtheultimateobjectiveofcalculatingthe sizeofthebatteryorfuel -cellsystemnecessarytosatisfytheuser -specifiedrangeand performancerequirem ents.(Thecostofthebatteryorfuel -cellsystemisdirectlyrelated toitssize;hencetheimportanceofanaccurateenergy -useanalysiswithinalifecycle costanalysis.)Theenergy -usesimulationisthestandardtextbookapplicationofthe physicsof work,withavarietyofempiricalapproximations,tothemovementofmotor vehicles. Periodicownershipandoperatingcosts ,suchasinsurance,maintenanceand repair,andenergy,are intoto aboutthesamemagnitudeastheamortizedinitialcost, andhenceanimportantcomponentofthetotallifecyclecostofownershipanduse. Becauseofthis,andbecausethesecostscanvarywiththevehicletechnology,itis

1 helpfultoestimatethemaccurately.Wedevelopdetailedestimatesofthemost importantofthesecosts,maintenanceandrepair,andinsurance.

Anearlierandsubstantiallydifferentversionofthismodelispartially documentedinM.A.DeLuchi,HydrogenFuel -CellVehicles (1992).

WHATTHEMODELDOES

Typesofvehiclesinthemodel Themode lcalculatestheperformanceandcostoftwelvekindsoflight -duty motorvehicles:gasolineinternal-combustion -enginevehicles(ICEVs);methanolICEVs; ethanolICEVs;compressednatural-gas(CNG)ICEVs;liquefiednatural-gas(LNG) ICEVs;liquefied -petroleum -gas(LPG)ICEVs;liquefied -hydrogen(LH 2)ICEVs; hydride -hydrogenICEVs;compressed -hydrogen(CH 2)ICEVs;battery -poweredelectric vehicles(BPEVs);hydrogenfuel -cell -poweredelectricvehicles(FCEVs);andmethanol FCEVs.Themodelhasover1000inputvariables(notcounting“low -case”inputs separatefrom“high -case”inputs,andnotcountingoptionalmultipleinputsofthe samevariable[e.g.,forfuel -celloptimization]).Itoccupiesabout3megabytesofstorage space,andtakesacoupleminutes torunonapersonalcomputer.Themodelisdetailed andintegrated:allvehiclecomponentsarelinkedanalyticallytovehicleweight,power, cost,andenergyuse,andtheresultingcomputationalcircularityissolvedbyiterative calculations.Theoverallperformanceofthefuel -cellandthebatteryarecalculatedfrom second -by -secondsimulationsthataretheequivalentofsimplifiedenginemapsfor ICEVs. Weemphasizethatthemodelisavehicle -design and vehiclelifecycle -cost model:itdesignsvehiclesthatsatisfyrangeandperformancerequirementsovera particulardrive -cycle,specifiedbytheuser,andthencalculatestheinitialandlifecycle costofthatvehicleoverthespecifieddrivecycle.

Outputofthemodel Themodelcalculatesthefo llowingoutputs:

• Vehiclecharacteristics:

-- thepeakpoweroftheelectricvehicle(EV)andthebaselineICEV -- theaccelerationperformanceoftheEVsandthebaselineICEV(theuser specifiesthestartingandendingspeed,grade,andwindspeedinthetest -- theweightofallofthevehiclestypes;thevolumeofthefuel -storagesystem and/orbattery(EVsandbaselineICEVsonly) -- thegasoline -equivalentfueleconomyofallofthevehicletypes(in miles/gallon,mi/kWh,andliters/100km) -- thelifeofallofthevehicletypes,inkilometers

2 -- thegrosspeakpowerofthefuelcell(akeyuser -inputdesignvariable) -- batterycyclelife,energydensity,andretail -equivalentcost -- andthecoefficientofdragforallofthevehicletypes .

• Vehicleandsubsystemmanufacturingcostandweight: thevariable manufacturingcost,divisioncost,corporatecost,profit,dealercost,andshippingcost; andthecurbweightandloadedin -useweight,ofthecompletevehicle.Themodelalso summarizesthecost,theweight,and(insomecases)thevolumeofthefollowing vehiclesubsystems:thechassis,body,andinterior;thepowertrainandemissioncontrol system;thetractionbattery,tray,andauxiliaries,ifany;thefuelstoragesystem, includ ingvalves,regulators,&fuellines;andthefuelcellstackandassociated auxiliaries,ifany;andthemethanolreformerandassociatedauxiliaries,ifany.These detailedresultsaredisplayedforthebaselineICEVandtheEVs;theyarenotproduced fo rtheeightalternative -fuelICEVs(AFICEVs).Allsubsystemsofthevehiclearesized tomeettherequirementsofanydrive -cycleandperformancespecifiedbytheuser. Weemphasizethatweestimatethe fullproductionandretailcost ofthevehicle, whic hwillnotnecessarilybethesameasthe actualsellingprice ofthevehicle. Costsareestimatedforlow(typicallylessthan10,000units/year),medium,and high(generally100,000units/yearormore)productionrunsofelectricdrivetrainsand batter ies.Wealsoestimatemaintenanceandrepaircostsasafunctionofthedrivetrain productionvolume. • Fuelcost: thegasoline -equivalentcostofthefuel(in$/gallon -gasoline equivalent).Thecostofgasoline,hydrogenandmethanolisbrokendownby:feedstock cost,fuel -productioncost;fuel -storageanddistributioncosts;andretail -levelcosts.We alsoestimatethecostoffuelusedtoheatbatteryEVs. • Thelifecyclecostper -mile(orperkm): thelevelizedpresent -valuecostper mile.Theleveli zedpresentvalue,whichistheconceptuallycorrectexpressionofthe lifecyclecostpermile,iscalculatedinthreesteps.First,themodelcalculatesthepresent value(atspecifiedinterestrates)ofeverycoststream.Then,thispresentvalueis annu alized(orlevelized)overthelifeofthecoststream.Finally,theannualizedpresent valueisdividedbythecalculatedannualaveragemileage. Thelifecyclecostisshownforallvehicletypes,andisbrokendownintothe followingcomponents:

-- Purchasedelectricity(accountsforregenerativebrakingfromfuelcell,and energytoheatbattery) -- Vehicle,excludingbattery,fuelcell,andhydrogenstorage -- Batteryandtrayandauxiliaries(Li/ionbattery) -- SpaceheatingfuelforEVs -- Motorfuel,excludingexcisetaxes -- Fuel -storagesystem -- Fuel -cellsystem,includingreformer,ifany

3 -- Homebattery -rechargingstation -- Insurance(calculatedasafunctionofVMTandvehiclevalue) -- Maintenanceandrepair,ex cludingoil,inspection,cleaning,towing -- Oil -- Replacementtires(calculatedasafunctionofVMTandvehicleweight) -- Parking,tolls,andfines(assumedtobethesameforallvehicles) -- Registrationfee(calculatedasafunctionofvehicleweight) -- Vehiclesafetyandemissionsinspectionfee -- Federal,state,andlocalfuelexcisetaxes -- Accessories(assumedtobethesameforallvehicles) -- Dollarvalueofairpollution

Themodelcandisplaythecost -per -mileres ultsforsixdifferentEVdesigns(or “missions”)atonce.Forexample,themodelcanshowtheresultsforthreedifferent drivingrangesforeachofthetwokindsofEVs(twodifferentkindsofBPEVsorFCEVs, oranFCEVandaBPEV),orforsixdifferent drivingrangesforonekindofEV.(Of course,youactuallycananalyzeanunlimitednumberofcases;ifyouwanttodomore thansixcases,youmustwritedowntheresultsorcopythemtoanotherfile.Thepoint isthatmodelwillshowsixEVcasesatany onetime.)Themodeldisplaysonecaseonly forthebaselineICEVandeachoftheAFICEVs. • Thebreak-evenpriceofgasoline: thatpriceofgasoline,includingallexcise taxes,atwhichthelifecyclecost -per -mileofthealternative -fuelorelectricvehicleequals thelifecyclecost -per -mileofthebaselinegasolinevehicle.Thisstatisticisproduced alongwiththelifecyclecoststatistic,andisshowninthesamesixoutputcolumnsfor EVsandindividualoutputcolumnsfortheICEVs. • Costsummary :thegasoline -equivalentfuelretailprice,excludingexcisetaxes ($/equivalentgallon);thefullretailpriceofthevehicle,includingdealercosts,shipping cost,andsalestaxes($);levelizedannualmaintenancecost($/year);thetotallifecycle cost(cents/km);thedifferencebetweenthepresentvalueoftheEVlifecyclecostand thepresentvalueofthegasoline -vehiclelifecyclecost;andthebreak-evengasolineprice ($/gallon).Thisisshownforallvehicletypes. Notethatthisreportaddresse sonlyBPEVsandgasolineICEVs;itdoesnotpresentdata andresultsfo rFCEVsoralternative-fuelICEVs.

DISCUSSIONOFMODELI NGINPUTSANDMETHOD S

Thissectionsummarizesthecostparametersandmethodsusedinthemodel. Subsequently,wegiveanexampleofhowthemodelworks.

Vehiclemanufacturingandretailcost

4 TheinitialcostoftheEVsandgasolineICEViscalculatedbyavehicle - manufacturingsub -model.Thissub -modelbreaksacompletevehicleintonearly40 parts,accordingtothe“Uniform PartsGrouping”systemusedbytheautomobile industry.Themajorgroups(ordivisions)inthissystemarethebody,theengine,the transmission,andthechassis.Foreachthepartgroups,themodel -userentersthe weightofthematerialuser,thecostperpoundofthematerial,theamountofassembly labortimerequired,thewagerateforlabor,andtheoverheadonlabor. Thematerialcostsplustheburdenedlaborcostsequalthetotalvariable manufacturingcost.Tothisvariablemanufacturingcostare addedfixedcostsatthe divisionandthecorporatelevel:buildings,majorequipment,executives,engineers, accountants,corporateadvertising,designandtesting,legal,andsoon.Finally, corporateprofit,dealercosts,andshippingcostsareaddedtoproducethe Manufacturers’SuggestedRetailPrice(MSRP). ThedataforthebaselinegasolineICEVs(aFordTaurusandaFordEscort)are fromcostanalysesdonebyexperiencedautomotiveconsultants.Thebaselineweight andcostdatafortheapproximate ly40subpartssumuptotheactualweightandMSRP oftheTaurusandtheEscort.FortheEVsandtheAFICEVs,thecostandweightofeach sub -groupismodifiedasappropriate.For,example,intheEVsub -model,thecostand weightoftheemission -control systemandoftheexhaustsystemarezero,buttheframe andsuspensionareheavierandcostlierinordertosupporttheheavybattery(theextra reinforcementiscalculatedbyaweight -compoundingfactor).Themanufacturingcost ofanelectricmotorisca lculatedinthe“engine”category,andthemanufacturingcost ofamotor -controllerandinverteriscalculatedinthe“engineelectrical”category.We developcostfunctionsforthemotorandcontroller,onthebasisofadetailedreview andanalysisofavailableinformation.FortheEVs,weincludeacompleteheatingand coolingsystem,anonboardcharger(withoffboardchargingequipmentaccounted separately),regenerativebraking,andbatterythermalmanagement. Themanufacturingcostofthebattery,th efuelcell,andthemethanolor hydrogenfuel -storagesystem(forFCEVs)arecalculatedseparatelyelsewhereinthe lifecyclecostmodel(anddiscussedelsewhereinthisoverview),andthenaddedasan additionalsubsystemtothemanufacturingcostofthe vehicle. Thedivisioncostisequaltoafixedcostplusanadditionalcostassumedtobe proportionaltothemanufacturingcost.Thecorporatecostisequaltoafixedcost,plus anadditionalcostassumedtobeproportionaltothemanufacturing -plus -di visionscost, plustheopportunitycostofmoneyinvestedinmanufacturing.Thecorporateprofitis takenasapercentageofthefactoryinvoice.Thedealercostisequaltoafixedcostplus, plusanadditionalcostassumedtobeproportionaltothefacto rinvoicetothedealer, plusthecostofmoneytothedealer.Theshippingcostisassumedtobeproportionalto vehicleweight. TheinitialcostoftheAFICEVsiscalculatedasthecostofthebaselinegasoline vehicle,plusanycostdifferencesbetween theAFICEVandthebaselinegasolinevehicle inthefollowingareas:fuelstorage(e.g.,CNGtankage);powertrain;emissioncontrol; fueleconomyimprovements;chassissupport;andvehiclebodyandinterior.

5 Thebattery Thelifecyclecostofthebatte ryiscalculatedfromthefollowingparameters, severalofwhich,asmentionedparentheticallyinthefollowing,arecalculatedfrom otherparameters:

-- The$/kgmanufacturingcost,estimatedasafunctionoftheWh/kgspecific energyofthebattery(se ediscussionsbelow).Thespecificenergyofthe batteryisestimatedonthebasisofafunctionthatrelatesspecificenergy tospecificpower.Thespecificpowerisestimatedonthebasisofthe maximumpowerrequiredoverthedrivecycle.Thesefunction s($/kgvs. Wh/kg,andWh/kgvs.W/kg)representrealtradeoffsinbatterydesign andmanufacturing,andallowustooptimizethebatteryforthespecified rangeandperformancerequirements. -- theweightofthebattery,estimatedasafunctionofthesp ecificenergy,the drivingrange,andthevehicleefficiency. -- Arecyclingcostcoefficient($/kWh). -- Thelifeofthebattery,estimatedastheshorterofthecalendarlifeandthe cyclelife.Thecyclelifeisestimatedasafunctionofthedepthof discharge,andthecapacityofthebatterywhenitisdiscarded.The averagedailydepthofdischargeisestimatedasafunctionofthedriving rangeoftheBPEV. -- Theefficiencyofthebattery,estimatedsecond -by -secondoverthespecified drivecyc leasafunctionofthebatteryresistance,voltage,andpower. -- theweightandsizeofthebatterytray,tiedowns,electricalauxiliaries(suchas busbars),thermalmanagementsystem,andon -boardcharger.Theseare estimatedasafunctionofbattery parameters,temperature,andother factors.

Thebatteryisdesignedinthemodeltobeaslightaspossiblefortheuser - specifiedrangeandperformancemission.First,thebatteryisrequiredtohavethe amountofpowernecessarytoexactlymeettheper formancerequirement -- andno more.Giventherequiredpower,thepowerdensityiscalculated.Withthecalculated powerdensity,thecorrespondingenergydensityiscalculated,fromfunctionsthat characterizethetradeoffbetweenpowerdensityandenerg ydensityindesign.The lowertherequiredpowerdensity,thehighertheenergydensity;hence,byhavingonly asmuchpowerasisrequiredbytheperformancestandard,theenergydensityofthe batteryandhencetheefficiencyofthevehicleismaximized . Themodelcalculatestheamountofheatlossfromahigh -temperaturebattery andtheamountofenergyrequiredtoheatthebatterytomaintainitsoperating temperaturewhenitisnotinuse.Theusercanspecifythattheelectricalresistive heatingen ergycomeeitherfromthewalloutletor,ifthevehiclehasafuelcell,fromthe fuelcell.Iftheuserspecifiesthatthefuel -cellsystemisusedtomaintainthe

6 temperatureofahigh -temperaturebattery,themodelre -sizesthefueltanksothatthe ve hiclecanstoreenoughenergytoheatthebatteryandstillsatisfytherange requirement.There -sizingofthefueltankcircularlyanditerativelyaffectsvehicle weight,efficiency,andpower.Thus,whetheroneheatsabatteryfromthefuelcell ultimatelyaffectssuchthingasthecostofstructuralsupportmaterialintherestofthe vehicle,becauseallvehiclecomponentsarelinkedindesignviatheperformance, weight,andenergyconsumptionofthevehicle. Theuseralsospecifiestheupperlimitonthepowerdensity(W/kg)forthe particulartechnologychosen.Iftheperformanceandrangedemandedofthevehicle necessitateapeakpowerdensityinexcessofthemaximumallowable,awarning statementappears. Themodeldoesnotaccountfortheloss ofbatteryenergyandpowercapacity withage,oranylossofinteriorstoragecapacityduetothebulkofthebattery.

Energyuse:overview Energyuseisacentralvariableineconomic,environmental,andengineering analysesofmotorvehicles.Theen ergyuseofavehicledirectlydeterminesenergycost, drivingrange,andemissionsofgreenhousegases,andindirectlydeterminesinitialcost andperformance.Itthereforeisimportanttoestimateenergyuseasaccuratelyas possible. Thedrivecycleener gy -usesubmodelcalculatestheenergyconsumptionofEVs andICEVsoveraparticulartrip,ordrivecycle.Theenergyconsumptionofavehicleisa functionoftripparameters,suchasvehiclespeed,roadgrade,andtripduration,andof vehicleparameters, suchasvehicleweightandengineefficiency.Giventripparameters andvehicleparameters,energyusecanbecalculatedfromfirstprinciples(thephysics ofwork)andempiricalapproximations. Intheenergy -usesubmodel,thedrivecyclefollowedbythe EVsandICEVs consistsofupto100linkedsegments,definedbytheuser.Foreachsegment,theuser specifiesthevehiclespeedatthebeginning,thespeedattheend,thewindspeed,the gradeoftheroad,andthedurationinseconds.Giventhesedatafo reachsegmentof thedrivecycle,andcalculatedoruser -inputvehicleparameters(totalweight,coefficient ofdrag,frontalarea,coefficientofrollingresistance,enginethermalefficiency,and transmissionefficiency),themodelusesthephysicsequa tionsofworkandempirical approximationstocalculatetheactualenergyuseandpowerrequirementsofthe vehicleforeachsegmentofthedrivecycle.Theequationscanbefoundinphysicsand engineeringtextbooks,booksonvehicledynamics,andpapers onestimatingthefuel consumptionofmotorvehicles. Giventhisdrivecycle,andtotalvehiclerangeandamaximumfuel -cellnet poweroutput,themodelcalculatesthetotalamountofpropulsionenergyconsumed whentherequiredpowerislessthanthefuel -cellmaximumpower,andtheamount consumedwhentherequireddrivepowerexceedsthefuel -cellmaximum.These calculatedenergydataareusedtosizethepeak-powerdeviceandthefuel -storage system.(Thesizeoftheseisimportantbecauselifecycle costisdirectlyandindirectlya functionofcomponentsize.)

7 Energyuse:vehicleefficiency Thevehicleefficiencyiscalculatedfromtheefficiencyorenergyconsumptionof individualcomponents(thebattery,thefuel -cellandreformersystem,the engine,the transmission,themotorcontroller,andvehicleauxiliaries),thecharacteristicsofthe drivecycle(seediscussionabove),thecharacteristicsofthevehicle(seeabove),the requirementsofbatterythermalmanagement,andtherequirementsof cabinheatingor cooling(inthebasecase,weassumeyear-round“average”heatingandcoolingneeds). Themodelproperlycalculatestheextraenergymadeavailablebyregenerativebraking. Theefficiencyofthebattery,fuelcell,electricmotor,motorcontroller,andtransmission arenotinputassinglevaluesovertheentiredrivecycle,butratherarecalculated secondbysecond.Vehicleefficiencyiscircularlyrelatedtomanycomponentsand parametersviaweight:forexample,ifthedrivingrangeis increased,theamountof batteryneededincreases,whichinturnincreasestheamountofstructuralsupport.The extrabatteryandstructuremakethevehicleheavierandlessefficient,sothateven morebatteryisneededtoattainagivenrange,andsoon ,iteratively.Themodel resolvesthesecircularitiesandconvergesonmutuallyconsistentsetofvaluesthrough iterativecalculations.Anexampleofthecircularinvolvementofvehicleefficiencyin manyareasofthelifecyclecostcalculationisgivenbelow.

Energyuse:vehicleperformance ThemodeldesignstheEVstosatisfyperformancerequirementsspecifiedbythe user.TheuserspecifiesthedesiredamountoftimefortheEVtoacceleratefromany startingspeedtoanyendingspeed,overanygrade ,andthemodelthencalculatesthe requiredmotorpower(usingcalculatedorinputdataonvehicleweight,component efficiency,drag,airdensity,rollingresistance,andsoon).Asanoption,theusercan specifythattheEVhavethesameaccelerationtime,foranyparticularstartingand endingspeedandgrade,ashasthebaselinegasolineICEV.(Thepeakhorsepowerof thebaselinegasolineICEVisaninputvariable -- thepeakhorsepowerforthechosen baselinevehicle.Giventhisinputpower,andothe rvehicleanddrive -cycle characteristics,themodelcancalculatetheaccelerationtimeforthebaselinegasoline vehicle.)Theformulasusedintheperformancedesigncalculationarethesameasthose usedinthedrive -cycleenergy -usecalculations. In themodel,themaximumpoweroftheEVis,appropriately,circularlyrelated toeverycomponentthat(invehicledesign)reallyisrelatedtovehicleperformance. Thus,themodelcaptureseffectsthatonemightoverlookbutwhichreallydorelateto perfor mance.Forexample,if(invehicledesign)onechangestheexpectedstorage pressureofhydrogeninanFCEV,thenthestrengthandhencetheweightofthe containerneededtoattainagivenrangewillchange.Whentheweightofthevehicle thuschanges,th eamountofpowerrequiredtoattainagivenperformancerelativeto thegasolineICEVchanges.Thisinturnchangesthesizeandweightofthemotorand battery.Thesechangesinweightchangethevehicleefficiency,whichinturnchanges theamountofba tteryandfuel -storagerequiredtoattainagivenrange.Thechangein weightagainaffectstheamountofpowerrequired,andsoon.Thecircularitiesare

8 resolvedbyiterativecalculations.(Notethatthepeakpoweriscalculatedinthisway fortheEVsonly;theAFICEVsareassumedtohavethesameperformanceasthe baselinegasolineICEV.)

Otherownershipandoperatingcosts Insurance . Ourlifecyclecostmodelhandlesinsurancepaymentsinsomedetail. Webeginwithanestimateofthemonthlypremium forcomprehensivephysical- damageinsuranceandliabilityinsuranceforareferencevehicle.Then,weformulatea relationshipbetweentheliabilityandphysical-damageinsurancepremiums,andthe valueandannualtravelofavehicle.Generally,weassume thatpremiumsarenearly proportionaltoVMTandvehiclevalue.Withthisrelationship,andanestimateofthe valueofthemodeledvehiclerelativetothevalueofthereferencevehicle,andofthe VMTofthemodeledvehiclerelativetotheVMTofthere ferencevehicle,wecalculate theinsurancepremiumsforthemodeledvehiclerelativetotheestimatedpremiumsfor thereferencevehicle. Wealsospecifythenumberofyearsthatphysical-damageinsuranceiscarried,in ordertoaccuratelycalculatethe lifecyclecost. Homerecharging. Thecostofhomerechargingisestimatedasafunctionofthe initialcostofahomerechargingsystem(high -powercircuit,andchargerbox),the interestrate,andtheamortizationperiodoftheinvestment.Themodelcalculatesthe lengthoftimerequiredtofullyrechargethebatterygivenavoltageandcurrentinput bytheuser,andthesizeofthebatteryrequiredtosatisfytheinputvehiclerangeand power.IftheuserspecifiesthatthebatteryinanFCEVberecharg edbytheoutlet,the modeldeductsfromthetotalrechargingrequirementtheamountofenergyreturnedto thebatterybyregenerativebrakingoverthespecifieddrivecycle,whenthevehicleis operatingonthefuelcell.Iftheuserspecifiesthattheba tteryintheFCEVberecharged bythefuel -cellinsteadofbytheoutlet,thenthehomerechargingcostisassumedtobe zero. Theretailcostoffuelorelectricity. Themodelcalculatesthecostofgasoline, methanol,andhydrogenonthebasisofuser -specifiedfeedstockcosts,fuel -production costs,distributioncosts,andretailcosts.Thecostofahydrogenrefuelingstationis calculatedindetail,asdiscussedbelow.Thecostofelectricityisentereddirectlyasan inputvariable.Federalandsta tefuelexcisetaxesarehandledseparately(seebelow). Maintenanceandrepair. Thecostofmaintainingandrepairingamotorvehicle isoneofthelargestcostsofoperatingamotorvehicle,onaparwiththecostoffueland thecostofinsurance.Beca usethemaintenanceandrepair(m&r)costisrelatively large,andisdifferentforEVsthanforICEVs,itisimportanttoestimateitaccurately. Wedefinearelevantsetofm&rcosts,estimateayear-by -yearm&rschedule forthebaselinegasolin elight -dutyICEV,andthenestimatem&rcostsfortheEV relativetotheestimatedm&rcostsforthebaselinegasolineICEV.Wedefinem&r costswiththeobjectiveofidentifyingthekindsofcoststhatprobablyaredifferentfor EVsthanforICEVs. ThecoststhatwethinkarethesameforICEVsandEVsweputinto aseparatecategory.

9 Ouranalysisisbasedmainlyonthecomprehensivedataonsalesofmotor - vehicleservicesandpartsreportedintheBureauoftheCensus’quinquennial Censusof Serv iceIndustries and CensusofRetailTrade. WeusetheCensus’datatoestimatem&r costsperLDVperyear,andthencomparetheresultswithestimatesbasedonother independentdata.WethenconsiderestimatesbyFHWAtotransformtheCensus’ estimates intoayear-by -yearm&rcostschedule. Theadjustedyear-by -yearmaintenanceandrepaircostdataseriesareconverted toanetpresentvalue,whichisthenlevelizedtoproduceanequivalentuniformannual costseriesoverthelifeofthevehicle. Re placementtires. Thecostpermileoftiresiscalculatedasafunctionofthe initialcostofthetires,thelifeofthetiresandtheinterestrate.Thelifeofthetiresonthe gasolineICEVisspecifiedinmiles,andiscalculatedbythemodelforthe othervehicle typesonthebasisoftheweightoftheothervehicletyperelativetotheweightofthe gasolinevehicle.Thus,ifanEVweighsmorethanthebaselineICEV,thenitstireswill bereplacedsoonerandhencewillhaveahigherlifecyclecost. Themodeldoesnot replacethetiresifthelastreplacementintervalisneartheendoflifeofthevehicle. Vehicleregistration. Themodelreplicatesthepracticeinmoststatesand calculatestheregistrationfeeasafunctionofvehicleweight(heaviervehiclespaya higherfee). Safety -andemissions -inspectionfee. Theuserenterstheannualfeeforthe baselinegasolinevehicle,andthefeefortheothervehicletypesrelativetothegasoline vehiclefee.(Forexample,EVswouldbesubjecttoasafety -inspectiononly,notan emissionsinspection,andsowouldhavealowerfee.) Parking,tolls,fines,andaccessories. Theseareinputbytheuser,andare assumedtobethesameforallvehicles. Federal,state,andlocalexcisetaxes. Themode lcalculatesthecostpermileof thecurrentgovernmentexcisetaxesongasoline,andthencalculatesthecost -per -mile fortheothervehiclesrelativetothisbyusingascalingfactor(0.0to1.0)specifiedbythe user.Inthebasecase,weassumethat allvehiclespaythesametaxpermile,sothat governmentrevenuesfromhighwayusers(forthehighways)wouldbethesame regardlessofthetypeofvehicleorfuel. Thedollarvalueofairpollution. Themodelcalculatesthecost -per -mileof pollution fromuser -specifiedemissionratesoftailpipeVOCs,evaporativeVOCs,CO, NO x,SO x,PM,benzene,formaldehyde,1,3-butadiene,andacetaldehyde,andfuel -cycle greenhouse -gasemissions(ingrams/mile),anduser -specifiedemissionvalues(in $/kg).Theresu ltsarecalculatedforallEVandAFICEVvehicletypes.(Theseresults canbezeroedout.) Themodeldoesnotincludeanyothernonmonetaryenvironmentalorconsumer benefitsordisbenefits(suchasthedisadvantageoflowrange,ortheconvenienceof ho merecharging). Year-by -yearmileageschedule. Themodelrequiresasinputsayear-by -year mileageaccumulationschedulefortheICEVsandAFICEVs,andaseparateschedule fortheEVs.Thisscheduleiscreatedfromacontinuousfunctionthatrelatesage to mileage;theuserspecifiesthevalueofthecoefficientsinthisfunctioninorderto

10 producethedesiredmileageschedule.Themodelhastwofunctionsspecified:one replicatesamileage -accumulationschedulederivedfromtheResidential Transportatio nEnergyConsumptionSurveyoftheU.S.DepartmentofEnergy,andthe secondproducesascheduleofmoreintensiveuse,inwhichmoremilesaredrivenin theearlyyearsoftheavehicle’slife.

Financialparametersforvehiclepurchase Themodelchara cterizesa“weighted -average”or“typical”vehiclepurchaseby calculatingortakingasinputadetailedsetoffinancialparameters:thefractionofnew carbuyerswhotakeoutaloantobuyanewvehicle;theamountoftheaverage downpaymentonthecar (inputasaffractionoffullvehiclesellingprice);thelengthof financingperiodforcarsboughtonloan(inmonths);therealannualinterestrateon loanstakenouttobuyanewcar,beforetaxes;therealannualinterestrateforegoneon cashused fortransportationexpenditures,beforetaxes(theopportunitycostofcash usedfordownpaymentoroutrightpurchase);theeffective(average)incometaxpaid onbankinginterestearned,afterdeductions;theannualdiscountratetoapplytoyearly milea ge(seediscussionbelow)theannualrateofinflation(assumedtobezerointhe presentconfiguration);thebaseyearandthetargetyearfortheinflationanalysis(if inflationisnotzero);andwhetherornotinterestpaymentsbedeductedfromtaxable income.Themodeltreatsloanpaymentsasanordinarycost,tobediscountedbythe personalopportunitycostofmoney. Asnotedabove,theusercanspecifya“discountrate”tobeappliedtotheannual mileage.Thisallowstheusertoperformaquasicost -benefitanalysis,inwhichmilesof travelarethe“benefit”oftravel,andarebediscounted(orannualized)inthesameway thatthecostsare.(Itturnsoutthatifoneassumesdifferentmileageschedulesfor differentvehicles,thenwhetherornot onetreatsVMTasabenefitandappliesa discountratecanmakealargedifferenceintheoverallcost -per -mileresults.) Thefinancial-costsub -modelalsoperformsahighlysimplifiedmacro -economic simulation:itassumesthattheinterestrate,thefr actionofnewcarbuyerswhotakeout aloan,andthelengthofthefinancingperiodareanonlinearfunctionofthevalueofthe vehicle.

ANEXAMPLEOFTHEWORKINGOFTHEMODEL

Hereisanillustrationofthelevelofdetailandintegrationofthemode l.As mentionedabove,theuserspecifiescharacteristicsofthedrivecycle.Thefollowing illustrateswhathappensiftheuserchangesoneparameterthataffectsthedrivecycle -- say,thegradeorwindspeedorroadroughness. Thebattery .Thenewdri vecycleand(ifpertinent)fuel -cellpowerprofilechange theamountofenergythatthepeak-powerdevice(say,ahigh -powerbattery)ortraction batterymustprovide.Thechangeintherequiredenergystoragecapacityofthebattery changestheweightof thebattery.Thischangeinweight,combinedwiththechangesin theweightofthefuelcell,fuel -storagesystem,andvehicle,changetheamountof

11 maximumpowerneededtoachieveagivenperformance(seediscussionof performanceabove).Thechangein peakpowerandthechangeinweightchangethe power/weightratioofthebattery,which,viathebatterydesignfunctioninthemodel, changestheWh/kgenergydensityofthebattery.ThechangedWh/kgchangesthe amountofbatteryrequiredtosupplythe[new]amountofdriveenergynotsuppliedby thefuel -cellsystem;thischangeinweightfeedsbacktopowerandweightandW/kg andWh/kg,andsoon,untilthemodelconvergesiteratively.Thechangeinbattery weightalsoaffectsvehicleefficiencyandtheweightofothercomponents;theseeffects comebackaroundtoaffecttheamountofbatteryneededtosupplythedrivingenergy notcoveredbythefuelcell. Thechangeinthepowerprofileofthefuelcell(ifpertinent) changesthepower profileofthebattery.Themodelcalculatesthechangeinthebatterypowerprofile secondbysecond,recalculatingbatteryefficiencyateachpoint(basedonvoltaic efficiencypointbypoint,andoverallcoulombicefficiency).Thenewoverallcalculated batteryeff iciencychangesvehicleefficiency,whichchangestheamountofbattery,fuel - storage,etc.neededtoattainthegivenrange,whichchangestheamountofpeakpower needed,andsoon,asabove. Ultimately,thechangesinbatteryweightandpowerchangeth einitialcostofthe battery,accordingtothebatterycostequation(seediscussionofbatterycostabove). Thereactuallyaretwoeffects:thechangeinWh/kgchangesthe$/kgcoefficientitself, andthechangeintotalkgchangesthetotalamountofba tterytobepaidfor.The changeinbatteypowerandweightalsochangetheinitialcostoftheEVmotorand controllers,whichareinputasafunctionthepeakpower(kW peak). Thechangeinvehicleefficiencyandbatterycharacteristicschangethecalenda r lifetimeofthebattery,whichinturnaffectstheannualizedcostpermileofthebattery. Thechangeinvehicleefficiency(duetothechangesinthebatteryandfuelcellprofiles, andtothechangesinweight)ofcoursedirectlyaffectsthecostper mileoffueland electricityconsumption. Ifthebatteryisrechargedandheated(ifnecessary)bythefuelcell,ratherthan fromgridelectricityfromtheoutlet(-- theusercanspecifyhowthebatteryisheated andrecharged -- ),thenachangeinthe sizeofthebatterychangestheheatlossrateand amountofstoredenergy,whichinturnchangetheamountoffuelneededonboardfor heatingandrecharging,whichchangestheamountoffuel -storageequipment,which changestheweightofthevehicle,wh ichchangestheefficiencyandthepower requirement,whichthenfeedbacktothesizeofthebatteryandfuel -storagesystem. Othersystems. Returningagaintotheoriginalchangeinthedrivecycle:this changesthecycle -averageefficiencyoftheelectr icdrivetrain,whichischaracterizedby efficiencyatdifferentpowerpoints.Thechangeinefficiencychangesoverallvehicle efficiency,weight,andrequiredpower.Thechangeintherequiredpowerofthemotor changesthedrivetrainefficiencywithres pecttothedrivecycle,andsoon. Thechangesinweightaffecttherateatwhichtireswearout,whichaffectsthe tirereplacementinterval,whichaffectstheannualizedtirecost.Thechangesinthecost ofthefuel -cell,fuel -storagesystem,battery,motor,vehicle,etc.,changethevalueofthe

12 vehicle,whichinturnchangesthecostofphysical-damageinsurance.Thechangein vehicleweightchangestheannualregistrationfee. Finally,thechangesinthevalueofthevehicle(duetochangesintheamountand costoffuel -storage,battery,vehiclematerial,etc.)actuallychangethefinancialtermsof vehiclepurchase.Inthemodel,asvehiclesgetmoreexpensive,morepeopletakeat loanstobuythem,andthecostofborrowingmoneygoesup.Thesech angesare calculatedinthemodel,andaffecttheamortizedinitialcostofthevehicle.

13 MODELOFVEHICLEWEI GHTANDCOST

OVERVIEWOFTHEANAL YSIS

Themodelofvehiclecostandweightconsistsofamodelofmanufacturingcost andweight,andamodelofalloftheothercosts -- divisioncosts,corporatecosts,and dealercosts -- thatcomposethetotalretailcost.Withthesetools,weestimatethe weightandtotalretailcost(in1997$)ofaconventionalandanelectricdriveFord EscortandFordTa urus.Costsareestimatedforlow(typicallylessthan10,000 units/year),medium,andhigh(generally100,000units/yearormore)productionruns ofelectricdrivetrainsandbatteries 1. Weuseamanufacturing -costframeworkdevelopedbyL.Lindgren(Amer ican CouncilforanEnergy -EfficientEconomy[ACEEE],1990),withsomenewdatafrom EnergyandEnvironmentalAnalysis(EEA,1998)andothersources,tocalculatethe weightandcostofnearly40subsystems(orpartsgroups)andoperationsinthe manufactu reoftheFordEscortandaFordTaurus.Thecostandweightofthe subsystemssumtothemanufacturingcostandweightofthecompleteTaurusorEscort. ThebasisofLindgren’s(ACEEE,1990)analysisisthe1989model -yearICEEscort andTaurus(Table1).Startingfromthisbasis,wewishtoestimate:

•thecostofapresent/nearfutureICEEscortandTaurus,and •thecostofapresent/nearfutureEVversionoftheEscortandtheTaurus.

Webeginwithadescriptionofthepartgroupsinthe1989mo del -year manufacturingcostandweightanalysis.Next,wepresent,theoverallmanufacturing costandweightequations.Then,wegothroughthepartsgroupsandexplainthe changeswemaketogetfromthe1989baselinetothecurrentICEVandEVTaurusand Escort. WeuseEEA’s(1998)analysis(whichappearstobebaseda1996or1997model year),andothersources,toupdateLindgren’s(ACEEE,1990)estimatesofICEVcosts. Toestimatethepresent/nearfutureEVs,wemustgothroughtheentireparts group ingandremovethosepartsgroupsthatarenotusedinEVs,andaddparts groups,suchastheelectricdrivetrain,thetractionbattery,thefuelcell,andthe hydrogenormethanolstoragesystem,thatareinEVsbutnotICEVs.Ourestimatesof thecostandweightoftheEVtractionbatteryanddrivetrain,whicharebasedon Lipman’s(1999b,1999d)detailedanalyses,arepresentedinaseparatemajorsection.

1Inthisreport,the“low”,“medium,”and“high”productionlevelsvaryfromcomponenttocomponent, butthisvariationisarbitraryinasmuchasitisnottheresultofananalysisoftheactualpotent ialsupplier marketsfordifferentcomponents.Ideally,onewouldmodeldemandandsupplyfromtheleveloffinal vehiclesalesbackthroughthevarioussupplierindustries,andestimatetheproduction -volumescenarios accordingly.This,however,isbeyon dourscope.Weassumethattheresultantimplicitinconsistencies betweenproduction -volumescenariosisrelativelyunimportant.

14 Oncewehavethemanufacturingcost,weestimateandaddthecoststhatmake upthedifferencebe tweenthefinalretailcostandthemanufacturingcost:divisioncost, corporatecost,corporateprofit,dealercost,shippingcost,andsalestax.Wealso presentouranalysisofvehiclelifeandsalvagevalue,whichareimportantparameters intheanalys isoflifecyclecost.

WEIGHTANDMANUFACTU RINGCOSTOFESCORT ANDTAURUSICEVAND EV(EXCEPTEVDRIVETRAINANDBATTERIES)

Partsgroupsinthe1989model-yearmanufacturing -costandweightanalysis Asmentionedabove,westartwithLindgren’sdetailedmanufacturingmodelfor the1989FordEscortand1989Taurus.Lindgren’sanalysis,donefortheAmerican CouncilforanEnergy -EfficientEconomy(ACEEE,1990),classifiespartsand subsystemsofavehicleina“UniformPartsGrouping”(UPG).Lindgrenestima testhe weightofmaterialused,thecostofthematerial,hoursoflabortoassemblethepart,the laborwagerate,andtheoverheadchargedonlabortoaccountforbenefitsandother costsofthemanufacturingplant(seeTable1).Asweexplainlater,we haveupdated Lindgren’scoststo1997$,andwhereavailablehavesubstitutedmorerecentdata developedbyEnergyandEnvironmentalAnalysis(EEA,1998). LindgrendidnotprovideadetaileddescriptionofthehisUPGs.However,we have’detailed UPGsforthe1988modelyear(,1986).Their groupingsareverysimilarbutnotquiteidenticaltoLindgren’sgroupings.Inthe followingdescriptionstheUPGnumbersandcorrespondinggeneraltitlesare Lindgren’s(ACEEE,1990);thedetaileddesc riptionsarefromChrysler’sUPGguide (Chrysler,1986).

11A − 11B:Bodyinwhite Underbody,windshield,dashboard,runningboard,sidepanels,roofpanels, doors,tailgate,hood,fender,grille,hinges,sealsandweatherstipping.

12A − EGA:Hardware Handles,strikers,latches,powerlifters,convertible -top mechanism.

12F − 13,79:Electricalcomponents Windshieldwipers,locksandkeys,ventilationcomponentsandcontrols,interior lamps,switchesandknobs,instruments,fuses,cables,lighter,airconditioningcontrols, speedometercable,warningunits, electriccontrols,wiringandwiringclips

14,20:Molding&ornaments Exteriorandinteriormoldingandfinishpanelsandornaments,finishgrilles, exteriorlamps,reflectors,stripes.

15 15,17,21:Trim&insulation Trimpanels,floorcoverings,weathercord,convertibletopexcludingmechanism, feltsandliners,rubberparts,insulation,lubricants,cements,anti -corrosives,instrument panel,glovebox,consoleexcludingelectrical

16:Seats Completeseats:frame,springs,pads,supports,trim,tack s,covers.

18:Glass Allwindows.

19:Convenienceitems Sunshades,mirrors,ashtrays,assiststraps,luggageracks,armrests,headrests, airdeflectors,spoilers,vehicledata(labels,plates,decals).

22:Paintandcoatings Exteriorandinterior paint,solvents,cleaners,andprimers.

30A:Baseengine Cylinderblock,crankshaftandbalanceshafts,pistonsandrods,camshaft, cylinderheadandcover,valvetrain,waterpump,oilpumpandlubricationsystem, turbocharger,manifolds,enginesuppo rts,gasolineordieselfuel -injectionequipment. (HerewewillincludetheelectricmotorintheEV.)

30B:Otherenginecomponents Carburetorandthrottlebodies,aircleaner,gasolinefuelpump,radiatorand hosesandcoolantreserve,radiatorfan,thr ottlecontrols,powersteeringpump,air pump,enginebrackets,oilfilter,fueltubes,vehicledataplatesandotherlabels, exhaust- gasrecirculationsystem,vacuumpumpsystem,carburetorcold -airintake, miscellaneousparts.(Hereweincludeafewmisc ellaneouscomponentsoftheEV drivetrain.,suchasasmallmotorforpowersteeringandpowerbrakes.Also,we explicitlycalculatetheenergyconsumptionofthepowersteeringandpowerbrakes, andotheraccessories.)

36C:Clutch&controls Clutchhous ingandflywheel,clutchpedalandlinkage.

36EG:Transmission Transfercase,powertake -off,oilcoolerandlines,speedometer,transmission electrical,torqueconverter,gearshiftcontrols.

30CexceptC10:Engine(ormotor)electrical Crankingsyste m,alternatorandvoltageregulator,ignitiondistributor,ignition coil,ignitioncables,sparkplugs,throttlestops,alternatorbrackets,low -temperature

16 startingaids,electronicenginecontrols,enginesystemsensors,electricfanandmotor, enginesy stemactuatorandrelays,distributor -lessignitionsystem.(Herewewill includetheinverter,motorcontroller,anddc -dcconverterintheEV.)

30C10:Engineemissioncontrols Controlsforsparkadvance,electricchoke,decelerationthrottle,exhaustgas recirculation.

31:Finaldrive Propellershaft,rearaxle,andfrontaxle.

32:Frame Frameassembly,frontrailsandunderbodyextensions,cabandbodybrackets. (WewillaccountfortheeffectoftheEVweighingmoreorlessthantheICEVversion.)

33:Suspension Frontsuspension,rearsuspension,shockabsorbers.(Wewillaccountforthe effectoftheEVweighingmoreorlessthantheICEVversion.)

34:Steering Steeringgear,steeringlinkage,steeringcolumn.

3535D:Brakes Servicebrakes ,brakedrumandrotor,powerbrakeboosterandmastercylinder, brakepedalandbracket,parkingbrakes,braketubesandvalvesandhoses,airbrake system,vacuumtanksandlines.(HerewewillincluderegenerativebrakingfortheEV.)

36A36C:Wheels, tires,andtools Wheels,tires,tools,jacks.

36E:Exhaustsystem Pipes,mufflerandtailpipe,oxygensensors,supports.

36O:Catalyticconverter Catalyticconverterandenvironmentalshields.

36F:Fueltankandfuellines Fueltankandfillertub e,fuelsupply.

36G,H:Fendersandbumpers Fenders,batterytray,frontbumpers,rearbumpers,licenseplateframesand brackets,bumpersupports.

36K:Chassiselectricalexceptbattery

17 Signals,switches,horn,wiring. f 36K01:Battery 12-Vchassisbattery.(TheEValsohasa12-Vbattery,torunelectrical-system accessories,whicharedesignedtorunon12V.)

37A,C,D:Paint,cleaners,sealants,etc. Paint,cleaners,rustpreventatives,phosphates,sealers,adhesives.

37Bpart:Oilandgrease Oilandgrease.

37Bpart:Fuel Gasoline,fortheconventionalICEVs.Inouraccountingofmanufacturingcost andweightwecounttheweightbutnotthecostofthefuel,becausethecostofallfuel isaccountedseparatelyasarunningcostpermile.

80A,B:Air -conditioningsystem Airconditioner,includinginstallation.

80H,J:Heatingsystem Heatingsystem,includinginstallation.

80K,M,C:Otherclimatecontrol Packagedcoolingunit,rear-windowdefogger,blowermotorcomponents.

81:Safetyequipment Inflatablerestraints,seatbelts.

85:Accessoriesequipment Automaticcontrolslocks,automaticspeedcontrol,radioandspeakers,electronic informationunits,windowwasher.

Totalweightandtotalmanufacturingcost Ourultimateobjective hereistoestimatethetotalweightandtotal manufacturingcostoftheICEVsandEVs.Thetotalweightisusedintheenergy -use model,andthetotalmanufacturingcostofcourseacomponentofthetotalretailcost. Thetotalweightandmanufacturingcostisthesumoftheestimatedweightand costofeachsubsystem(orpartsgroup)ofthevehicle:

18 CWV = ∑WMG G

MCV = ∑ MCG + CA G

where:

subscriptG=thepartsorsubsystemgroups,describedaboveandshownin Table1. CW V= thecurbweightofthevehicle(lbs).Thecurbweightincludesafullfuel tank,butexcludesanypassengersorpayload. WMG=theweightofmaterialusedtomakesubgroupG(lbs).Table1showsthe weightsforthe1989ICEVsanalyzedbyLindgren(ACEEE,1990).As documentedbelow,wemakevariousadjustmentstothisbaselineto modelcurrent/nearfutureICEVsandEVs. MC V=themanufacturingcostofthevehicle. MC G=manufacturingcostofUPGsubgroupG.Thisisdiscussedbelow. CA=assemblycosts.Thes earediscussedbelow.

Inthecalculationofthevehicle’senergyconsumptionoveraspecified drivecycle,weusetheactualin -useweightofthevehicle,whichdiffersslightlyfrom thecurbweight:iisequaltothecurbweight,plustheweightofanypassengersand payload,less(inthecaseoftheICEV)theweightoftheaverageamountoffuel consumed:

WIU = CW − (1− Fl)⋅ FW + PW

where:

WIU=thein -useweightofthevehicle(lbs) CW=thecurbweight(lbs). Fl=theave ragefuellevelinthetank(fractionofcapacity).Forthepurposeof calculatingtheenergyefficiencofthevehicle(wihchofcoursedependson theweightofthevehicle),weassumethattanksare40%fullonaverage. FW=theweightofthefullamount offuel.Theweightisequaltothevolume (gallons)orenergy(kJ)capacityofthefueltank,multipliedbythe volumetric(lb/gallon)orenergy(lb/kJ)densityofthefuel.Inthe gasolineTaurusandthegasolineEscort,thevolumeoffuelistheactua l capacityofthefueltank(16.0gallonsintheTaurus,12.7intheEscort [Edmunds,1999]).FortheFCEVs,andthealternative -fuelICEVs,thefuel - energycapacityistheamountneededtosupplythedesiredrange,atthe calculatedrateoffuelusepermile.Thefuel -userateisestimated,inthe

19 section“Vehicleenergyconsumption:calculatedresultsforthe drivecycle”.InaBPEVofcoursethefuelweightiszero. PW=theweightofpassengersandcargo(lbs).Weassumeone165-lbpassenger, and15lbs ofcargo.

Manufacturingcostbypartsgroup Themanufacturingcostisthedirectvariablecostofbuildingamotorvehicle.It includesallcostsincurredinthemanufacturingplant:thecostofmaterial,thecostof labor,andoverheadonlabor,whichin cludesbenefitsforplantworkers,maintenance andutilitycostsoftheproductionplant,supervisorsalaries,janitorialservices,and perishabletools.Asexplainedabove,weusedataandmethodsfromL.Lindgren’s (ACEEE,1990)(Table1)withsomeupda tingfromEEA(1998),tocalculatethe manufacturingcostofeachofthenearly40subsystemsthatmakeupthevehicles. Themanufacturingcostofeachpartsgroup. Thetotalmanufacturingcost(MC G) ofeachpartintheUPGiscalculatedas:

 OH  MC = WM ⋅CM ⋅LT ⋅ LW ⋅ 1 + G  G G G G G  100 

where:

subscriptG=UPGpartG(seeabove). MC G=manufacturingcostofUPGpartG. WMG=theweightofmaterialusedtomakepartG(lbs).Whereappropriate,we useEEA(1998)toupdateACEEE(1990)estimates (Table1)fortheICEVs. CM G=thecostofthematerialusedtomakepartG($/lb.)Table1showsthe costparametersforthe1989ICEVsmodeledbyLindgren(ACEEE,1990). WeupdateACEEE’s(1990)estimate,asexplainedbelow. LT G=thelabortimerequir edtomakepartG(hours).FortheICEVTaurusand Escort,weusetheestimatesbyACEEE(1990)(Table1),exceptasnoted below. LW G=thelaborwagerateformakingpartG($/hour).Thisisthegrosswage rate,exclusiveofbenefits.WeupdateACEEE’s(1 990)estimate,as explainedbelow. OH G=theoverheadrateonlabor(%).Overheadincludes:allemployeebenefits, suchashealthbenefitsandpaidvacations;thefullsalary -plus -benefitsof workingsupervisorsandcustodiansintheplant;thebase -salaryofplant managers(butnottheirbenefits);allperishabletoolsusedintheplants; andoperatingandmaintenancecostsoftheplant,includingutilities.We useACEEE’s(1990)estimates(Table1).

Assemblycost. WefollowLindgren(ACEEE,1990),andestimatethecostof engineassembly,transmissionassembly,andvehicleassembly,as:

20  OH  CA = LT ⋅ LW ⋅ 1 + A  A A  100 

where:

CA=thecostofassembly($) LT A =thelabortimefortime(hours).ForICEVs,weusetheestimatesofTable1. OurestimatesfortheassemblyoftheEVmotor,transmission,andbattery arediscussedinthemajorsectiononEVdrivetrainandbatterycosts.We assumethatfinal“vehicle assembly”ofanEV,excluding assemblyinto thevehicleofbatteries,fuelcellsystems,andfuel -storagesystems(which asjustmentionedareaccountedseparately),takes15%lesstimethanICE “vehicleassembly,”onaccountofthefewer[remaining]syst emsinthe EV. LW A=thelaborrateforassembly($/hour).Weassumethatthisisthelaborrate forsubsystemassembly,LW G,discussedinthissection. OH A=theoverheadrateontheassemblylaborwage(%).WeuseACEEE’s (1990)estimateof250%(Table1).

Updatingmaterialsprices .Lindgren’s(ACEEE,1990)materialspricesarein 1989$.Weassumethatpricesincreased2.0%/yearthrough1997,onthebasisofthe followingchangesintheproducerpriceindexfrom1985to1990(BureauoftheCensus , StatisticalAbstract ,1992):

Intermediatesteel -millproducts: 1.4%/year Internalcombustionengines: 3.2%/year Intermediatemotor -vehicleparts: 1.6%/year Finishedmotor -vehiclebodies: 2.3%/year Automotivestampings: 0.4%/year

Updatin gwageratesintheautomotiveindustry .Lindgren’s(ACEEE,1990) estimateofthe1989MSRP(manufacturer’ssuggestedretailprice)oftheFordTaurus, FordEscort,andGeneralMotorsCapriceassumedawagerateof$9.50/hourforlabor, andan“overhead”rate,whichaccountsformanufacturingplantvariablecostsaswell asemployeebenefits,rangingfrom100%to250%(Table1).Weassumethathis estimatereferstowageratesin1988and1989,whenthemodelyear1989vehicleswere beingmanufactured.EEA (1998)usesabasewagerateof$18.65,andatotal compensationrate,includingbenefitsbutnotothermanufacturingplantoverhead,of $51.00/hour,presumablyfor1996or1997. However,theBureauofLaborStatistics(BLS),inits“EmployerCostsfor EmployeeCompensation(1998),reportslower$/hourcompensationratesfor employeesinthe“TransportationEquipment”industry:

21 bluecollar service whitecollar all wages 17.02 18.45 25.95 20.23 totalcompensation 29.22 34.69 37.68 32.34

TheBLSseriesalsoincludestheaveragehourlywagesandsalariesofthe occupationalgroup“machineoperators,assemblers,andinspectors”inmanufacturing industries.(Thehourlywagesforthisgroupalsocanbeestimatedbydividingmean weeklyearningsbythi sgroup,asshowninunpublishedtabulationsfromtheBLS’ CurrentPopulationSurvey[CPS],by39hoursperweek.TheCPSwagedatapublished intheBLS’ EmploymentandEarnings [1993]are median notmean,weeklyearnings.)In March1998,“machineoperators,assemblers,andinspectors”inmanufacturing industriesearned$11.42/hour,andreceivedtotalcompensationof$17.27/hour. ThelowerfiguresseemmoreconsistentwithLindgren’saccountingsystem.We assumealaborwagerateof$14/hour,andthenass umethatoverheadonlabor,asa percentageofsalary,isdefinedthesameas,andisthesamemagnitudeas,in Lindgren’s(ACEEE,1990)analysisfor1988-89.

Adjustmentstothe1989weightandcostbaseline Ourcurrent/near-futureEscortandTaurusis,orwillbe,safer,lesspolluting, andpresumablymoreefficientthanthe1989versionscostedbyLindgren(ACEEE, 1990).Weadjustthe1989weightandcostbaselinetoaccountfortheseactualor anticipated(orassumed)changes,forEVsaswellasICEVs. Unlessotherwisenoted,we assumethattheequipmentintheEscortcostsandweighs80%asmuchasthe equipmentintheTaurus. Inthefollowing,wediscussallofthevehiclesystems,parts,orparameterswhich weadjustedinordertocreatecurrentEV andICEVversionsoftheoriginal1989ICEV baseline. Totalvehicleweight. Weassumethatsince1989,theweightoftheTaurusand Escorthasbeen,orcanbe,reducedeconomically. LedbetterandRoss(1990)notethatgreateruseofaluminumandreinforc ed plasticscouldreducetheweightofanICEVby10%bytheyear2000,atacosttothe consumerof$250.EEA(1990)alsonotesthattheuseofplastic/compositematerialsin thebody,chassis,andbumpersofvehiclescouldreducetheweightofthevehicl eby morethan10%.EEA’s(1998)morerecentanalysisfindsthatanaluminumspaceframe weighs250lbslessandcosts$140more(manufacturingcost)thanasteelunibody,in highproduction 2.ThisresultisconsistentwiththatofLedbetterandRoss(1990)3.

2IntheEEA(1998)analysis,thealuminumunibodycostmuchmorethanthespace -frame,butweighed thesame,andthecomposi tecostmoreandweighedmorethanthealuminumspaceframe.Thus,the aluminumspace -framewastheclearwinner,athigh -volumeproduction.

3However,Lindgren'sanalysis(ACEEE,1990)indicatesthatmoreextensiveuseofplastic/composite materialinthe FordTaurusactuallywould reduce theretailpriceofthevehicleby$300,aswellasreduce theweight.Similarly,EEA(1990)citesaGMestimatethataplastic/compositebumperwouldcostless thanthestandardbumper.

22 Weassumeareductioninvehicleweightof250lbs,atanincremental manufacturingcostof$140(1997$)fortheICEVTaurus,and250lbsplusanadditional 4%ofthecurbweight,atacostof$200,fortheEVTaurus.Weassumeagreater reductioninweightfortheEVbecauseofthegreaterimportanceofimprovingthe efficiencyoftheEV,inordertominimizetheamountofcostlybatteryneededtoattain agivenrange.(Honda’s“Insight”,ahydridEV,usesanaluminumframetoreduce weightandenerg yconsumption[Knight,1999].) Vehicleaerodynamicdrag. The1991FordTaurusandthe1991FordEscorthave aCdof0.34(AllisonGasTurbineDivision,1994).AccordingtoRoss(1997),the1995 TaurushasaCdof0.33.WeassumethattheCdoftheEscort andTaurusICEVis reduced,economically,to0.30.WeassumethattheCdoftheEVswillbereduced furtherto0.24,becauseofthegreaterimportanceofconservingenergyinanEVthanin ICEV.(TheHonda“Insight,”amotor -assisthybridelectricvehicle ,hasaCdof0.25 [Knight,1999].) LedbetterandRoss(1990)estimatethatreducingtheCdfrom0.37to0.30would add$83tothepriceofthevehicle(1990$).OTA(1991)estimatesthatgoingfrom0.33to 0.30wouldaddonly$17tothepriceofavehicl e.WeassumethatreducingtheCdfrom 0.33to0.30wouldaddabout$20(1997$)tothemanufacturingcostofthevehicle. BecauseweassumethattheEVshavemuchlowerCdsthandotheICEVs,we assumethatcostofdragreductionfortheEVsisabouttwi cethecostforthegasoline ICEV. Weassumethatdragreductionmeasuresdonotaffecttheweightofthevehicle. Thebody:improvedsafety. In1991,OTAestimatedthatthen -futureside -impact requirementsandotherthen -forthcomingsafetyrequirements wouldadd$200tothe priceofthevehiclebytheyear2000(1990$).Thisfigureappearstobeinlinewiththe costofsafetyrequirementsduringthe1980s(MVMA,1990).ACGNews (1992)claimed thatnewFederalSafetyregulationswouldcostconsumers$750.Weassumean incrementof$100(manufacturingcost,1997$)and40lbsfortheTaurus. TheICEVengineandtransmission. Weassumethatsince1989,theengineand transmissionhasbeen,orcanbe,madelighterandmoreefficient. InitsassessmentofthepotentialtoimprovethefueleconomyofLDVs,OTA (1991)hypotheticallyredesignedtheFordTaurusforhighefficiencyintheyear2000. Wefollow some oftheiranalysis,andassumethattheTaurushasa4-valve,overhead- camaluminumenginewithelect ronicvalvecontrol(theyalsoassumea2.0liter,4- cylinderengine,butweassumethestandardfor3.0liter6-cylinderTaurusengine), withacompressionratioof9.7(theyassume10),andadvancedenginefriction reduction.(Theyassumea5-speedmanua ltransmission,butweassumethestandard4- speedautomatic.)CostestimatesforsomeofthesechangesareshowninTable3. Unfortunately,theestimatesofTable3arenotconsistent.Thediscrepanciesare duetodifferentbaselines,differentcost -estim ationmethods(e.g.topdownvs.bottom up),differenttechnologiesincludedundergenericheadings(e.g.,“frictionreduction”), andotherfactors.Weareunabletofullyreconcileallthedifferences.Weassumethaton

23 balance,thenetincreaseinthema nufacturingcostwouldbeabout$200(1997$).We assumethattheweightoftheengineisreducedby80lbsintheTaurus. TheEVengineandtransmission. Seetheseparatemajorsectionsontheweight andcostoftheEVdrivetrain. Improvedemissioncont rolsystems. The1990amendmentstotheCleanAirAct requiresignificantreductionsintailpipeandevaporativeemissionsfrommotorvehicles ofmodelyear1990andearlier(EPA,1990).Tomeetthe“TierI”standardsofthe amendedCleanAirAct(Table2)vehicleshavebeenorarebeingredesignedtohave improvedfuelmeteringandignition,alargeroradditionalorclose -coupledcatalytic converter,andalargerevaporative -emissionscanister. Notsurprisingly,therewassomedisagreementabouthowmuch thesechanges wouldordidcost.TheEPAestimatedthattheCleanAirActAmendmentswouldadd $150(Walsh,1992)to$200(Schaefer,1991)tothepriceofanewvehicle.SierraResearch (1994)analyzedcostdataprovidedbyautomanufacturesandconcluded thattheTier1 standardswouldadd$144tothepriceofavehicle(sales -weightedaverageofestimates forcarsandlighttrucks).TheautomanufacturersthemselvesestimatedthatTier1 wouldcost$273/vehicle(sales -weightedaverageofestimatesforca rsandlighttrucks) (SierraResearch,1994).TheAutomotiveConsultinggroup(ACG)statedthat“the CleanAirActaloneisexpectedtocostconsumersanadditional$1,000pervehiclein emissionscontrols”(ACGNews ,1992,p.3).Similarly,initslifecy clecostanalysisofEVs andICEVs,theU.S.DepartmentofEnergy(DOE)(1995)adds$1,000tothepriceofa 1994FordAerostarICEVtoaccountfornewadvancedemissioncontrols. Itwillcostevenmoretoreduceemissionsfromgasolinevehiclesfurther, beyond whatisrequiredbyTierIoftheCleanAirActAmendments.SierraResearch(1994) estimatesthatthestricterTier2standards(whicharehalfoftheTier -1standards,and willbeimplementedonlyiftheEPAdeemsthemnecessary)willcost$634pe rvehicle (sales -weightedaverageofestimatesforcarsandlighttrucks,relativeto1993Federal vehicle),buttheautomanufacturersthemselvesestimatethatTier2willcost $1,013/vehicle(sales -weightedaverageofestimatesforcarsandlighttrucks, relativeto 1993Federalvehicle)(SierraResearch,1994). TherealsohasbeensomeuncertaintyconcerningthecostofmeetingCalifornia’s “Low -EmissionVehicle”standards.Table2comparesestimatesbytheCaliforniaAir ResourcesBoard,SierraResearch,andautomobilemanufacturers,ofthecostofgoing beyondFederalTier -1standardsandmeetingCARB’sLEVstandards. CARB(1994)assumesthattomeetULEVstandards,gasolinevehicleswillhave tousedualoxygensensors,adaptivetransientcontrol,sequentialfuelinjection, improvedfuelpreparation,improvedwashcoatsoncatalyticconverters,morecatalyst material(mainlypalladium),double -wallexhaustpipes,airinjection,andelectrically heatedcatalysts.(SomeoftheseitemswillbeusedinvehiclesmeetingtheTier -I standards,andsomeofthemwillcostlittleornothingextra.)Generally,SierraResearch andtheautomanufacturersassumedthatvehicleswouldneedmoremodificationsand equipmentthanCARBassumed,andthatthesewouldbemo reexpensivethanCARB estimated.

24 Withtheseconsiderations,weassumethatourbaselineICEVTaurushasanextra $150(manufacturingcost,1997$;about$300retaillevelcost)and15lbsworthof improvedemissioncontrolequipment,comparedtothe1989Taurus. Ofcourse,theEVsdonothaveanemissioncontrolsystem. Tires .Weassumeimprovetires,comparedwiththe1989version.OTA(1991) andLedbetterandRoss(1990)estimatethatimprovedtireswouldadd$30to$40tothe retailprice.Lindgren's analysis(ACEEE,1990)indicatesthatadvancedtirescouldcost severalhundreddollarsmorethancurrenttires,butweassumethatatsuchhighprices thetireswouldnotimprovefueleconomycost -effectivelyandwouldnotbebought. LedbetterandRoss(1990)andOTA(1991)indicatethatimprovementsinthe efficiencyofaccessorieswouldaddabout$20tothepriceofthevehicle,butaccording toLindgren,someimprovementsactuallywouldsavemoney.Weignorethemhere. Structure(frameandsuspension) .Theframeandsuspensionofavehiclemust besizedtohandletheweightofthevehicleanditspayload.Weuseaweight compoundingfactortoadjusttheweightoftheframeandsuspensioninthe1989 baselinetoaccountfordifferencesinvehicleweigh tbetweenthe1989baselineandthe current/near-futurevehicles. Thecompoundingfactorisexpressedaslbsofextraframeorsuspensionweight (relativetotheweightinthe1989baseline[Table1])perlbofextravehiclecurbweight (relativetotheweightofthe1989baseline[Table1]).Withthiscompoundingfactor,we estimatetheweightoftheframeandsuspensioninthevehicleswemodel:

WMS,V = WMS,V * ⋅ (CWV − CWV* )⋅WCF

where:

WMS,V =theweightofstructuralsupportgroupS(frame,suspension)in modeledvehicleV WMS,V* =theweightofstructuralsupportgroupS(frame,suspension)in referencevehicleV(Table1) CW V=thecurbweightofmodeledvehicleV(calculatedbythemodel) CW V* =thecurbweightofreference vehicleV(Table1) WCF=theweightcompoundingfactor(lb -extrastructuralweight/lb -extra vehicleweight)(discussedbelow)

Estimatesofthecompoundingfactorhaverangedfrom0.07to0.11.Forexample, theETX -Ihad83lbsofextrabodystructurefor abatteryandtraythatweighed1237lbs (FordandGE,1987),or0.067-lbsextrastructure/extralb.EEA(1998)statesthat“agood ruleofthumbisthatthestructuralweightwillincreaseby10%forevery100kgof batteryweight”(p.5-1).UsingtheEE Aruleofthumb,ifthebaselinestructuralweight is250lbs,thenanextra100kg(221lbs)willresultinanadditional25lbsofstructure,or about0.11lbsextrastructure/extravehiclelb.

25 BerryandAceves(1998)assume0.30,andMacleanandLave(1998)assume0.50, butIbelievethatthesearetoohigh.Wesettleon0.10.Wealsoassumethatthelabor hoursrequiredareproportionaltotheweightofthematerial. Notethatourcompoundingfactordoes not reflectanincreaseinthetotalvolume ofthevehicleinordertoaccomodatethebattery.Weassumethatthetotalvolumeof theEVisthesameasthevolumeofthecomparableICEV,anddonotanalyzes differencesinusableinteriorvolume. Brakes. Weassumethatthematerialweightandlaborti meforbrakesare proportionaltotheweightofthevehicle,andadjustthebaseline1989values(Table1) accordingly.Weassumethatthetotalcost/lbofbrakesintheEVisslightlyhigherthan thecost/lbofbrakesintheEVonaccountoftheadditiona lcostofaregenerative brakingcontrolsystem. Fuel. Thetotalvehicleweightandmanufacturingcostincludestheweightand costofafulltankoffuel(Table1).Weestimatethisassuminga16.0galloncapacityfor theTaurus,anda12.7-galloncapacityfortheEscort(Edmund’s,1999),2790 grams/gallon,andthepriceofgasolineestimatedinthisanalysis(inthesection“Fuel andelectricity”).FortheAFICEVs,andFCEVs,fuelcostsareanalyzedseparately.For theBPEVs,thefuelcostiszero. Opt ionalorupgradedequipment. Weassumethatthe1989baselinevehicles havehydraulicpowersteering,whichisincludedinLindgren’s(ACEEE,1990)analysis, ratherthanthemoreexpensiveelectricpowersteering. Anti -lockbrakesarenotincludedinthe 1989vehicles,andremainoptionsinthe 1999modelyearvehicles(Edmund’s,1999).Weassumethattheyare not used. ThebaselinevehicleinLindgren’sanalysisapparentlydoesnothaveanstereo cassettesystem:thetotalmanufacturingcostunderthe“accessories”lineisontheorder ofonly$10.EEA(1998)estimatesthatanAM/FMcassettesystemandspeakersweighs 13lbsandcosts$104fromthesupplier($8/lbin1997$).Wehaveaddedtheseamounts. ItappearsthatthebaselinevehicleinLindgren’ sanalysisdoesnotincludeair bags.EEA(1998)estimatesthatairbagsandairbagcontrolsweigh33lbsandcost$348 fromthesupplier($10.54/lb).Wehaveincludedtheseamountsunderthe“safety equipment”line,alongwithanominallaborchargefor installation. Airconditioningandheating. ICEVs.Inourvehiclecostandweightaccounting system,wehavealinefortheairconditioningsystem,andalinefortheheatingsystem (Table1).FromLindgren’sestimatesweareabletoextractdataforth eICEVheating system(seenotestoTable1).However,the1989baselinevehiclesinouranalysisdonot includeairconditioning,soinTable1weenterzerosfortheweightparametersofthe airconditioningsystem.Then,weestimatethecostandweight oftheICEVair conditioningsysteminthissection,asanadjustmenttothe1989baseline 4. Accordingtothe 1991MarketDataBook (1991),airconditioningontheTaurus costs$800attheretaillevel.Thisimpliesabout$370(in1990$)atwhatwedefi netobe themanufacturingcostlevel,orprobably$400in1997$.(Thepriceofmotor -vehicle

4About95%ofcurrentmodel -yea rvehiclesareequippedwithairconditioning(Koupal,1998).

26 partsandequipmenthasnotchangedappreciablyinthe1990s[BLS,CPIdataextracted fromwebsite,1999].)WeassumethattheairconditioningsystemintheIC EVweighs 70lbs.WeassumethattheairconditioningsystemintheEscortweighsandcoststhe sameasthesystemintheTaurus.Thesecostandweightfiguresincludemanufacturer installation,coolant,andmiscellaneoushoses,wiring,andbrackets. EVs .BecausetheEVdrivetraindoesnotproduceenoughwasteheattowarmthe interiorcabin,weassumethatEVswill not haveaheatrecoveryanddeliverysystemof thesortinICEVs.Thus,inouraccountingmodel,wezeroouttheparametersinthe 80H,Jline fortheICEV -like -heatingsystem.Then,weestimateinthissectionaspecial EV -heatingsystem,alongwithanEVcoolingsystem,asanadjustmenttothebaseline forEVs. AcompanycalledGlacierBayprovidedcostandweightdataforaheatingand cool ingsystemdesignedspecificallyforEVs.Thesystemincludesthefollowingmajor components(GlacierBay,1998a):

•100%hermeticallysealedrolling -pistoncompressor; • 12-polebrushlessDCcompressormotor; • condenserandevaporatorheatexchangerandfans,poweredandcontrolledby variablefrequencyinverters; • heatingunit,incorporatingaheatexchangerandten -jetburner,andcapableof usingpropaneornaturalgas5; • systemcontroller.

Theheatpumpweighs60.8lbs,andtheheati ngunitweighs36lbs.(Dieckmann andMallory[1993]describeavariablespeed,non -ozone -depletingairconditioningfor theETX -IIthatweighs67lbs.)AccordingtoGlacierBay(1998b),theirsellingpricetoan automanufacturerwoulddependonthenumbe rofunitssold:

20,000units/yr. 100,000units/yr. costtoautomanufacturer($/unit) $1,100 $760

Thefigureof$760foracompletecoolingandheatingsystemseemsconsistent withourestimateof$400foranICEVairconditioning(cooling)system alone. AcompleteEVheatingandcoolingsystemwillhavefiveelementsnotincluded inthesystemdescribedandpricedbyGlacierBay.Weassumethecostandweightof thesetobeasfollows(at20,000units/yr.):

5Analternativetoafossil -fuelheaterisacombinationofreverseheat -pumpoperation,andelectric resistanceheatingfromthebattery(DieckmannandMallory,1991).However,electricresist anceheatingis inefficientandexpensive,andreducestherangeofthevehicleappreciably -- byatleast20%forshort -trip drivingincoldclimates(DieckmannandMallory,1991).Nevertheless,itispossibleinourmodelto specifyanelectricheating system:themodelincludesparametervaluesandcalculationsforelectricity consumptionforheating,aswellasforfossil -fuel -consumptionforheating.Ifonespecifiesanelectric system,onemustmodifythecapitalcostandweightestimateshereaccord ingly.

27 AdditionalitemsforEVheatingandcoolingsystem Cost($) Wt.(lbs) manufacturerinstallation 50 0 initialcoolantcharge 20 5 hoses,coolantlines,brackets,wiring,etc. 50 5 propanetank 50 20 addiionalthermalmanagementmeasuresinvehicle 0 0

Themanufacturerinstallationcost istheassemblycostonly;thatis,itdoesnot includemanufactureroverhead,whichwetreatseparatelyforboththeEVandthe ICEV.Regardingthelastiteminthetableabove,weassumethatbecauseitisso importanttominimizeenergyconsumptionin anEV(inordertominimizetheamount ofbatteryrequiredtoprovideadesiredrange),itwillbeworthwhiletoinvestabit moreinmeasuresthatreduceheatloss(orgain)inthevehicle,toreducetheamountof coolingorheatingenergyneededtomain tainacomfortabletemperature.However, theseextrameasuresalsowillallowalower -capacityheatingandcoolingsystem.We assumethatthecostandweightsavingsofhavingasystemoflowercapacitythanthat describedbyGlacierBaycancelthecostandweightofanyextraheat-management measures(suchasbettervehicleinsulation). Thus,ourfinalassumptionsregardingthefullcapitalandinstallationcostand weightofacompleteheatingandcoolingsystemforanEV:

2,000/year 20,000/year 100,000/year OEMmanufacturingcost($) $2,300 $1,270 $850 weight(lbs) 127 127 110

GlacierBay(1998b)toldusthatthesystemforamid -sizecarwouldbethesame asthesystemforasmallcar.Weassumesohere. Theenergyconsumptionoftheaircondi tioningandheatingsystemare discussedinthesections“Air -conditioningenergy”and“Fuelandelectricity”. PartgroupsnotincludedintheEV. WithrespecttoTable1,weassumethatthe followinggroupsarenotincludedintheEV:

36C Clutch&con trols(weestimatethecostofthesimpleEV transmissionseparately) 30C10 Engineemission&electricalcontrols 36E Exhaustsystem 360 Catalyticconverter 36F Fueltankandfuellines(forFCEVs,thefueltankcostisestimated separately) 37Bpart Fuel (forFCEVs,fuelcostisestimatedseparately)

28 37Bpart Oilandgrease -- weassumethatthe“oil”componentishalfofthe totalshowninTable1,andzeroitoutforEVs

Finally,recallthattheinthefollowingengineandrelatedpartsgroups,EV com ponentsaresubstitutedforICEVcomponents:

30A Baseengine:substituteelectricmotor 30B Otherenginecomponents:substituteEVcables,brackets,auxiliary motor 30C Engineelectrical:substituteEVmotorcontrollerandotherEV electrical 80A,B,H,J Heatingandcoolingsystems:substituteEVsystems

WEIGHTANDCOSTOFEVDRIVETRAINANDBAT TERY

WeightoftheEVdrivetrain Thelifecyclecostmodelhasfivedifferentmotorandcontrollersets:theETX -1 GEacinductionset;theETX -IIGEpermanent -magn etset;theTB -1Eatonacinduction set;theHughesG50acinductionset;andtheGEMEVacinductionset.Eachsethasa motorefficiencymapandacontrollerefficiencymap(seeAppendixA).However,with respecttotheestimationofweightandcost,we distinguishonlybetweenacinduction andpermanent -magnetsetsingeneral;wedonotdistinguishthedifferentkindsofac inductionsets. Motorandcontroller. Lipman(1999c)reviewsandanalyzesestimatesofthecost andweightofelectricmotors,cont rollers,andtransaxles.Heproposesthefollowing function,whichhecalls“conservative,”inthesensethatfurtheroptimizationislikely:

∞ ACinductionsystemweight(kg)=5+1 kW motor -peak

∞ BPMsystemweight(kg)=350/kW(peak)+1 kW motor -peak (note:notreliableforsystemswith>100kWpeakpower)

ThedatacitedbyLipman(1999c)indicatethatthereisnoconsistentdifference betweenanacinductionsystemandaBPMsystem(notethatat70kW-- atypical motorpeakoutput -- theBPMformulaisthesameastheacinductionformula). Therefore,westartwiththeformula:

∞ motor+controllerweight(kg)=5+1 kW motor -peak .

Weassumethatitappliesinour“low -volume”productionscenario,andthatat highervolumes(inthelongrun),systemweightswillbeslightlylower.(Lipman[1999c] citessomeveryrecentestimatesthatindicateslightlylightersys temweightsthan estimatedbytheformulaabove.)Wedistributethetotalsystemweightseparatelyto

29 themotorandcontroller,ontheassumptionthatmostofthefixedorpower - independentweightisinthecontroller. Transmission. Lipman(1999c)cites datathatindicateaweightofnearly1 kg/kW motor -peak DeLuchi(1992)citesestimatesthatimplylowervalues.Weassume0.8 kg/kW motor -peak inthe“low -volume”productionscenarios,decliningto0.4 kg/kW motor -peak athighvolumes. Integratedon -boardba tteryrechargingchargingsystem. Thecurrentneededto rechargeEVbatteriescanbetransferredfromtheelectricgridtothevehicle conductivelyorinductively.Inconductivecharging,theelectronsaretransferred directlythroughtheconductingmetalmediaofthecablesandplugs.Ininductive charging,thecurrentinathinpaddlethatisinsertedintothevehiclegeneratesa magneticfieldthatinturninducesacurrentinthepick -uponthevehicle.Theinductive systemrequiresachargerlocatedoff -boardthevehicle;theconductivesystemcanhave thechargeroff -board,orintegratedwiththevehiclepowertrain. Weassumeanintegrated,on -boardconductivechargingsystem,ratherthanan inductivesystem,oraconductivesystemwithanoff -board charger,becausethe integrationwiththeEVpowertrain -- whichcannotbeaccomplishedwithinductive systems -- reducescostandallowsforhighpowerlevels(NewFuelsandVehiclesReport, 1999;Oros,1999a,1999b;ACPropulsion,1999;Gage,2000a).Acc ordingtoAC Propulsion,amanufacturingofadvancedEVpowertrains,theextracomponents requiredforanintegratedon -boardchargingsystem -- achargeport,communication module,batterymonitorcomputer,andintegratedcharger(Gage,2000a) -- would we ighlessthan10lbs(ACPropulsion,1999). Otherdrivetraincomponents. Theelectricdrivealsocomprisesmiscellaneous cablingandbrackets,asmallauxiliarymotorusedtodrivecompressorsforthesteering andbrakesystems,andextracomponentsfor regenerativebraking.(TheICEVversions ofthesecomponentsareinpartsgroup30B.Thebrakecomponentgroup,35D,whichis thesamefortheEVandtheICEV,doesnotincludethepowersourceforpower -assist braking.) WeassumethatinanadvancedEV, thesemiscellaneouscablingandbrackets, andthesmallauxiliarymotor,wouldnotweighmorethan20lbs.Forthese,weassume 0.5(lowvolume),0.4(mediumvolume)and0.3(highvolume)lbs/kW motor -peak .As regardsthebrakes,weassumethattheweight ofthefrictionbrakesystemis proportionaltotheweightofthevehicle,andthenassumethattheextracomponents requiredforregenerativebrakingadd10%moreweight. NotethatthepartoftheelectricalsystemthatismoreorlessthesameinEVand anICEVisincludedforallvehiclesunderthe“chassiselectricalsystem”group(seethe discussionabove). Representationofdrivelineweight. Finally,notethatalldrivelineweightsare expressedwithrespecttothepeakpowerfromthemotor.Thepeakmotorpoweris estimatedonthebasisofthepeakpowerfromthebatteryorfuelcell,whichistheuser - inputvariable,andtheefficiencyofthemotorcontrollerandmotorundermaximum powerconditions: KW motor−peak = Mem ⋅ Cem

30 where:

MemandCemaretheefficiencyofthemotor,controller,andEVtransmission undermaximumpower.Thismaximum -powerefficiencyislookedup fromamapofefficiencyasafunctionoftorqueandrpm(seethe discussion,inAppendixA,ofefficiencymaps).

WeightoftheEVtractionbattery Asexplainedintheoverviewofthemodel,thebatteryisdesignedtoprovide exactlytheamountofenergyandpowertomeettherangeandperformance requirements -- andnomore.Thebatteryissizedon thebasisofadesigntrade -off relationshipbetweenspecificpowerandspecificweight. Themodelhasfourkindsofbatteries:advanced,sealedlead/acid(Pb/acid); nickel -metalhydride(NiMH;weconsideracurrent -technologycase,“Gen2,”anda speculativeadvanced -technologycase,“Gen4”);lithium -ion(Li -ion),andahigh temperaturelithium -aluminum/iron -sulfidebattery(Li -Al/Fe -S).(Weemphasizethat manyoftheparametersforNiMHGen4andLi -ionarespeculative.)Foreachbattery wedevelopweight, cost,andperformanceparameters. Tractionbattery. Theweightofthetractionbatterysystemisequaltotheweight ofthebatterymodulesplustheweightofthesystemauxiliaries(tray,harness,straps, andthermalmanagementsystem).Theweightofthemodulesiscalculatedonthebasis ofthenominaldiscargecapacityandthespecificenergyofanewbattery.Formally:

WTB = 2.205 ⋅ (WTBM ⋅ (1+ TRAY + TMS)+ BEL ⋅ Pmax*)

1000 WTBM = ESTBC/3 ⋅ EDTBC/3

ESTBC/3 = EI ⋅ BDCHC/3

where:

WTB=theweightofthetractionbatterysystem(modulesandtrayandall auxliaries)(lbs) WTBM=theweightofthetractionbatterymodulesonly(kg) 2.205=lbs/kg ESTB C/3 =thenominaltotalenergy dischargecapacityofthenewtractionbattery, measuredattheC/3dischargerate(kWh).Calculatedastheamountof energy(measuredoutgoingatthebatteryterminals)requiredtoprovide thedesireddrivingrangeoverthespecifieddrivingcycle,giventhe characteristicsofthevehicle. 1000=Wh/kWh

31 EDTB C/3 =thegravimetricenergydensityofthenewtractionbatterymodules (Wh/kg -battery -module[i.e.,notincludingbatterytrayandauxiliaries,in theweight),measuredattheC/3dischargerate;basedonabatterydesign function,discussedinthissection) TRAY=theweightofthebatterytrayandstraps(kg/kg -batte ry -module) (discussedbelow) TMS=theweightofthethermalmanagementsystem(kg/kg -battery -module) (discussedbelow) BEL=theweightofthebatterybusbars,harness,andtermainalinterconnects (kg/kW -battery)(discussedbelow) Pmax*=themaximumpow errequiredfromthebatteryterminals(kW;seethe sectiononperformance) EI=whatwewilldesignateasthe“interior”capacityofthebattery,orthe potentialattheelectrodes,requiredtoprovidethedesireddrivingrange overtheactualdrivecycle selected(kWh).Itisanarbitraryconstruct, equalinessencetothenetenergyoutgoingattheterminalsdividedbythe dischargeefficiency.Thisisdiscussedbelow. BDCH C/3 =theefficiencyofaC/3dischargeofthenewbattery(asopposedto theeff iciencyoftheactualdischargeofthebatteryovertheselected drivecycle).Weusethistoexpresstheenergystoragecapacityofthe batteryonaC/3dischargebasis,whichisthebasisofthegravimetric energydensity(wh/kg)andcostdata($/kWh)fig uresweuse.TheC/3 dischargerateisdiscussedinAppendixA.

Thegravimetricenergydensityiscalculatedfromabattery -designfunctionin whichenergydensityisrelatedtopowerdensity(Burke,1995,1999;Lipman,1999b). Weemphasizethatthesefunctionsexpressesthepower/energytradeoffinbattery design;theyarenotRagonefunctions,whichexpresstherelationshipbetweenpower andenergyduringthe dischargeofanyparticularbattery.Abatterycanbedesignedto havearelativelyhighpower density(oversomedischargepattern),andarelativelylow energydensity,orviceversa;oncedesignedandbuilt,anybatterywhenitisdischarged willexhibittheRagonerelationship,inwhichahigh -powerdischargereducesthe availableenergy. The purposeofthisistodesignthebatterytobeaslightaspossiblefortherange andperformancemissionspecified.First,thebatteryisrequiredtohavetheamountof powernecessarytoexactlymeettheperformancerequirement -- andnomore.Given the requiredpower,thepowerdensityiscalculated.Withthecalculatedpowerdensity, thecorrespondingenergydensityiscalculated,fromthefunctionsthatcharacterizethe tradeoffbetweenpowerdensityandenergydensityindesign.Thelowertherequired powerdensity,thehighertheenergydensity;hence,byhavingonlyasmuchpoweras isrequiredbytheperformancestandard,theenergydensityofthebatteryandhence theefficiencyofthevehicleismaximized. Thefunctionalformofthedesigntradeo ffbetweenenergyandpowerdensityis:

32 EDTBC/3 * EDTBC/3 =    PDTB  1+ b ⋅ − 1  PDTBC/3 * 

P max* ⋅1000 PDTB = WTBM

check:

PDTB ≤ PDTB#

where:

EDTB C/3 =thegravimetricenergydensityofthenewtractionbatterymodules (Wh/kg -battery -module;notincludingbatterytrayandauxiliaries) 6. PDTB=thegravimetricpowerdensityofthenewtractionbatterymodules (W/kg -battery -module,attheC/3dishcargerate;notincludngbattery trayandauxiliaries) EDTB C/3 *=thegravimetricenergydensityofanewreferencetractionbattery module(Wh/k g;seediscussionbelow) PDTB*=thegravimetricpowerdensityofanewreferencetractionbattery module(W/kg;seediscussionbelow). b=relationalparameter(seediscussionbelow). Pmax*=themaximumpowerrequiredfromthebatteryterminals(kW;se ethe sectiononperformance) WTBM=thecalculatedweightofthetractionbatterymodules(kg;seeabove) 2.205=lbs/kg 1000=W/kW PDTB #=themaximumallowablepowerdensityofanydesign(W/kg -battery - module)

Again,notethecircularity:energydens ityisafunctionofpowerdensity,power densityisafunctionofweight,andweightisafunctionofenergydensity. Weestimatethevolumetricenergydensity,inWh/l,analogously:

6DeLuchi(1992)fitsthedataofNelsonandKaun(1991)toadifferentfunctionalform: 1 F2 F1 EDTBC/3 = ()A2+ B2 ⋅ PDTB where:

A2=1426.96,B2= -947.4,F1=1.02,F2=0.05

33 VDTBC/3 * VDTBC/3 =    PDTB  1+ b ⋅ − 1  PDTBC/3 * 

where:

VD TB C/3 =thevolumetricenergydensityofthenewtractionbatterymodules (Wh/l -battery -module). VDTB C/3 *=thevolumetricenergydensityofanewreferencetractionbattery module(Wh/l -battery -module;seediscussionbelow)

Theparametervaluesare:

Pb/acid NiMHGen2 Li -ion Li -Al/Fe -S NiMHGen4

EDTB C/3 *(Wh/kg) 42 80 150 180 120

VDTB C/3 *(Wh/L) 90 200 250 300 300

PDTB C/3 *(W/kg) 130 250 300 400 300 bvalue 0.20 0.20 0.30 0.30 0.20 PDTB #(W/kgmax.) 450 500 600 600 600

34 Thesewereestimatedas follows.

Pb/acid 7 NiMHGen2 Li -ion 8 Li -Al/Fe -S NiMHGen4

EDTB C/3 * Burke(1999, Burke(1999, Kalhammeret Nelsonand Lipman (Wh/kg) 1998),forthis 1998),forthis al.(1995); Kaun(1991) (1999b); project,but project Rivers(1999); Kalhammeret increasedby Kalhammer al.(1995) 10%toaccount (1999);U.S. for Advanced improvements Battery sincethebase Consortium yearofBurke’s goal modeling Wh/l Kalhammeret Kalhammeret Kalham meret Nelsonand Kalhammeret reference al.(1995); al.(1995); al.(1995); Kaun(1991) al.(1995) Electrosource Kalhammer Rivers(1999); (2000) (1999) Kalhammer (1999)

PDTB C/3 * Burke(1999, Burke(1999, Kalhammeret Nelsonand Burke(1999, (W/kg) 1998),forthis 1998),forthis al.(1995); Kaun(1991) 1998) ;Vyaset project,but project,but Kalhammer al.(1999b) increasedby decreased (1999) Kalhammeret 50%tobemore somewhattobe al.(1995) inlinewith consistentwith Kalhammeret actualdata, al.(1995),Vyas Kalhammeret etal.(1997), al(1995), and Kalhammer Electroso urce (1999),and (2000) Vyasetal. (1997) bvalue ourjudgment; ourjudgment; ourjudgment ourjudgment; ourjudgment withref.to withref.to Nelsonand Burke(1999) Burke(1999) Kaun(1991) PDTB # ourjudgement ourjudgment ourjudgment ourjud gment ourjudgment

Thebvalueswerepickedtoproducewhatappearedtousbereasonable relationshipsbetweenspecificpowerandspecificenergy.Ahighervalueproducesa greaterawiderrangeofWh/kgvaluesforagivenrangeofW/kgvalues.TableA-1in AppendixAshowsWh/kgasafunctionofW/kgforthefivebatteries,giventhevalues of“b”assumedabove.

7TheHorizonpb/acidbatteryavailabletod ayfromElectrosource(2000)has39Wh/kg,about300W/kg, 85Wh/L,andacyclelifeof700.

8Bycomparison,theLi -ionbatteriesin1998MYEVsprovide300 -350W/kgbutonly90Wh/kg (Miyamoto,1999).

35 Degradationofbatteryperformancewithage. Notethatwedesignthebatteryto meetthedesiredrangeandperformancetargetsonthebasisof theperformanceofa newbattery.Asthebatteryiscycledandages,changesinitsinternalchemistrychange itsenergyandpowercapacity.Thecapacityactuallymayincreaseslightlyatfirst,then decreaseveryslowlyonaccountofirreversiblelosseswithageandcycling,then decreaserapidlyasthebatterybreaksdown(Burke,2000).Asaresult,asystem designedtomeetrangeandperformancetargetswhenthebatteryisnewwillfallshort ofthosetargetswhenthebatteryisneartheendofitslife. Wedonotaccountforthishere . Batteryauxiliaries. Acompletebattery“system”includesbatterymodules (analyzedabove),asupporttray,terminalinterconnects,abatteryelectricalharness,a busbar,variousstrapsortiedowns,andthermalmanage mentsystems.Weassume thatforallbatteries,thetrayandstrapsweigh0.04kg/kg battery(modules) ,andthatthe 9 terminalinterconnects,busbars,andelectricalharnessweigh0.14kg/kW battery .The thermalmanagementsystemwilldependonthetypeofbattery. Pb/acidbatterieslosecapacityincoldweather.Ellis(1994)reportsthatthe capacityofthePb/acidbatteryintheGMImpactEVisabout15%lowerat30oFthanat 70oF.Burke(1994)usestheSIMPLEVmodeltosimulatetheeffectsofbattery tem peratureontherangeofaFordEcostarwithpb -acidbatteries,andfindsthatthe rangeis6%lowerat41oF,19%lowerat14oF,and34-42%lessat -4oF,thanat77oF.He alsofindsasignificantincreaseinaccelerationtimewithdecreasingtemperature. Garabedian(1999),Jelinski(1996),andBurke(1993)showthatonecanavoid theselossesbyinsulatingthebatteryandifnecessaryheatingitwitharesistanceheater thatdrawspowerfromthegrid.Burke(1993)concludesthatinsulationcanmaintain acceptablebatterytemperatureevenatambienttemperaturesof15oF.However,inthe summerthebatterywouldhavetobecooled,sothatitdoesnotoverheat. WithNi -MHbatteries,themainconcernistopreventoverheating.This apparentlycanbeaccomplis hedwithafanandventilationsystem.However, Garabedian(1998)notesthatincoldweather,thevoltageinNi -MHbatteriescandrop, andvarysubstantiallyfromcelltocell.Garabedianreportsthatthiscanbemitigatedby managingtheventilationsyste msoastoretaininsteadofdissipateheat. Weassumethatallbatterieshavesomesortofcoolingandventilationsystem, whichismorecomplexforNiMHbatteries..Inourbasecase,weassumethatEVsare operatedinarelativelywarmclimate,andso donotneedinsulationandaresistance heater(exceptinthecaseoftheLi -Al/Fe -Sbattery).However,weconsiderascenarioin whichEVsareoperatedincoldweather,andhaveinsulationandasimpleresistance heatingsystem. Ofcourse,high -temperatu rebatteries,suchasNa -SandLi -Al/Fe -S,mustbe heatedtoandmaintainedattheirproperoperatingtemperature.Intheanalysisof NelsonandKaun(1991),theinsulationandthermalmanagementsystemforthehigh - temperatureLi -Al/Fe -Sbatteryare23%oftheweightofthemodules.

9ThebusbarfortheLi -Al/Fe -Sbattery describedinNelsonandKaun(1991)weighs0.12kg/kW.

36 Withtheseconsiderations,ourweightassumptionsareasfollows(kg -system/kg - battery -module,exceptasnoted):

Pb/acid NiMH2 Li -ion Li -Al/Fe - NiMH4 S traysandstraps 0.04 0.04 0.04 0.04 0.04 harness,busbar...(kg/kW) 0.14 0.14 0.14 0.14 0.14 heatingsystem 0.040 w/cooling w/cooling 0.230 w/cooling cooling/ventilationsystem 0.010 0.020 0.020 w/heatin 0.020 g

Chassisbatteryforelectricalsystem. TheEVisassumedtohavea12-voltbattery torunthechassiselectr icalsystemandtheaccessories,whicharedesignedfor12volts. Theweightandcostofthischassisbatteryisincludedinthe“battery”partsgroupline, forboththeEVandtheICEV.

Costoftheelectricdrivetrain Thelifecyclecostmodelhasfive differentmotorandcontrollersets:theETX -1 GEacinductionset;theETX -IIGEpermanent -magnetset;theTB -1Eatonacinduction set;theHughesG50acinductionset;andtheGEMEVacinductionset.Eachsethasa motorefficiencymapandacontroller efficiencymap(seeAppendixA).However,with respecttotheestimationofweightandcost,wedistinguishonlybetweenacinduction andpermanent -magnetsetsingeneral;wedonotdistinguishthedifferentkindsofac inductionsets. Electricmotor. Li pman(1999c)providesacomprehensivereviewandanalysisof thecostofEVdrivetrains.Hederivesthefollowingcostfunctionsforelectricmotorsfor EVs:

brushlesspermanentmagnet(BPM)motors: OEMprice=1.18∞ ((10.16 ∞ kW motor -peak )+(660+(15 ∞ kW motor -peak ))) 2,000/year OEMprice=1.18 ∞ ((10.16 ∞ kW motor -peak )+(75+(1.8 ∞ kW motor -peak ))) 20,000/year OEMprice=1.18 ∞ ((9.4 ∞ kW motor -peak )+(1.2 ∞ kW motor -peak )) 200,000/year

where:

OEMpr ice=thesellingpricetotheautomanufacturer($) kW motor -peak =peakpowerfromthemotor(kW) 1.18=manufacturingcost+18%supplierprofit 10.16(or9.4) ∞ kW motor -peak =materialscost($) Additionalterm=costofaddingvaluetomaterials($)

37 ACinductionmotors: OEMprice=(kW motor -peak /50) ∞ (470+(1.4 ∞ 50)) allvolumes

where:

OEMprice=thesellingpricetotheautomanufacturer kW motor -peak /50=peakpowerscalingfactor 470=sellingpriceof50kWcoremotor 1.4 ∞ 50=extra partsplus40%overheadonparts,forthecoremotor

Thesefunctionssimplifyto:

BPMmotors: OEMprice=778.80+29.69 ∞ kW motor -peak 2,000/year OEMprice=88.50+14.11 ∞ kW motor -peak 20,000/year OEMprice=12.51 ∞ kW pk 200,000/year

ACinduc tionmotors: OEMprice=10.80 ∞ kW motor -peak allvolumes

Weassumethatthefiguresare1997$. Inthemanufacturingcostandlifecyclecostmodel,theuserspecifiesthetypeof drivetrain,includingwhetheritisacinductionorBPM,andtheproducti onvolume scenario,andthemodelreadsintheappropriatecostcoefficients. Motorcontroller. Lipman(1999c)alsoreviewsandanalyzesestimatesofthecost ofEVmotorcontroller/inverters.Heestimatesthefollowingnear-termcostfunctions forBPMandacinductionmotorcontrollers:

OEMprice=1.18∞ (1400+1.8 ∞ (775+CE1 ∞ kW motor -peak )) 2,000/year OEMprice=1.18 ∞ (70+1.4∞ (775+CE2 ∞ kW motor -peak )) 20,000/year OEMprice=1.18 ∞ (25+1.2 ∞ (620+CE3 ∞ kW motor -peak )) 200,000/year whereCE1,CE2,andCE3are4.3,4.3,and3.4foracmotors,and2.9,2.9,and2.3for BPMinductionmotors.Thesefunctionssimplifyto:

OEMprice=3298+2.12 ∞ CE1 ∞ kW motor -peak 2,000/year OEMprice=1363+1.65 ∞ CE2 ∞ kW motor -peak 20,000/year OEMprice=907+1.42 ∞ CE3 ∞ kW motor -peak 200,000/year

Lipman(1999c)alsoestimates“long -term”costfunctions,onthebasisofcost targetsfromSatConTechnologyCorporation’sAutomotiveIntegratedPowerModule program.Thesefunctionshavemuchlowerfixedcosts:

38 accontrollers: OEMprice= 418+10.76 ∞ kW motor -peak 20,000/year OEMprice=312+7.60∞ kW motor -peak 200,000/year

BPMcontrollers: OEMprice=392+9.44 ∞ kW motor -peak 20,000/year OEMprice=262+6.94 ∞ kW motor -peak 200,000/year

Consideringtheseestimates,ourassumptions areas follows:

accontrollers: OEMprice=3200+9.1 ∞ kW motor -peak 2,000/year OEMprice=1000+7.1 ∞ kW motor -peak 20,000/year OEMprice=312+7.6∞ kW motor -peak 200,000/year

BPMcontrollers: OEMprice=3000+6.1 ∞ kW motor -peak 2,000/year OEMprice =800+4.8 ∞ kW motor -peak 20,000/year OEMprice=262+6.9 ∞ kW motor -peak 200,000/year

Wetreatthemotorandcontrollerasmaterialscosttotheautomaker,andhence enterthecalculatedcostasamaterialcostperlb,onthe“baseengineormoto r”and “engineelectrical”lines.Thecostperlb.isjustthetotalcosttothecarmanufacturer dividedbythetotalweight.Thecarmanufacturer’sassociatedlabortime,apartfrom assemblyintothevehicle,isassumedtobezero. Transmission. Lipman(1999c)reportsthefollowingforthesingle -speed transaxleofUniqueMobility,whichcanbeusedwitha50-kW motor -peak motor:

2,000 20,000 200,000 $1,800 $36/kW $806 16/kW $469 $9.4/kW

Weusethecostperpeak-kWfromthemotor,butreducethemby 30%,in expectationoflong -runimprovements,andinconsiderationofdatareportedin DeLuchi(1992). Integratedon -boardbatteryrechargingchargingsystem. ACpropulsionhas provideduswithanestimateoftheOEMcost(totheautomanufacturer)ofthe additionalon -boardcomponentsofanintegratedconductiverechargingsystem,at 5,000-10,000unitsperyear(Gage,2000a):

chargeport $200 communicationmodule $100

39 batterymonitorcomputer $200 integratedcharger $300 Total 800

The NewFuelsandVehiclesReport (1999)citesanestimate,probablybased ultimatelyonthatofACPropulsion,ofa“fewhundreddollars”fortheextra componentsofanon -boardintegratedchargingsystem.WeusetheACPropulsion estimatesasourbasis,andassumethatcostsareindependentothemaximumpowerof thedrivetrain.Ourassumptions:

low -volumeproduction(2,000vehicles/year) $1200 medium -volumeproduction(20,000vehicles/year) $600 high -volumeproduction(200,000vehicles/year) $400

Otherdrivetrain components. Asindicatedabove,thesecomprise:miscellaneous cablingandbrackets,asmallauxiliarymotorusedtodrivecompressorsforthesteering andbrakesystems;andextracomponentsrequiredforregenerativebraking. Lipman(1999c)estimatesthatasmallauxiliarymotorusedtodrivecompressors forsteeringandbrakesystemswillcost$45(200,000/yr),$50(20,000/yr),or$100 (2,000/yr),orroughly$0.5-2/kW motor -peak .Miscellaneouscabling,brackets,andsoon alsoshouldbeadded.Thetotalmightbeontheorderof$150to$250fora“typical” vehicle.Weestimatethesecostsrelativetothepeakpowerofthemotor,andassume $2/kW motor -peak (200,000/yr),$3/kW motor -peak (20,000/yr),and$5/kW motor -peak (2,000/yr). Weassumethatthecompon entsrequiredforregenerativebrakingcostmoreper lbthandotherestofthebrake -systemcomponents,andthatasaresultthe$/lbcostof theentireEVbrakesystemis5%higherthanthe$/lbcostoftheentireICEVbrake system. Motorandtransmissi onassemblyattheautomanufacturingplant. In Lindgren’saccountingsystem,therearethreelaboror“assembly”stepsasregardsthe ICEVdrivetrain:laborassociatedwithmakingthecomponentsoftheengineor transmission(“laborhours”inTable1),laborassociatedwithassemblingthe componentsintoacompleteengineortransmission(“engineassembly”or “transmissionassembly”inTable1),andlaborassociatedwithputtingtheengineor transmissionintothevehicle(“vehicleassembly”inTable1).Now,ourestimates, presentedabove,ofthemanufacturingcostoftheEVmotor,controller,andtransaxle, include all ofthelaborcostofmakingthecomponentsofthemotor,controller,and transaxle(Lindgren’s“laborhours”category,Table1),and none ofthevehicleassembly cost.Itisnotclear,though,howmuchadditionalmotor,controller,ortransaxle “assembly”willberequiredattheauto- manufacturingplant,apart fromtheactual assemblyintothevehicle(whichweaccountforseparately).WeassumethattheEV drivetrainsystemsarriveattheautomanufacturingplantalmostcompletelyassembled, sothatthesubsystemassemblytime(“engineassembly”or“transmission”assembly)is only33%ofthatfortheICEVengineandtransmission.

40 Costofthetractionbattery,auxiliaries,andelectricity Themodelhasfourkindsofbatteries:advanced,sealedlead/acid(Pb/acid); nickel -metalhydride(NiMH;weconsideracurrent -technologycase,“Gen2,”andan advanced -technologycase,“Gen4”);lithium -ion (Li -ion),andahightemperature lithium -aluminum/iron -sulfidebattery(Li -Al/Fe -S).Foreachbatterywedevelop weight,cost,andperformanceparameters. Inmostifnotvirtuallyallothercostanalyses,thebatterycostisestimatedasthe productofthecostperkWhandthetotalnumberofkWh.Thismethodassumesthat thecostperkWhdoesnotvarywiththedesignofthebattery.However,becausethe costdoesvarywithdesign,itisbetteristoestimatecostasafunctionofbattery -design parameter s.Inthisanalysis,weestimatethecostperkg(ratherthanthecostperkWh) asafunctionofthebatteryspecificenergy(Wh/kg),whichinturnisafunctionofthe batteryspecificpower,akeybattery -designparameterinourmodel.Thus,wehavean internallyconsistentandvalidmodelofbatteryperformanceandcost.Weaddthecost ofbattery -relatedauxiliariestogetthetotalbatterycost.Formally:

WTBM MCTB = max{} MCC, MCC ⋅ + BAUX MIN 2.205

EDTBC/3 − EDTBC/3 * MCC = MCC * − ⋅ ln[ ESTBC/3] KBM

where:

MCTB=themanufacturingcostof thebattery($;sellingpricefromthebattery OEMtotheautomaker,includingdistributioncharges) MCC=theestimatedOEMmanufacturingcost(sellingprice)perkg($/kg) MCC MIN =theminimumallowablemanufacturingcost,asaboundontheMCC function ($/kg;seeAppendixA) WTMB=theweightofthetractionbatterymodules(lb;discussedinthesection “WeightoftheEVtractionbattery”) 2.205=lbs/kg BAUX=thecostofthebatteryauxiliaries:tray,straps,busbar,electricalharness, andthermalmanagementsystem(discussedbelow) MCC*=thereferenceOEMmanufacturingcost(sellingprice)perkg,for batteriesofthereferencespecificenergy($/kg;discussedbelow) EDTB C/3 =thespecificenergyofthenewbattery(Wh/kg;discussedinthe section “WeightoftheEVtractionbattery”) EDTB C/3 *=thereferencespecificenergyofthenewbattery(Wh/kg;discussed inthesection“WeightoftheEVtractionbattery”) KBM =coefficient(discussedbelow)

41 Withthisformulation,ourmaintaskistoestimate thereferenceunitcostatthe referencespecificenergy,foreachbatterytype. Batterycostperkg. Weassumethefollowingvaluesforthebatterycost parameters,atlow,medium,andhighvolumesofproduction:

Pb/acid NiMHGen2 Li -ion Li -Al/Fe -S NiMHGen4 MCC*($/kg) -- low 5.50 35.00 71.70 90.00 35.00 MCC*($/kg) -- med. 4.30 21.64 40.00 50.00 21.23 MCC*($/kg) -- high 3.90 18.76 22.90 30.40 17.69

KBM -- allvolumes 30 15 20 35 15

Theseestimatesarederivedasfollows: Pb/acid: Lipman(1999b)haspublishedthemostdetailedandcompleteanalysis oftheOEMcostofmanufacturingpb -acidbatteries.Heestimatesacostof$4.12/kg ($108/kWh)at120,000modulesperyear,and$3.91/kg($102/kWh)at480,000modules peryear,excludingthecostofrecycling.Thesecostsareconsiderablylowerthanthose projectedinVyasetal.(1997)andKalhammeretal.(1995)(seebelow).Ourestimates herearebasedonLipman’s(1999b). NiMHGen2andGen4 :Lipman’s(1999b)reportalsoincludesthemostdetail ed andcompletepublishedanalysisoftheOEMcostofmanufacturingNiMHbatteries.He estimateslowandhighOEMsellingpricesforfourgenerationsofbatterytechnology producedindifferentcellsizesat350packs/year,7700packs/year,20000packs/yea r, and100000packs/year.Weusetheaverageofhislowandhighestimatesfor100-Ah cellsin20,000packs/yearasour“medium -volume”case,andtheaverageofhislow andhighestimatesfor100-Ahcellsin100,000packs/yearasour“high -volume”case. Fo rourlowvolumecase,weassumevaluesslightlyhigherthantheaverageof Lipman’slowandhighestimatesfor7,700packs/year. Li -ion: GainesandCuenca(1999)performadetailedanalysisofthecostof materialsinLi -ionbatteries,andestimatethefollowingtotalcostofmaterialspercell ($/kg):

currentcosts optimisticcosts high -energycells $46.40 $17.60 high -powercells $42.50 $15.60

GainesandCuenca(1999)estimatethattheinthecurrent -costcase,thetotal manufacturingcost(materi als+capital+labor)is1.04times(high -energycells)to1.20 times(high -powercells)thematerialscost,andthatthetotalmanufacturingselling price(manufacturingcost+corporateoverhead+marketing+transportation+[etc.])is1.35 timesthemanufacturing cost.Theysuggestthatthesellingpricecoulddeclineto1.25 timesthemanufacturingcost.Apparently,noneoftheseestimatesincludethecostsof

42 packagingcellsintomodules.Withtheseconsiderations,weassumetheparameter valuesindicatedabove 10 . Li -Al/Fe -S:InsupportoftheJetPropulsionLaboratory'sAdvancedVehicle Assessment(AVA),abatteryreviewboardprojectedthatlithium/iron -sulfidebatteries wouldcost$70/kWh,$10/kW,and$750fixedcostperbattery(1982$)tomanufacture intheearly1990s(HardyandKirk,1985)11 .However,expertssurveyedbyArgonne NationalLaboratory(ANL)predictedmuch,muchhighercosts -- over$600/kWh.If oneinflatestheAVA’s1982-$estimatesby60%to1997$(basedonGNPprice deflators),assumes45kW h,85kW,and180Wh/kg -module,thentheunitcostis $30.40/kg,whichdoesnotseemunreasonableforlong -term,high -volumeproduction. (Weassumethatthiscostdoesnotincludebatteryauxiliariesandthermalmanagement systems.)Therefore,weusethis forourhigh -volumecase,andworkfromthereto estimatesforourmedium -volumeandlow -volumecases. Notethatnoneoftheseestimatesincludecostsrelatedtorecycling,whichwe analyzeseparately. Foroverallcomparison,theANLDelphistudypredict edthefollowingmean batterycharacteristicsin2020(Vyasetal.,1997):

Wh/kg W/kg Lifecycles $/kWh $/kg Pb/acid 48 214 872 184 8.83 NiMH 89 203 1312 180 16.02 Li -polymer 172 193 1185 296 50.91

Theso -called“BatteryPanel”sponsoredbytheCali forniaAirResourcesBoard estimatedthefollowingbatterycharacteristicsforthe1998-2005timeframe (Kalhammeretal.,1995):

10 Ourassumptionsarebasedonthe“high -energy”cellsinGainesandCuenca(1999).Assumptionsbased onthe“high -power”cellswouldbe:$75.70/kgatlowvolume,$42.00/kgatmediumvolume,and $23.40 /kgathighvolume.

11 DeLuchi(1992)usestheseestimatesinadifferentcostfunction:

MCTB = MCK + MCBE⋅ ESTBC/3 + MCBP ⋅ PPTB where:

MCTB=themanufacturingcostofthetractionbatteryandtray($) MCK=amanufacturingcostconstant MCBE=themanufacturingcostperunitofenergy($/kWh) ESTB =thenominaltotalenergy discharge capacityofthetractionbattery(kWh) MCBP=themanufacturingcostperunitofpowerofthebattery($/kW) PPTB=thepeakpowerofthetractionbattery (kW).

43 Wh/kg W/kg Lifecycles $/kWh $/kg Pb/acid 50 400-500 1000 120-150 6.00-7.50 NiMH 90-120 300 2000 150-250 13.50-30.00 Li -ion 120-140 200-300 1200 150-200 18.00-28.00

Kalhammer(1999)updatedtheBatteryPanelestimateswiththefollowing apparentlynear-termprojections:

Wh/kg W/kg Wh/l Lifecycles $/kWh NiMH(Ovonic) 60-80 230 200 800-1000 200 Li -ion(Saft) 150 300 n.r. >1000 150(goal)

The“K”coefficient. The“K”coefficientinthebattery -costequationdetermines the“spread”ofthe$/kgvaluesforagivenrangeofWh/kgbatterydesigns.The smallerthecoefficient,thewiderthespreadof$/kgvaluesforagivenrangeofWh/kg batterydesigns.Theequationresultsin$/kgdecreasingwithincreasingWh/kg;the rationaleforthisisthatasthespecificenergyincreases,thespecificpowerdecreases, andhigh -powercellsaremorecostly,perunitofweight,thanarelow -powercells,over therelevantrangeofspecificenergyandspecifcpower(Lipman,1999b). Lipman(1999b)providesdatawhichwecanusetocalculate$/kgandWh/kg forNiMH“Gen4”technology,at20,000and100,000packsperyear:

Wh/kg $/kg (20k/yr) $/kg(100k/yr) 100 26.99 22.58 104 26.49 22.17 107 21.23 17.69 113 19.66 16.28

WeusetheserelationshipsasabasisforestimatingtheKparameter.(Wearenot actuallytoreproducethisdegreeofvariationin$/kgoversuchasmallrangeof Wh/kg.)TableA-2inAppendixAshows$/kgestimatedasafunctionofWh/kgfor thebase -caseparametervalues. Costoftray,harness,straps,andthermalmanagementsystems. Seethe dicsussioninregardstoestimatingweight.Forcosts,wemakethefol lowing assumptions($/lb)

44 Pb/acid NiMH2 Li -ion Li -Al/Fe - NiMH4 S traysandstraps 1.10 1.10 1.10 1.10 1.10 harness,busbar,terminal 1.10 1.10 1.10 1.10 1.10 heatingsystem 1.50 1.50 1.50 2.50 1.50 cooling/ventilationsystem 1.50 1.50 1.50 2.50 1.50

End -of -lifedisposal:recyclingcost,ormarketvalue. Batteriesgraduallylose capacity,asindividualcellsfailorlosecapacityduetoirreversiblereactions.Inlife - cycletestingofbatteries,thebatteryisdeemedtohavereachedtheendofit slifewhen itloses20%ofitsinitialcapacity.This,however,isjustaconvention;intherealworld, someconsumersmightchoosetogetridofabatterythathaslostonly15%ofitsinitial capacity,andothersmightchoosetokeepabatterythathaslost50%ormoreofits initialcapacity.Asexplainedinthesection“Batterylifecyclemodel”,weassumethat thebatteryisdiscardedwhenithaslost40%ofitsoriginalcapacity. AnoldEVbatteryeithercanberecycled,andsomeofitsoriginalmaterials salvaged,orelsere -usedinotherlessdemandingapplications,suchasload-levelingor back -upforelectricutilities.Ifthebatteryisrecycled,thereisacostforthecollection andactualrecycling,butavalueforthesalvagedcomponents;andifthesalvagevalue exceedstherecyclingcost,thebatterywillhaveapositivemarketvalueattheendofits life.Ifthebatteryisre -used,itdefinitelywillhaveapositivemarketvalue 12 .Thus,we estimatethecostofrecyclingnetofanymarket value.Ifthemarketvalueexceedsthe recyclingcost,thenetcostisnegative -- apaymenttotheconsumer.Thepresentvalue oftherecyclingcostorpayment(i.e.,thecostdiscountedattherelevantinterestrate overthelifeofthebatteryinyears) isaddedtotheinitialcostofthebattery. AlthoughithasbeensuggeestedthatelectricutilitieswillwantotuseoldEV batteries 13 ,wedoubtthattherewillbemuchofamarketforvehiclebatteriesthathave lost40%oftheircapacity,especially giventhattheremaining60%willbelostvery quickly.Therefore,inourbasecase,weassumethatdiscardedEVbatteriesmustbe recycled.However,inascenarioanalysis,weexaminetheimpactofassumingamarket fordiscardedEVbatteries. Estimates ofthecost.Patiletal.(1991)believethatinitially,batteryrecyclingwill cost$30to$50perkWh,butthatthecosteventuallywilldeclineto$10to$20perkWh,

12 Ifthevehicledieslongbeforethelastbatterydoes,thenpresumablythelastbatterywillbesalvaged andre -usedasamotor -vehicletractionbattery.Wediscussourestimationofthisinaseparatesectionon salvagevalueofvehiclesandve hiclesubsystems .

13 AccordingtoTaylor(1999),batteryexpertsatSouthernCaliforniaEdisonbelievethatNiMHbatteries retiredfromvehicleusewouldbeatleastasgoodforload -leveling,back -up,andotherutilityapplications aswouldnewpb/acidpac ks.Ifthiswastrue,thenNiMHbatteriesretiredfromvehicleswouldhavea marketvalueapproximatelyequaltothecostofnewpb/acidbatteries,atleastuntilthesupplyofretired batteriessaturatedthe“secondaryuse’marketanddrovedownprices.

45 andperhapslower.Weassumethatthiscostincludesanycreditforsalvagevalue.For Pb/acid,Lipman(1999b)assumesacost$5/kWh,onthebasisofconversationswith batterymanufacturers.Weassume$15,$10,and$5/kWhforthelow,medium,and high -volumescenarios. Lipman(1999b)estimatesthatNiMHbatterieswillhaveanetrecycling costof about -$20/kWh,onaccountofthehighvalueofthenickel.This,though,seemslikely tooccurathighvolumesofproduction.Weassumethatatlowvolumes,thereisasmall positiverecyclingcost,andatmediumvolumes,thereisasmallnetsalv agevalue. ForLi -ionandLi -Al/Fe -S,weassumenonetrecyclingcostathighvolumes. GainesandCuenca(1999)remarkthata“high”recyclingcostforLi -ionbatterieswould beabout$0.50/kg,butnotethatSonyexpectstoitsLi -ionrecyclingoperation tobe profitablewithnowithnochargetothedisposer,andthateventually,somerecyclers mightpaytotaketobatteries.

Finalassembly,intothevehicle,ofthebattery,fuelcell,andhydrogenor methanolfuel -storagetankintovehicle. Becauseth ebattery,fuel -cellsystem,andfuel - storagesystemaremajor,uniquecomponentsinanEV,weaccountseparatelyfortheir assemblyintothevehicle.Thecostofassemblingthebattery,fuelcell,andhydrogenor methanolfuel -storagetankintothevehicl eiscalculatedas:

 OH  CAE = ()LT + LT + LT + LT + LT ⋅LW ⋅  1 + A  TB FC R M H A  100 

where:

CAE=thecostoffinalassembly,intothevehicle,ofthebattery,fuelcell,and hydrogenormethanolfueltank($) LT TB=timerequiredtoassemblethetractionbatter yandtrayintothevehicle (hours).Weassumethatittakes1.5hours.Asapointofreference,total finalvehicleassemblyofanICEVtakes30-35hours,andassemblyofthe enginesubsystemtakes4-6hours(Table1). LT FC =timerequiredtoassemblethefuelcellintothevehicle(hours).We assumethatittakes1.5hours. LT R=timerequiredtoassemblethereformerintothevehicle(hours).We assumethatittakes0.5hours. LT M=timerequiredtoassemblethemethanoltankintothevehicle(hou rs).We assumethatittakes0.3hours. LT H=timerequiredtoassemblethehydrogentankintothevehicle(hours).We assume0.6hours -- twiceaslongasittakestoinstallasimpleliquid -fuel storagetank. LW A=thelaborrateforfinalassembly($/hour).Weassumethatthisrateisthe sameasthelaborwagerateforparts -groupassembly,LW G,discussed above)

46 OH A=theoverheadrateontheassemblylaborwage(%).Lindgrenuses250% forallassemblyoperations(Table1),andsodowe.

Ofcourse,LT TBiszeroifthereisnobattery,LT FC iszeroifthereisnofuelcell, andsoon.

DIVISIONCOSTS,CORP ORATECOSTS,CORPORA TEPROFIT,DEALERCO ST, ANDFINALRETAILCOS T

Overview Thenextmajorstepsinthecostanalysisaretoestimateandaddth ecoststhat makeupthedifferencebetweenthefinalretailcostandthemanufacturingcost: divisioncost,corporatecost,corporateprofit,dealercost,shippingcost,andsalestax. Interestingly,itturnsoutthatthevariablemanufacturingcost,orplantcost,isonly abouthalfofthefinalretailcostofavehicle.Thecombinedcostsofthedivision,the corporation,andthedealerconstitutetheotherhalfofthecostofavehicle. Weemphasizethatweareattemptingtoestimatethe allocatedfull productioncost andnotnecessarilythe actualsellingprice ofthevehicle.Themarketpricewilldepend onanumberoffactors,andmightormightnotequalthefullyallocatedproduction cost 14 . Inestimatingthefullproductioncost,theproblemlie snotindeterminingwhat inprincipleisacost,butratherininterpretingtheavailablecostdata.Itisclearthatwe mustincludeallcapital,labor,materials,andoperatingcosts,where“capital”includes allinvestmentcosts,withanormalrateof return,“labor”includeseveryindividual employedinanycapacitywiththecorporation,anormalprofitisallowed,andallcosts fromthebeginningtotheendoftheproductlifeareincluded.However,automobile corporationsproducemultipleproducts,andhavecosts,calledjointcosts,thatare commontoallproducts.Thesejointcostsmustbeallocatedtothevariousproducts. Ideally,onewoulddothisinawaysuchthattheper -vehicleallocatedcostisthesame asitwouldbeifthecorporationprod uced only thevehiclelineinquestion.(Ifauto manufacturers -- oratleasttheonesforwhichwecouldgetdata-- producedonlyone product,thenitwouldbeeasytodeterminethecostpervehicle:wewouldestimatethe full,annualizedcostofthecor poration,anddividebythetotalannualproduction.) Thus,wemusthopethat,intheallocated -costdatathatweuse,thecostswereallocated inthewaythatwewouldlike 15 .

Divisioncosts(engineering,testing,advertising,etc.)

14 ForadiscussionofEVpricingvs.costing,seeGreenCarMedia(1998)orDixonandGarber(1996).

15 Forfurtherdiscussionofmanufacturercostaccounting,seeCuencaandGaines(1996)andOTA(1995).

47 Adivisionisjustth at -- adivisionofthemotor -vehiclecorporation.Forexample, andaredivisionsofGeneralMotors.Divisioncostsincludeallcosts associatedwiththesecorporatedivisions,exceptcostsinthemanufacturingplants (whichalreadyhave beencountedintheprecedingmanufacturing -costanalysis):full salary -plus -benefitsofengineers,vehicletesters,managers,administrators,division executives,andeveryoneelsewhoworksinthedivisionbutnotinamanufacturing plant;theoperating andmaintenancecostsofdivisionfacilities(exceptmanufacturing plants);andadvertisingfordivisionproducts.Thedivisioncostdoes not includemajor capitalcosts,forequipmentorfacilities. Wewillestimatethedivisioncostsassomefunctionofthemanufacturing -level cost(estimatedabove),startingwithLindgren’s(ACEEE,1990)estimatesofthedivision costforthe1989FordEscort,1989FordTaurus,and1989ChevroletCaprice.Wehave fourreasonsforusingLindgren’sestimates:1)heisarecognizedexpertonmotor - vehicleproductioncosts,andhasproducedadetailedcostmodel;2)weusehiscost modelforalloftheothercostcategories;3)hisestimatesofcostineachcategorysumto theactualMSRPofthe1989FordTaurus;and4)hi sestimatesofthedivisionand factorycostsareconsistentwithsomeoftheotherestimatesshowninTable4. WebeginwithLindgren’sestimatesforthebaseline1989vehiclesinhiscost analysis,in1989$(ACEEE,1990):

Escort Taurus Caprice Manuf acturingcosts 3,472 5,530 7,258 Division -levelcosts 2,430 3,041 2,686 Grossprofit(corporate -levelcosts) 1,878 2,043 2,458 Factoryinvoice(pricetodealer) 7,780 10,614 12,402 Dealermargin 1,520 2,330 2,723 Manufacturers'suggestedretailprice 9,300 12,944 15,125 Disaggregatecorporatecost: Corporateprofit 311 425 496 Interestmoney -holdingcost 146 200 234 Othercorporatecosts 1,420 1,419 1,728

Next,weupdatetheseestimatesto1997$,assumingthatpricesatthedivision leveland corporatelevelhaveincreased30%sincemid1989.(Theaverageincreasein manufacturingprices -- theweightedaverageoftheincreasinginwagesplusincrease inmaterialsprices -- isabout30%.) Giventhisupdatedestimateofthedivisioncostofthe baselinegasolineICEFord EscortorTaurus,thenextstepistoestimatethedivisioncostof anyversionofthese vehicleswithadifferentmanufacturingcost .Thatis,giventhedivisioncostofthebaseline 1989ICEV,weneedtoestimatethedivision costofthecurrent -yearICEV,withallof theadjustmentstothemanufacturingcostbaseline(seethediscussionabove),andthe divisioncostofthecurrent -yearEVversionofthevehicle.

48 Weassumethatthedivisioncostisrelatedto,butnotstrictly proportionalto,the manufacturingcost:

     MCV   DVCV = DVCV* ⋅ 1+ Rc⋅ − 1   MCV *  

where:

DVC V=thedivisioncostofthevehiclebeingmodeled DVC V* =thedivisioncostofareferenceorbaselineICEV Rd=the%increaseindivisionco stsper1%increaseinmanufacturingcost.This isdiscussedinthissection. MC V=themanufacturingcostofthevehiclebeingmodeled.Thisisestimatedin thesection“Totalweightandmanufacturingcost”. MC V* =themanufacturingcostofthereference vehicle.

InestimatingthedivisioncostoftheICEVs,weassumethatthereferencevehicle isthe1989TaurusorEscortcostedbyLindgren(ACEEE,1990)(Table1).Inestimating thedivisioncostoftheEV,weassumethatthereferencevehicleistheICEVwhose divisioncostisestimatedwithrespecttothe1989ICEV. OurformulapresumesthatthedivisioncostoftheEVhasafirst -order relationshiptothedivisioncostoftheICEV.TherelationalfactorintheequationisRd, thepercentagechangeindivisioncostper1%changeinthemanufacturingcost.Rdis zeroifthedivisioncostisfixedandcompletelyindependentofthemanufacturingcost, andis1.0ifthedivisioncostisstrictlyproportionaltothemanufacturingcost. Lindgren’s(ACEEE,1990)estimatesofthemanufacturingcostanddivisioncostsofthe TaurusandtheEscortimplythatRdisabout0.40,butacomparisonbetweentheEscort orTaurusandCapriceimplythatRdiscloserto0.0.(However,perhapsoneshouldnot compareeither oftheFord’swiththeChevrolet,becauseLindgrenmighthaveused differentaccountingconventionsforthetwocompanies.) WeassumeanRdof0.30,whichimpliesthatalargefractionofthedivisioncost isfixed,andindependentofthemanufacturingco st,butalsothatsomenontrivial fractionisrelatedtothemanufacturingcost.Thisseemsreasonable.Forexample,it mightcostslightlymoretomarketavehiclewitha$10,000batterythanavehiclewitha $5,000battery,butitthemarketingexpense surelywillnotincreaseinproportiontothe increaseinthetotalvehiclecost.Similarly,eventhoughitmaycostmoretodesignand testthevehiclewiththemorecostlybattery,especiallyifthemorecostlybatteryismore complex,itprobablywillnotcosttwiceasmuch.

Corporatecosts(executives,capital,researchanddevelopment,thecostofmoney, andtrueprofit) Theremainderofthetotalfactorycostofaproducingavehicle -- thecosts “above”thedivisionlevel -- areassignedtothecor poration:fullsalary- plus -benefits

49 (compensation)ofcorporateexecutives,researchanddevelopment(r&d),thecostof money,capitalequipment(includingfacilities),corporateadvertising,andcorporate profit(asdistinctfromthecostofmoney).We willdiscussandestimatethreeseparate componentsofthecorporatecost:thecostofmoney,thecorporateprofit,andallother corporatecosts(compensation,r&d,capitalequipment,andadvertising,andsoon). Wedistinguishthesethreetypesofcost sbecausetheyareestimateddifferently:thecost ofmoneyisafunctionofthelevelandtimeofinvestment;thecorporateprofitisa fractionoftotalcosts,andothercorporatecostscanbeestimatesassomefunctionof divisionandmanufacturingcost s. Corporatecostsotherthanmoneycostsandprofit. Wetreatthesecosts(forr& d,capitalandfacilities,advertising,executives,andthelike)analogouslytodivision costs:weassumethattheyarerelatedto,butnotstrictlyproportionalto,the sumof divisionplusmanufacturingcosts:

     DVCV + MCV   CCOV = CCOV* ⋅ 1+ Rc ⋅ − 1   DVCV * + MCV*  

where:

CCOV=the“other”corporatecostofthevehiclebeingmodeled(i.e.,corporate costotherthanthecostofmoneyandtrueprofit) CCOV* =the“ot her”corporatecostofareferenceorbaselineICEV Rc=the%increaseinothercorporatecostsper1%increaseinmanufacturing plusdivisioncost.Asexplainedinthissection,weassume0.15. Othertermsaredefinedabove.

Inestimatingtheotherco rporatecostoftheICEVs,weassumethatthereference vehicleisthe1989TaurusorEscortcostedbyLindgren(ACEEE,1990)(Table1).In estimatingtheothercorporatecostoftheEV,weassumethatthereferencevehicleis theICEVwhosecorporatecost isestimatedwithrespecttothe1989baseline. Therelationalfactorinthecorporate -costequationisanalogoustotherelational factorinthedivision -costformula.Rciszeroiftheothercorporatecostisfixedand completelyindependentoftheman ufacturing -plus -divisioncost,andis1.0iftheother corporatecostisstrictlyproportionaltothemanufacturing -plus -divisioncost. Lindgren’s(ACEEE,1990)estimatesofthecostsoftheTaurusandtheEscortimplythat Rcisabout0.0,butacompariso nbetweentheEscortorTaurusandCapriceimplythat Rdisatleast0.40.(However,perhapsoneshouldnotcompareeitheroftheFord’swith theChevrolet,becauseLindgrenmighthaveuseddifferentaccountingconventionsfor thetwocompanies.)Weassume avalueof0.15,onthegroundsthatmostcorporate costs(otherthanthecostofmoneyandtrueprofit)arenotlikelytobesensitiveto expendituresattheplantanddivisionlevel. Thecostofmoney. Thecorporatecostofmoneyobviouslyisafuncti onofthe amountofmoneyinvestedorborrowed,whichinturnisrelatedtotheaveragecostof

50 manufacturingavehicle.Amorecostlyvehiclehasahighercostofmoneybecause moremoneyisinvestedinthevehicle.Weestimatethecostofmoneysimplyas :

CCM = (MC + DVC +CCO)⋅(imtm/12 −1)

where:

CCM=thecorporatecostofmoney im=thecostofmoneytotheautomanufacturer,asanannualfractionofthe investment,plusone.Weassumearateof1.06. tm=thenumberofmonths thattheinvestmentis“held,”i.e.,thelengthoftime betweenincurringcoststomakeavehicleandrecoveringthosecostsin factorysales(months).Weassume3months.

Corporateprofit. Thetruecorporateprofit(abovethecostofmoney)istakenas a fractionofthefactoryinvoice(includingcorporateprofit),ratherthanasafixedamount pervehicle,becausemoneyisinvestedaccordingtoyieldorprofitperdollarinvested, notaccordingtoyieldperunitofoutput.Presumably,automanufacturer swillexpect thesameprofitrateonEVsasICEVs,regardlessofhowmuchmoreorlessitcoststo produceanEVthananICEV.Lindgren(1991)assumesthatcorporateprofitis5-6%of thefactoryinvoiceprice,butCuencaandGaines(1996)assumethatth etrueprofitis 2.5%ofthefactorinvoiceprice(whichincludesthecorporateprofit).Weassume3%.

Factoryinvoice(pricetodealer) Thefactory -invoicecost -- thepricetothedealer -- isequaltothemanufacturing costplusthedivisioncostplu sthecorporatecostplusthecorporateprofit:

FC=MC+ DVC+ CC+ CP

where:

FC=thefactorycost($). MC=themanufacturingcost($). DVC=thedivisioncosts($). CC=thecorporatecost($). CP=thecorporateprofit($).

Dealercosts Dealercostsincludedealerstaffsalaries,costofbuildingsan doperationand maintenance,dealeradvertising,warrantywork,anddealerpreparationandlicense. Theydonotincludestatesalestax,orshipping(alsoknownas“destinationcharges”). DealercostsforICEVs. ForthegasolineICEV,weestimatethedeal ercostasa fractionofthefactoryinvoicepaidbythedealer,becausethattypicallyishowdealers taketheirmargin.Table4summarizesseveralestimatesofthedealermargin,expressed

51 astheratiooftheManufacturer’sSuggestedRetailPrice(MSRP) tothefactorcosttothe dealer(FC). MostoftheestimatescitedinTable4arethatthedealermarginis15to22%of thecosttothedealer,or14%to18%oftheretailprice.AccordingtotheBureauof EconomicAnalysis(citedinMotorVehicleManuf acturersAssociation,1993),in1992 theaveragetransactionpriceforanautomobilewasabout$17,068includingsalestaxes. About3%ofthiswassalestaxes(Delucchi,1999b).Thus,in1992theaveragedealer marginwas$2,000to$3,000percar. Acco rdingtoEdmunds(1999),thedifferencebetweenthefactoryinvoiceandthe MSRPis13%ofthefactoryinvoiceforthe1999FordTaurusand10%ofthefactory invoiceforthe1999FordEscort.However,CuencaandGaines(1996)notethateven thoughtherep orteddifferencebetweenMSRPandfactoryinvoicehasdeclined,as indicatedbythedatajustcitedfortheTaurusandtheEscort,the“totalcostofselling” stillismorethan20%oftheMSRP,orontheorderof30%ofthefactoryinvoice. Apparently,th epricesreportedbyEdmundsdonotreflectallofthepost -factorycosts, perhapsbecausecertaindealercostsarepaidbythemanufacturerintheformofdealer rebatesandincentives. NotethattheestimatesfromtheU.S.Censusarederivedfromasa mplesurvey ofretailbusinesses.TheCensusfigureof21%(Table4)agreesnicelywithLindgren’s estimatesof20to22%(ACEEE,1990).Becauseofthisagreement,andbecausewehave beenrelyingonLindgren’sestimatesthroughout,weusethemhere. No tethatthedealercostincludesthedealercostofmaintenanceandrepair(m& r)workdoneunderwarranty.Becausewecountthisworkdoneunderwarrantyasa costofm&r(seethesectiononmaintenanceandrepair),wemustdeductithere,to avoiddou blecounting.Asexplainedinthesectiononm&r,itappearsthatwarranty workcostsontheorderof$300/vehicle.Weadoptthisfigurehere. DealercostforEVs. WeassumethatthedealercostforEVscomprisestwo components:i)theopportunityor interestcostofholdingtheEV;andii)allother dealercosts:

DLCEV = DHCEV + DLC^EV

where:

DLC EV =thedealercostfortheEV DHC EV =thedealercostholdingcostfortheEV DLC^EV =thedealercostfortheEV,otherthanholdingcosts

Thedifferenceintheholdingcostisstraightforward.Ifthereisalapsebetween thetimethatthedealerbuysthevehiclefromthefactory,andthetimethatshesellsit, thenshewillpayaninterestcostonthefactoryinv oice,untilshecollectsfromthefinal buyer.Thehigherthefactoryinvoiceandthelongerthelapse,thehighertheinterest cost.Formally:

52 td/12 DHCEV = FCEV ⋅(id − 1)

where:

FC EV =factory -invoicecostoftheEV.This iscalculatedabove. id=thecostofmoneytothedealer,asanannualfractionoftheinvestment,plus one.Weassumearateof1.06. td=thenumberofmonthsthatdealerholdsthevehicle,fromthetimehepays thefactorytothetimeheispaidbythecustomer.AccordingtoEdmunds (1999),mostvehiclesremain“onthelot”forlessthan90days.Wethus assumethatonaveragethedealerholdshisinvestmentfor3months.

EVdealercostsotherthantheholdingcostcanbeestimatedrelativetoICEV dealercostsotherthanholdingcosts,usingthesamesortofrelationalfactorusedto estimatedivisionandcorporatecosts:

      FCEV  DLC^EV = DLC^ICEV ⋅ 1 + Rdl ⋅ − 1    FCICEV  

td/12 DLC^ICEV = DLCICEV − FCICEV ⋅ ()id −1

where:

DLC^EV ,FC EV ,id,andtdareasdefinedabove(andidandtd forICEVsare assumedtobethesameasforEVs). DLC^ICEV =dealercostsfortheICEV,otherthanholdingcosts. Rdl=the%increaseinotherdealercostsper1%increaseinfactorcost.Thisis discussedbelow. DLC ICEV =dealercostsfortheICEV.Our assumptionsareexplainedabove. FC ICEV =factory -invoicecostoftheICEV.Thisiscalculatedabove.

Onceagain,theanalysishingesonthevalueoftherelationalparameter,inthis caseRdl.Ifitis1.0,thenotherdealercostsareproportionalto thefactorycost.Ifitis 0.0,thenotherdealercostsareindependentofthefactorycost. DataonthepublishedMSRPandfactoryinvoiceforavarietyofvehicles (Edmunds,1999)indicatesthatthedealermargin,asapercentageofthefactoryinvoice , eitherisfixed,orelseactually increase slightlywithincreasingfactoryinvoice.This impliesthatRdlisatleast1.0.However,eventhoughthismightrepresenthow prices varywiththefactoryinvoice,itdoesnotnecessarilyrepresenthow costs va rywiththe factoryinvoice.Indeed,itisabitdifficulttoseewhatdealercosts,apartfromthe holdingcost,actuallyincreaseinproportionwiththefactoryinvoice.Onepossibilityis thattherateofreturnis expected tobeafixedpercentageofcosts(apartfromthecostof

53 money);withtheresultthatifcostsrise,theabsoluterateofreturnperowneror investorrises. Inanyevent,thepricedatastronglysuggestthat,Rdl(fordealercosts)mustbe significantlygreaterthanzero.Weassum eavalueof0.50.

Totalretailcosts Manufacturers'suggestedretailprice(MSRP). TheMSRPisequaltothefactory invoicecostplusthedealercost:

MSRP = FC + DLC

Shippingcost($). Theshippingcostcanre asonablybeassumedtobeafunction ofweightanddistance.AssumingthatthedistanceisthesameforICEVs,AFICEVs, andEVs,theshippingcostisafunctionoftheweightonly. Edmund’s(1999)reportsthatthedestinationchargeis$415forthe2468 -lb Escort,and$550forthe3329 -lbTaurus -- about0.16$/lb,in1997$.Thus:

SHCV = CWV ⋅SHP where:

SHC V=theshippingcostofthevehicle($) SHP ICEV =theshippingcostperlb($0.16/lb,asexplainedabove) CWV=thecurbweightofthevehicle

Retailcosttoconsumer;MSRP + shipping + salestax. Thefinalretailcosttothe consumerisequaltotheMSRPplustheshippingcost,multipliedbytheaveragesales taxrate: RCV = (MSRP + SHC)⋅ST

where:

RC V=theretailcostofthevehicleto theconsumer($),includingshippingcost andsalestax MSRP=themanufacturer’ssuggestedretailprice($).. SHC=theshippingcost($). ST=thesalestaxrate.Delucchi(1999b)calculatesthatfrom1982to1991the averagesalestaxpaidonmotor -vehiclepurchasesintheU.S.wasabout 3%ofpre -taxsales.Their3%estimateincludesallstateandlocalsales taxes,andisbasedonadetailedanalysisofactualsalestaxpaymentsby motor -vehicledealers.Weassumethatthisfractionremainsthesam ein thenearterm.Ofcourse,thesalestaxrateisthesameforEVsasfor ICEVs.Thus,weassumearateof1.03.

54 LIFEANDSALVAGEVAL UEOFVEHICLESANDVEHICLESUBSYSTEMS

Lifetimeofvehicles,frompurchasetodisposal(miles) Thevehiclelifetimeis animportantparameterintheestimationoflifecyclecost permile,becausetheinitialcostisannualizedoverthelifeoverthelifeofthevehicle. Thelongerthelife,thelowertheannualizedcostandthelowerthecostpermile. Thelifeoftheve hicle(LVM)inmilesisassumedtobe:

LVM ICEV =150,000miles LVM EV =165,000miles

Davis(1998)presentsdatathatindicatethatlifetimeofvehicleshasincreased steadilysince1970,andnowisover140,000miles.Delucchi(1999a)usesthisandothe r datatoestimateanmeanvehiclelifeofontheorderof150,000miles. TheEVbodyandchassisisassumedtolast10%longerthantheICEV’s,on accountofthelongerlifeoftheEVdrivetrain.Thebasisforthisassumptionisdiscussed inDeLuchi(1992 ),andisexpandedhere. ThelifetimeofanEV. Electricmotorsarenotsubjecttosuchextremesofheat, pressure,vibration,andmechanicalmovementasareengines,andasaconsequencelast manytimeslongerthanenginesusedinthesameapplications.Thislongerlifehasbeen demonstratedinbothstationaryandmobileapplications.Hamilton(1988)reportsthat themeantimebetweenfailuresformotorsandcontrollersinindustrialforklifts exceeds20,000hours,whichisabout4timesthelifeofmost ICEs.Hamilton(1988)also statesthat:

...theDairyTradeFederationreportedin1980thatEVsusedtodelivermilkdoor -to -dooroutlast comparabledieselvehicles...15yearsvs.5years.Thesevehicles...aredesignedforandoperatedin gruelingstart -and -stopservicesevendaysaweek...[and]theyconstitutetheonlylargefleetofon - roadelectricvehiclesintheworld(over30,000in1980).Moreover,theyrepresenttheonlysizable on -roadapplicationwhereelectricandICEpropulsioncompeteonreas onablyequalfooting,i.e., withcomparableproductionvolumesandmaturetechnology.(p.19)

Hamilton’s(1988)analysisfortheU.S.DepartmentofEnergy(1990b)assumes thatanEVwouldlast25%longerthananICEV. GeorgeSteele,managerofthe74 -ve hicle(asof1984)electricfleetofthe SouthernElectricityBoardintheUnitedKingdom,statedin1984that:

Itisgenerallyrecognizedthatelectricvehiclesshouldperformeconomicallyandefficientlyin fleetservicemuchlongerthantheirconvention alcounter -parts,butonlyifdueprovisionismade toensurethattheonsetofrustorotherprematuredecaydoesnotprecludetheseconsiderable savingsfromaccruingtotheelectricvehiclefleetoperator.

Thesebenefitscanbeobtainedbycarefulatten tiontosuchitemsaspaintspecificationandtheuse ofhigh -qualitybodyworkmaterialse.g.byensuringspecialrustpreventativetreatmentisused onallvulnerableareasandthatfulluseismadeoflong -lastingmaterialssuchasglassre -inforced plas tics.(p.3)

55 Steele(1984)summarizedtheperformanceofhisownEVfleetasfollows:

“Thelongervehiclelivespredictedforelectricvehicles-- sonecessaryfor equatingwhole -lifecostcomparisons -- seemtobefullyjustifiedsofar”.

Basedontheseexperienceswithvehicles,andonwidespreadexperiencewith electricmotors,wethinkthatisreasonabletoassumethat:a)electricmotorswilllast muchlongerthantheICEsthattheywillreplace,inessentiallyanykindofvehicleand anykindofapplication;andb)inatleast somekindsofcommercialfleets,EVswill outlasttheirICEcounterparts.TurrentineandKurani(1998)agree:

Intheory,EVdrivesystemscouldhavelongerlivesbecauseoftheirrelativelyfewmovingparts. Electricmot orsandsomeelectricalpartshaveverylongexpectedlife,havingfewermovingparts andnocombustionheat.ThesmoothunderbodyofEVsmayalsoallowmanufacturerstoprotect theunderbodyfromwaterandchemicalsonroadsthatrusttheframe.(p.3 -48)

However,togeneralizefromallkindsofmotorsandsomekindsoffleetvehicles toallkindsofpassengervehicles,wemustaddressatleastthesefourissues: i).Thereisnosignificanton -roadexperiencewithadvancedelectronicspackages (inverter /on -boardchargerandmotorcontrollerpackages).Theelectronicsinfuture passengervehicleswillbedifferentfrom,anduseddifferentlythan,theelectronicsin theforkliftsandcommercialvehiclesmentionedabove.Theseelectronicswillhaveto bedesignedtohandlesustainedhighvoltagesandcurrents,extremefluctuationsin power,complexpowerflows,andconsiderablevibrationandshocks,underawide rangeofweatherconditions -- andwithoutrequiringsophisticatedroutine maintenance.Altho ughadvancedelectronicsgenerallycanbemadetobeveryrobust, wearereluctanttosimplyassumethatthelifeofthevehicleelectronicsroutinelywill matchthelifeoftheelectricmotoritself.Wedoexpect,though,thatelectronics packageswillla statleastaslongasanyofthemajorcomponentsoftheICEsystem.In anycase,therewillbeatleastonetradeoffbetweenlifeandcost:thelowerthe maximumvoltagethelowercost,butalsotheshorterthelife,becausethesystemwill beoperating closertoitscapacitymoreoften. ii).Itisnotclearhowthelifeofthevehiclerelatestothelifeofthemotor. Certainly,thelifeofthemotorisnotthesoleorevenprimarydeterminantofthelifeof anautomobile.Econometriciansusuallyassume thatavehicleisscrappedwhenneeded repairscostmorethanthepresentvalueofexpectedremainingservicesofthevehicle (ManskiandGoldin,1983;Weber,1981).Ifthemotoronanoldcarfails,itislikelytobe costlytofix,and,intheeyesoftheconsumer,probablynotworthit.Intheseinstances, alonger -lastingmotorwouldhaveprolongedthelifeofthevehicle.Butvehiclesare scrappedformanyreasons,suchasmajorbodyorframedamage,failureofthesteering orthesuspension,orjust overalldeterioration.Infact,theonlyempiricalstudythatwe wereabletofindsuggeststhatmostcarsarescrappedbecausetheyareoldandworn out,notbecausethemotorfailed.InastudyofscrappageintheNetherlands,Ghering etal.(1989)found that7%ofthecarswerescrappedbecauseofmechanicaldefectsonly, 14%becauseofmechanicaldefectsandbodyworkdefectsboth,39%becauseof

56 bodyworkdefectsonly,22%becauseofacollision,5%becauseofthewishforabetter car,and12%because ofotherorunknownreasons.Inthisbreakdown,motorfailure -- a subsetofmechanicalfailure -- clearlyisaminorfactor.Gheringetal.(1989)conclude that“carlifedependsmainlyonthepassageoftimeanditseffectonbodywork,which istoalarg eextentindependentofthequalityofthecaranditsusage”(p.212).This findingleadustobelievethataverylargeincreaseintheexpectedlifeofthemotorwill onlyslightlyincreasetheexpectedlifeofthewholevehicle. Wedonote,though,th atrustshouldnotbeamajordeterminantofvehiclelife. WeagreewithSteele’s(1984)remarksquotedabove:vehiclescanbemadetoberust proof,atlowcost,eitherbyrust -proofingmetal,orbyusingnon -metallicparts. iii).Itispossiblethatev enifEVslastconsiderablylongerthanICEVs, consumerswillnotvaluetheextralifeasmuchasthey“should,”accordingtoarational costaccounting.Whereasmanycommercialandinstitutionalbuyersperformlifecycle costcalculationsthatexplicitlyaccountfortheexpectedlifeofthevehicle,nearlyall otherbuyersconsiderreliabilityandreputationforlongevityonly qualitatively. Moreover,individualsaremoreconcernedthanarecommercialandinstitutional buyerswithstyleandnewnessperse,andtheseaestheticattributeswilldeteriorateas rapidlyinanEVasinanICEV.ItthereforeisprobablethatEVswilldepreciatefasterin theprivate -vehiclemarketthaninafleet -manager’slifecyclecostaccounting. Nevertheless,consumersdoco nsiderandvaluevehiclelongevity.Forexample, thereisevidencethatmanypeoplewhobuydieselvehiclesvaluethelongerlifeand lowermaintenancecosts(seethesection“Maintenanceandrepaircosts”).Turrentine andKurani(1998)notethatsomeco nsumerswillpayextraforlonglife,andthatlong - lifebringshigherresalevalue. iv).Thereisa remote possibilitythat,inordertopreventcustomersfromhanging ontocarslongerandbuyingnewvehicleslessfrequently,automakerswill collude an d allagreetodesignEVssomehowtohavethesamelifeasICEVs.Itisimportanttonote thatforthistohappen,automakersmustactually collude : anyindividualauto manufacturerthatdecidedunilaterallytomakeshort -livedEVs,inordertomaintain annualvehiclesales,wouldfinditselfwithoutcustomers,becausebuyersobviously wouldpreferthelonger -livedEVs(allelseequal).Infact,intheabsenceofcollusion,the incentiveactuallyworksintheotherdirection:ifbuyersappreciatethelo ngerlife,then thecompanieswiththereputationforbuildingthelonger -livedvehicleswillsellmore vehicles,allelseequal.(MercedesBenzdoesnotappeartobeupsetthatithasa reputationforbuildinglong -lastingautomobiles.) Collusionofthis sortisveryunlikely,forseveralreasons.First,itisverydifficult toarrangeandenforce.Second,itisillegalandthereforerisky.Third,andmost importantly,automakersreallydon’thaveanyreasontocolludeinthefirstplace, becausetheyare moreinterestedintotaldollarsalesthaninthenumberofunitssold. EVswillretailformorethanICEVs,sothateveniffewerofthemthanICEVsaresold, totaldollarsaleswillnotnecessarilybelower.

57 Basedonthisanalysis,weassumethathouse holdEVswilllast10%longerthan ICEVs,onaverage 16 .Forconsistency,weestimateamaintenancescheduleforEVsthat explicitlyassumesthatveryoldEVsoccasionallywillrequireadditionalexpenditures tomaintainthepartsitwillhaveincommonwit hICEVs(thebody,interior,chassis, brakes,etc.).

Lifetimeofvehicles,frompurchasetodisposal(years) Thelifetimeofthevehiclesinyearsiscalculatedfromanonlinearfunctionthat relatesyearstomiles:

 LVM − K1 ln   K2  LVY = K3

ThisfunctioncanbesolvedforLVMinstead:

LVM = K2 ⋅ eLVY⋅K3 + K1

where:

LVY=vehiclelifetimeinyears ln=thenaturallogfunction LVM=vehiclelifetimeinmiles.Thisisdiscussedinthese ction“Lifetimeof vehicles,frompurchasetodisposal(miles)”. K1,K2,andK3arecoefficientsderivedfromaregressionfitofcumulative mileagedataestimatedfromtheResidentialTransportationEnergy ConsumptionSurvey(RTECS):

K1 K2 K3 GasICEV 266799 -270021 -0.0563 AFVs 266799 -270021 -0.0563 EVs 266799 -270021 -0.0563

ThefunctionforLVYisvalidforvaluesofLVMofuptoabout210,000miles. Above210,000miles,theyearsstarttorunaway,soweassumethatLVY=30yearsfor anyval ueofLVMover210,000miles. Asshown,inthebasecasewehaveusedthesamecoefficients,andhencethe samemileageaccumulationrate,forallvehicletypes.AlthoughitisunlikelythatEVs willhavetheexactlythesameannualmileagescheduleaswo uldhavehadthevehicles

16 InitsanalysisofthelifecyclecostsofEVsand ICEVs,theU.S.DOE(1995)assumesthesamelifeforEVs andICEVs.

58 theyreplace,itisnotclearjusthowtheannualusageofEVsmightdiffer.Ontheone hand,EVscannotbeusedforverylongtrips.Ontheotherhand,thelowrunningcosts andgoodaround -townperformanceofEVsmakesthemmore attractiveforthetrips theycanmake.Withoutactuallong -termevidenceregardingusagepatterns,wethinkit ismostreasonabletoassumethemileageaccumulationscheduleforEVsandICEVs 17 . Table5comparesthepredictionsofthefunctionwiththeoriginalestimated RTECSdatafromwhichthefunctionwasderived.Forallbutyears1and2,themodel fitsthedatatowithinabout1%.

LifetimeofEVcomponentsexceptbattery,frompurchasetodisposal Lifetimeofcomponents,inmiles. Weassumetha tthe motor willlast200,000 miles.Asdiscussedabove,electricmotorsareveryrobustandcanlastalongtime underawiderangeofconditions. Weassumethatthe controllerwilllastaslongaswillthevehicle,butnotlonger (andthereforenotaslongasthemotorwilllast).Therearefewdataonthelifetimeof advancedpowerelectronicsinautomotiveuse.Powerelectronicsinvehicleswillhave tobedesignedtotoleraterepeatedcycling,awiderangeoftemperatureandmoisture conditions,andconstantvibration.Lesster(1993)remarksthataproperlycooled electronicsystemcanprovidefullperformanceoverawiderangeoftemperatures(-40 o Cto49 oC)for5,000hours,whichprobablyisslightlylongerthanmostvehiclesoperate (about4,000hours).However,thereisnoevidenceyetthatcontrollerswillbedesigned andbuilttolastaslongaswillelectricmotors. Weassumethatthe hydrogen-storagesystemwilllast300,000miles,orabit morethantwovehiclelifetimes. Thelifeinmilesofthe fuel-cellandreformeriscalculatedfromtheassumedlife inyears:

(LCYF ⋅K3) LCMF = K2 ⋅e + K1 where:

LCMF=thelifeofthefuelcellinmiles. LCYF=thelifeinyears(inputassumption). K1,K2,K3arecoefficie nts,derivedinthesection“Lifetimeofvehicles,from purchasetodisposal(years)”.

17 Moreover,thecorrectwayinprincipletoanalyzethelifecyclecostofowningandusinganEVisinthe contextofahousehold’stotalannualtravelandtravelcosts.Becausethemone taryandnon -monetary costsofEVownershipandusagearedifferentfromthecostsofICEVownershipandusage,thepurchase anduseofanEVwillmakeahousehold’stotaltravelandvehicleusagepatternsdifferfromwhatthey wouldhavebeenhadanICEV beenpurchasedandusedinstead.Technically,then,oneshouldcompare totalhouseholdtravelandtravelcostsintheEV -ownership -and -usecasewithtravelandcostsinthe ICEV -ownership -and -usecase.Ouranalysispresumesthattheownershipanduseof EVschangesneither totalhouseholdtravelnorvehicleusagepatterns.

59 ThisfunctionforLCMisderivedfromthefunctionLCY= ln[(LCM − K1)/K2]/K3,whichinturnisthesameasthefunctionforLVY(explainedin thesection“Lifetimeofvehicles,frompurchasetodisposal(years)”)exceptwith components(c)substitutedforvehicles(v).ThefunctionforLCMisvalidforvaluesof LCY upto27.7years. Lifetimeofcomponents,inyears. Thelifetimeofthemotor,controller,and hydrogenstoragesysteminyears(LCY)iscalculatedwithcomponentanalogofthe vehiclelifetime(LVY)function:

 LCM − K1 ln   K2  LCY = K3

Thefuelcellandreformersystemareassumedtolastaslongasthevehicle.

Batterylifecyclemodel Theannualizedcostofthebattery,incents/mile,isthesecondlargest componentofathetotallifecycleofanEV.(Thelargestisthe annualizedcostoftherest ofthevehicle.)Thebattery’slifecyclecostisdeterminedprimarilybytwoparameters: thesellingpriceofthebattery,anditslifetime.Thelifetimeofthebatterythusturnsout tobeanextremelyimportantparameterintheestimationofthetotallifecyclecostofthe EV. Inourmodel,thenumberofyearsthatthebatterylastsiscalculatedfroma functionthatrelatesyearstoaccumulatedmileage.Thebatterylifetimeinmiles,inturn, iscalculatedfromacycle -lifefunction,whichspecifiesthelifenumberofcyclesasa functionoftheaveragedepthofdischargeandotherfactors.Thiscycle -lifefunction thusplaysacriticalroleintheestimationoftheEV’stotallifecyclecost. Inthissection,wepresentthelifetimemileagefunctionfirst,andthendiscussthe cycle -lifemodelindetail. Lifetimeofthebattery,inmiles. Thelifeofthebatteryinmilesiscalculatedasa functionofthecyclelife,depthofdischarge,anddrivingrange:

LMB = CLAVE,EOL ⋅ DoDAVE ⋅ RMB

where:

LM B=thelifetimeofthebattery,inmiles. CLAVE,EOL =thenumberofcycles,attheaveragedepthofdischarge(DoD)tothe end -of -life(EOL)capacity(discussedbelow) DoD AVE =theaveragedepthofdischar gethroughoutthebattery’slife(discussed below) RM=thedrivingrangeofthevehicle,to100%depth -of -dischargeofthebattery. Thisisauser-specifiedinput(vehicle -design)variable.

60 Theaveragedepthofdischargecanbepresumedtoberelatedto therangeofthe vehicle.Presumably,theaverageDoDwillincreaseasthevehiclerangeincreases, becausetherequiredreserve“buffer”doesnotincreasewithvehiclerange.Weestimate thefollowingrelationship:

E1 E2 E3 E4 DoDAVE = C0 + C1⋅ RMB + C2 ⋅ RMB + C3 ⋅ RMB + C4 ⋅ RMB

C0 C1 C2 C3 C4 E1 E2 E3 E4 0.3876 0.0005 -0.00 -2012-1-1 4 Thisfunctionandtheparametervaluesareafitofthisassumeddriving behavior:

Range(mi) Driven(mi) DoD AVE 25 8 0.320 30 10 0.333 35 12 0.343 40 14 0.350 45 16 0.356 50 19 0.380 55 21 0.382 60 23 0.383 70 27 0.386 80 32 0.400 90 37 0.411 100 42 0.420 110 47 0.427 120 53 0.442 140 64 0.457 160 74 0.463 180 85 0.472 200 96 0.480 225 110 0.489 250 130 0.520 300 160 0.533 350 200 0.571

61 Thebat terycyclelife .Overtime,irreversiblechemicalreactionsoccurinsidethe batteryandreduceitsenergy -storagecapacity.Someoftheseirreversiblereactionsare relatedtothecharge/dischargecyclingofthebattery,andsomearejustafunctionof tim e,independentofbatterycycling.Atsomepoint,thebatterylosessomuchofits initialcapacitythattheEVownerdecidestoscrapthebatteryandbuyanewone. Anidealmodelofbatterycyclelifewouldrepresentthelossofacapacityasa function oftimeandcycling.Althoughourmodeldoesnotdothisinformaldetail,it neverthelessdoesconsiderthelossofcapacityduetocycling,thelossofcapacitydueto “standing”independentofcycling(theso -called“shelflife”or“calendarlife”),an dthe pointatwhichthebatterylifeisdeemedtobeover.Thelossofcapacityduetocycling, inturn,isafunctionoftheaveragedepthofdischarge. Whatistheendoflifeforthebattery? Thefirstissueweaddressis:whatistheend oflifefor thebattery?Inthecontextofalifecyclecostanalysis,thisquestioncanbe framedmorepreciselyas:howmuchcapacitylosswilldriverstoleratebeforethey decidethatitisworthpayingforanewbattery?Thereapparentlyarenodatathatbear onth isquestion.Neither,unfortunately,dotheoreticalconsiderationsprovideaclear answer:ontheonehand,batteriesareveryexpensive,andhenceverycostlytoreplace; ontheotherhand,batterieshaveonlyarelativelylimitedenergycapacitytobegin with, andhencemybecomepracticallycripplingafterlosingonlyasmallamountofthat already -smallcapacity. Inthestandardlaboratorytestsofbatterylifetime,abatteryiscycled continuouslyto80%DoDuntilithaslost20%ofitsinitialcapac ity.Althoughthis20% figureisarbitraryinthesensethatitisnotbasedondataonconsumerbehavior,itdoes havesometechnicalbasis:oncethecapacityofabatterystartstodecrease,itdecreases rapidlywithadditionalcycles,suchthatthereis notmuchdifferencebetweencyclesto 20%lossofcapacityandcyclesto80%lossofcapacity(Ovshinskyetal.[1992]for OvonicNiMHcells;Electrosource[1993]forHorizonPb/acidbatteries;Burke[2000]for Pb/acidbatteries).Thedeteriorationaccele ratesinpartbecausetheinitialfailureofone moduleputsadditionaldemandsontheothers,andhenceacceleratestheirfailure. Lackingsoliddataortheoreticalguidance,wesimplyassumethatbatterieswill bescrappedwhentheyhavelost40%ofthe irinitialcapacity.Also,weassumethatif thelastbatteryreplacementhappenssoclosetotheendofthelifeofthevehiclethatthe userwouldgetlessthan15%ofthelifeofthebatterybeforethevehicledies,thatthe userforegoesthelastbatte ryreplacement,andsimplyrunsdowntheoldbatterymore thanwouldbeusual. Shelflife(orcalendarlife)versuscyclinglife.Next,weintroducetheconditionthat thebatterymayreachitsend -of -lifecapacity eitherasaresultoflossesdueto “sta nding,”orlossesduetocycling.Theactuallifeofthebatteryisthelesserofshelfor calendarlife(convertedtocycles)andthecyclelifeindependentofstandinglosses (Vyasetal.,1998):

CLAVE,EOL = lesser[ CLAVE,EOL*, CLS,EOL]

where:

62 CLAVE,EOL =thenumberofcycles,attheaveragedepthofdischarge(DoD)tothe end -of -life(EOL)capacity CLAVE,EOL *=thenumberofcycles,attheaveragedepthofdischarge(DoD)to theend -of -life(EOL)capacity,duetocyclingperse(i.e.,notaccounting forthe“standing”lossesthatdeterminetheshelflife)(discussedbelow) CLS,EOL =thenumberofcyclestotheend -of -life(EOL)capacity,duetostanding losses,independentofcycling(discussedbelow)

Shelflife.ThenumberofcyclestoEOL,duetoirreversiblelossesfromstanding,is calculatedultimatelyfromtheassumedshelflifeofthebattery 18 :

LYB, S ⋅ AVMT CLS,EOL = DoDAVE ⋅ RMB

where:

LY B,S =theassumedshelflifeofthebattery,toendoflife;assume dtobe(years):

Pb/acid NiMH Li/ion Li/Fe -S NiMH Gen2 Gen4 6.5 8.0 10.0 12.0 15.0

AVMT=averageannualvehiclemilesoftravel(equaltolifetimemilesdivided bylifetimeyears) otherparametersdefinedaboveinthissection

Therearenogooddata ontheshelflifeofbatteriesinactualuse 19 .Argonne NationalLaboratory(Vyasetal.,1997)reportsexperts’opinionsregardingshelflife,but itisnotclearwhattheendoflifeisassumedtobe,orhowshelflifehasbeen disentangledfromcycleli fe.Kalhammer(1999)reportscurrentandprojectedcalendar

18 Notethatwerelatecyclestoshelflifeonthebasisoftheaverageannualvehiclemilesoftravel(AVMT). Technically,weshoulddothisusingtheactualmileageaccumulationfunc tion(Table5).Intheearly years,whenthevehicleisdrivenmorethantheAVMT,theshelflifecorrespondstomorecyclesthanis estimatedonthebasisofAVMT.Intheoutyears,whenthevehicleisdrivenlessthantheAVMT,the sameshelflifecorre spondstofewercyclesthanisestimatedonthebasisofAVMT.Thebattery replacementpatternthatresultsfromestimatingtheshelfcyclelifewithrespecttotheactualmileage accumulationschedulemightdifferfromtheshelfcyclelifeestimatedwith respecttoAVMT.

19 Thereareshort -termdata,butthesetellusnothingaboutlong -termcalendarlife.Forexample,the HorizonPb/acidbatterylosesitsallofitschargeafterstandingforabout150days,butregains100%ofits initialcapacityoncei tischargedanddischargedagain(Electrosource,1993).TheOvonicNiMHbattery losesabout15%ofitscapacityafterstandingfor30days(Ovshinskyetal,1993),butitisnotclearhow muchofthisisregaineduponcharginganddischargingagain

63 lifeforNiMHandLi -iontechnologies(inmostcases,hereports>5yearsor>10years). Ourassumptions,shownimmediaelyabove,arebasedpartlyontheVyasetal.(1997) andKalhammer(1999), andpartlyonourjudgment Cyclinglife.Thecyclelifeofthebatteryduetocyclingperseisafunctionofthe averagedepthofdischarge(Burke,1995;Kalhammeretal.,1995),andthecapacitypoint atwhichthebatterylifeisassumedtobeover.Th enumberofcharge -dischargecycles overtheusefullifeofthebatterydependscruciallyontheenergydischargedfromthe batterybeforerecharging.Ifabatteryisdischargedcompletelybeforerecharging,the cyclelifewillbeshorterthanifthebatte ryisonlypartlydischargedbeforerecharging. WeassumethefollowingnonlinearrelationshipbetweenDoDandcyclelife (basedonBurke,1995):

 DoDAVE  DoD K⋅ 1− CL * = CL ⋅ AVE ⋅ e  0.8  AVE,EOL 0.8,EOL 0.8

where:

CL0.8,EOL =thenumberofcycles,at80%(0.8)DoD,tothedesignatedendoflife (EOL)capacitypoint(discussedbelowinthissection) 0.8=coefficienttonormalizeto80%DoDreference K=shapeparameter(3.2;discussednext) otherparametersdefinedabove

TheshapeparameterKdeterminesth eshapeoftherelationshipbetweenDoD andcyclelife.Burke(1995)assumesthatK=3.0;onthebasisofthedataandresults summarizednext,wefindthatK=3.1producesslightlymoreagreeableresults. Corrigan(1998)provideddataoncyclelifevs .DoDfortheOvonicNiMH90 Amp -hrbattery.Wecomparethemeasureddatawithourmodeledresults 20 forfour differentvaluesofK:

Measured Modeled Modeled Modeled Modeled DoD cycles cycles cyclesK=3.0 cycles cycles K=2.5 K=3.1 K=3.5

20 932.62 Adif ferentmodelactuallyfitstheOvonicdatabest: CLAVE,EOL* =−421.45 + givesthe DoDAVE followingresults:

DoD Measured Modeled 0.3860 2000 1995 0.5375 1310 1314 0.8210 690 715 1.000 534 511

64 0.3860 2000 1,284 1,664 1,752 2,155 0.5375 1310 1,114 1,313 1,356 1,547 0.8210 690 702 692 691 683 1.0000 534 488 431 420 380

WedothesamewithdatapresentedbyFujioka(1998)forthePanasonicNiMHbattery:

Measured Modeled Modeled Modeled Modeled DoD cycles cycles cyclesK=3.0 cycles cycles K=2.5 K=3.1 K=3.5 0.60 1500 -1900 1,892 2,143 2,198 2,429 0.80 1200 -1500 1,350 1,350 1,350 1,350 1.00 750 -950 903 797 777 703

Thenonlinearityofthecyclelife/DoDfunctioncanbeillustratedbyshowingthe ratioofcyclespredictedbythefunctiontocyclesthatwouldobtainifcyclelifewere proportionaltoDoD(suchthatoneobtained8timesasmanycyclesat0.10DoDasat 0.80DoD):

Ratioofmodeledcyclestoproportional: DoD K=2.5 K=3.0 K=3.1 K=3.5 0.05 0.05 0.09 0.10 0.16 0.10 0.17 0.29 0.33 0.51 0.15 0.32 0.55 0.61 0.93 0.20 0.49 0.80 0.89 1.32 0.25 0.65 1.04 1.14 1.66 0.30 0.80 1.24 1.36 1.92 0.35 0.93 1.40 1.52 2.10 0.40 1.04 1.52 1.64 2.21 0.45 1.13 1.59 1. 71 2.25 0.50 1.19 1.63 1.74 2.23 0.55 1.23 1.64 1.73 2.17 0.60 1.26 1.61 1.70 2.07 0.65 1.26 1.57 1.64 1.95 0.70 1.25 1.51 1.57 1.82 0.75 1.23 1.44 1.48 1.68 0.80 1.20 1.35 1.39 1.54 0.85 1.15 1.27 1.29 1.39 0.90 1.11 1.18 1.19 1.25 0.95 1.06 1.09 1.10 1.12 1.00 1.00 1.00 1.00 1.00

Theseratiosalsotellusthetotalamountofenergyavailablefromthebattery overitslife,normalizedtotheamountavailablefromcyclingat100%DoD.Weseethat

65 forK=3.1,themaximumamountofenergyisreco veredbycyclingat50%DoD,which appearsreasonable.Very“short”cycling,to10%DoDorless,greatlyreducesthe amountofenergyavailablefromthebatteryoveritslife. Withtheseconsiderations,weassumeK=3.1,forallbatterytypes. Inthefinalpartofthebatterylifecyclemodel,weestimatethenumberofcycles totheassumedend -ofliferelative tothenumberofcyclestothe20%loss -of -capacity point(at80%DoD),whichismentionedaboveistheusualterminationpointinthe batteryli fecycletests:

 EOL KL CL = CL ⋅  0.8,EOL 0.8,0.2  0.2 

where:

CL0.8,EOL =thenumberofcycles,at80%(0.8)DoD,tothedesignatedendoflife (EOL)capacitypoint CL0.8,0.2 =thenumberofcycles,at80%(0.8)DoD,tothepointthat thebatteryhas lost20%(0.2)ofitsinitialcapacity;assumedasfollows(Vyasetal.,1997; Kalhammeretal.,1995;Kalhammer,1999;MaderyandLiska,1998;Fujii, 1999;Electrosource,2000) 21 :

Pb/acid NiMH Li/ion Li/Fe -S NiMH Gen2 Gen4 700 600 1,00 0 800 1,200

EOL=thebatteryend -of -lifecapacitypoint(fractionofinitialcapacitylost)(as discussedabove,assumedtobe0.4) KL=exponentthatdeterminestheshapeofthecyclelifefunction;alower exponentresultsinasteeperlossofcapacity withadditionalcyclespast thereferencecapacitylossof20%.WeassumeKL=0.15,onthebasisof theresultsinthefollowingtable,whichshowCL0.8,EOL fordifferent valuesofKLandEOL(CL0.8,0.2 =650inthisexample):

21 SafthastestedaNi-MHm odulefor900cycleswithonlya5%lossofcapacity(MaderyandLiska,1998). Themodulehas66Wh/kgand150W/kg.Fujii(1999)reportsthatPanasonic’sprismaticNiMHbattery lastsmorethan100,000kminaToyotaRAV4overinEVdrivingtestinJapan, with“normal”charging. Panasonicbelievesthatwithan“economy”chargingprocedure,andotherimprovements,theNiMH batterycouldlast200,00km,over1000cycles,and5 -10years.Earlier,Panasonicreportedthatittesteda packof24modules,insimul atedcity,hill -climbing,andhighwaydriving,andfoundaabouta5% decreaseinbatterycapacityafter40,000km(Fujioka,1998).Singlemodulesof65Wh/kgand200W/kg havebeentestedtoover1400cycleswithlessthan20%lossofcapacity(Fujioka,1 998).However,the OvonicNiMHbattery,uponwhichwebaseourestimates,hasalowercyclelifebuthigherspecificenergy andspecificpowerthandotheSaftandPanasonicNiMHbatteries(Kalhammer,1999).

66 ¬EOL 0.10 0.15 0.3 0.5 KL ∅ 0.01 482 415 265 145 0.05 566 528 429 325 0.10 606 586 528 460 0.20 632 623 596 563 0.40 650 650 650 650 0.60 665 672 695 727 0.80 677 691 734 796 1.00 687 707 769 860

Plotsofenergycapacityvs.cyclesforpb -acidbatteries(Burke,2000)appearto correspondroughlytothepatternindicatedbyKL=0.15inthetableabove.

Lifetimeofbattery,inyears. Givenanestimateofthebatterylifetimeinmiles, thelifetimeinyearsiscalculatedwiththesameequati on,shownabove,usedto calculatethelifetimeinyearsofothercomponents.

Salvagevalueattheendofthelifeofthevehicle Attheendofthelifeofthevehicle,thevehicleandsomeofitsmajorcomponents mayhaveasmallpositivevalue.Inthelifecyclecostanalysis(presentedbelow),the presentvalueofthissalvagevalueissubtractedfromtheinitialcost. Wetreatdifferentlythevehicleitself,thetractionbattery,andtheothermajorEV components:motor,controller,fuel-cellsystem,orhydrogen-storagesystem). Thevehicle.Attheendofitslife,theentiregasolineICEV,andtheEV(or AFICEV)exclusiveofitsmotor,controller,battery,fuel−cellsystem,orhydrogen- storagesystem,isassumedtobeworthabout0.3%ofitsnewretailcost.(Thisresultsin aSVofabout$50.)TheretailcostoftheEVexclusiveofitsmotor,controller,battery, fuel-cellsystem,orhydrogen-storagesystemis equaltothetotalretailcostoftheEV lessthenewretail -levelcostofthesecomponents. EVcomponentsotherthanthebattery .ThesalvagevalueofamajorEV componentiscalculatedasafunctionofitsmanufacturingcost:

SVG = REPG ⋅ VelG

MCG REPG = ⋅ RCV ⋅ REPRG MCV

where:

subscriptG=vehiclecomponentsexceptthebattery(motor,controller,fuel-cell system,orhydrogen-storagesystem)

67 SV G=thesalvagevalueofvehiclecomponentG($). REP G=thereplacementvalueofanewcompone ntG($). VelG=thevalueofcomponentGattheendofthelifeofthevehicle,expressedas afractionofthereplacementvalueofanewcomponent.Thisisdiscussed next. MC G=manufacturingcostofcomponentG,excludingassemblycost($).Thisis estimatedinthesection“Totalweightandtotalmanufacturingcost”. MC V=themanufacturingcostofthevehicle,includingallassembly($).Thisis estimatedinthesection“Totalweightandtotalmanufacturingcost”. RC V =theretailcostofthecompletevehicletotheconsumer($),including shippingcostandsales.Thisisestimatedinthesection“Totalretailcosts”. REPR G=forcomponentG,theratioofthereplacementvaluetothefully MCG burdenedinitialretailcostequivalent(theterm ⋅ RCV ). Thisis MCV discussednext.

Fractionalvalueatendoflife .TheVelofthemotor,controller,fuel−cellsystem,or hydrogen-storagesystemisassumedtoberelatedtothefractionofthetotallifeofthe componentremainingattheendofthelifeofthevehicle.Wedefineafunctionsothatif thelifeofthemotoriswithin10%ofthelifeofthevehicle,thesalvagevalueisafixed 2%oftheretail -levelvalueofthecomponent;otherwise,thesalvagevalueas,afraction oftheretail -levelvalue,is65%oftheremaininglifeasafractionofthetotalexpected life.The10%cutoffaccountsforthelikelihoodthatthecomponentwillnotberecovered andre -usedifthereissolittleliferemaining;the65%factorreflectsthelikelihoodthat thesalvagevaluewillbe“less”thanproportionaltotheremaininglifebecause consumersprobablyconsiderusedpartstobelessreliablethannewparts,evenafter allowingfortheyearsofprioruse.Formally:

VelG=0.01ifabsolutevalueofLCMG/LVM − 1<0.1;

otherwise:

LCMG − LVM VelG = ⋅ K LCMG where:

LCMG=thelifeof componentG(miles). LVM=thelifeofthevehicle(miles). K=salvage -valuereductionfactor(assumedtobe0.65)

Replacementvaluerelativetoinitialvalue.Finally,notethatwecalculatethe replacementvalueofanewsystem,whichistheapprop riatebasisforestimatingthe salvagevalueofanoldsystem,assomemultiple(orfraction)ofwhatwewillcallthe

68 ∞ fullyburdenedinitialretailcostequivalent-- thetermMC G/MC V RC V . Asisevident fromitsexpression,thefullyburdenedinitialretailcostequivalentassignsfullauto - manufactureroverheadandprofit,plusdealercosts,tothemanufacturingcostofthe systeminquestion.Butthereisnoreasonfortheactua lretailcostofareplacement systemtobeequaltothefullyburdenedinitialretailcostequivalentsocalculated.In somecases,thereplacementcostwillbelower;inothercases,itwillbehigher. However,forallcomponentsexceptthebattery,weassumethatitisthesame,sothat REPR=1.0. Salvagevalueofthetractionbattery. Ifthevehicledieswellbeforethebattery does,thebatterypresumablywillbesalvagedandre -usedasamotor -vehiclebattery. Ourtreatmentofthesalvagevalueof thebatteryinthiscaseissimilartoourtreatment ofthesalvagevalueofothermajorcomponents,except: i)weassumethatifthebatteryhaslessthan10%ofitsexpectedremaininglife whenthevehicledies,thatitwon’tbesalvagedatall,butrat herrecycled,atthenormal end -of -liferecyclingcost(which,asdiscussedinthesectiononbatteryrecycling,canbe negative) ii)thereplacementcostisassumedtobe80%ofthefullyburdenedinitialretail cost.Webelievethatreplacementbatterieswillnotbeburdenedwithalloftheauto manufactureroverheadcoststhatburdentheinitialbattery(CuencaandGaines[1995] apparentlyagree). iii)thesalvagevalueofabattery,asafractionofthereplacementvalue,is70%of thefractionoflife remaining.

69 MODELOFVEHICLEENE RGYUSE

OVERVIEW

Descriptionofthedrivecycleenergyconsumptionmodel Energyuseisacentralvariableineconomic,environmental,andengineering analysesofmotorvehicles.Theenergyuseofavehicledirectlyde terminesenergycost, drivingrange,andemissionsofgreenhousegases,andindirectlydeterminesinitialcost andperformance.Itthereforeisimportanttoestimateenergyuseasaccuratelyas possible. ThissubmodelcalculatestheenergyconsumptionofEVsandICEVsovera particulartrip,ordrivecycle.Theenergyconsumptionofavehicleisafunctionoftrip parameters,suchasvehiclespeed,roadgrade,andtripduration,andofvehicle parameters,suchasvehicleweightandengineefficiency.Giventripparametersand vehicleparameters,energyusecanbecalculatedfromfirstprinciples(thephysicsof work)andempiricalapproximations. Inthissubmodel,thedrivecyclefollowedbytheEVsandICEVsconsistsofupto 100linkedsegments,definedby theuser.Foreachsegment,theuserspecifiesthe vehiclespeedatthebeginning,thespeedattheend,thewindspeed,thegradeofthe road,andthedurationinseconds.Giventhesedataforeachsegmentofthedrivecycle, andcalculatedoruser-input vehicleparameters(totalweight,coefficientofdrag,frontal area,coefficientofrollingresistance,enginethermalefficiency,andtransmission efficiency),themodelusesthephysicsequationsofworkandempiricalapproximations tocalculatetheactu alenergyuseandpowerrequirementsofthevehicleforeach segmentofthedrivecycle 22 .Theequationscanbefoundinphysicsandengineering textbooks,booksonvehicledynamics(e.g.,Gillespie,1992),andpapersonestimating thefuelconsumptionofmotorvehicles(e.g.,ThomasandRoss,1997;Ross,1997; Mendler,1993). Thecalculationsarereasonablydetailedandrealistic.Forexample,therolling resistanceofthevehicleisnotinputasaconstant,butratheriscalculatedasafunction ofvehicl espeedandtypeofroad.Theairdensity(whichaffectstheaerodynamic resistance)iscalculatedasafunctionoftheambienttemperatureandtheelevation.The modelaccountsfortherotationalinertiaofthetires(ontheassumptionthatthetiresare homogenousdisks),andapproximatestherotationalinertiaofthedrivetrainasa

22 This“segment”characterizationofthedrive cycleispartlybasedonbutmoreaccuratethanthe aggregatedapproachdevelopedbyAnandRoss(1993)(wherebytheuserspecifiesaveragespeed,peak speed,timespentstopped,andtimespentdecelerating),becauseinprincipleitcanbetterrepresenta ll accelerations,decelerations,stops,andsoon(theusercreatesanewsegmentforanychangeinthe drivingprofile).Also,itallowsforaccurate“real -time”treatmentofregenerativebraking,whichtheAn andRoss(1993;Ross,1994)approachdoesnot .Itisintuitivelyappealingbecauseitrepresentsphasesof thedrivecycleastheyoccur.Also,asegment -by -segmentcharacterizationoftheU.S.FederalUrban DriveScheduleisavailable.

70 functionofenginespeed.ItallowstheusertospecifythelengthoftimeittakesanICEV towarmupfromacoldstart,andtheextrafuel-consumedbythevehicleduringth e warm -upperiod. Themodelproperlycalculatestheextraenergymadeavailablebyregenerative braking:itcalculatestheamountofenergyappliedtothebrakes,thencyclesaportion ofthatavailableenergybackthroughthepowertraintotheenergy -sto ragedevice(e.g., abattery)andthroughtheenergy -storagedevicetoitsoutgoingterminals.Themodel restrictsregenerativepowertobelessthanorequaltoauser-specifiedmaximum,and restrictsregenerativeenergytobelessthanorequaltotheav ailablecapacityofthe energy -storagedevice. Themodelusesanempiricalformulatocalculatetheamountoffrictionalwork withinanengine.FrictionworkisequaltokJoffrictionworkperliterofdisplacement perrevolutionoftheengine,multiplie dbythedisplacementinliters(aninputvariable) andthenumberofenginerevolutions.Theparameter[kJoffrictionworkperliterof displacementperrevolutionoftheengine]isitselfafunctionoftherpmandpower outputoftheengine.Themodelcalculatestheexactnumberofenginerevolutionsover eachsegment,givenauser-definedshiftschedule,user-inputgearratios,andstarting andendingspeeds.Themodelproperlyaccountsforanynumberofgearshiftswithina segment,atanypointwithin thesegment. Themodelalsocalculatesthethermalefficiencyofcombustionsecondbysecond, asafunctionofenginecharacteristicssuchasrpmandliterspercylinder. Thenextsectionspresentsthebasecasedrivecycle.Thesectionafterthat present sthecalculatedoverallenergy -consumptionresults.Thefinalsectiondocuments allofthecalculationsintheenergy -usesubmodel.Basecasevaluesaregivenforour baselineFordEscortandFordTaurus,whichasexplainedearlierareslightly “advanced” ,year2000+versionsofthepresentvehicles.

Thebasecasedrivecycle WeassumethatmostEVswillbeusedmainlyinlocalor“city”driving. Accordingly,ourbase -casedrivecycleisacondensationoftheofficialU.S.city -driving testcycle,theFederalUrbanDriveSchedule(FUDS).TheFUDSisarelativelylow - speed,low -powerdrivecycle:itcovers7.4milesin22.9minutes,andthusresultsinan averagespeedof19.5mph.Themaximumspeedis56.6mph. Wecondensedthe1372secondsoftheactualFUDSinto153segmentsof approximatelyconstantacceleration(Table6):wegraphedtheactualvelocityversus timeovertheFUDS,andthendefinedasasegmentinourcondenseddrivecycleany more -or -lessstraightlinesegmentofthegraph.Thesegmentsth usarerepresentedbya beginningvelocity,anendingvelocity,andatotaltime.Thecondensedscheduleis showninTable6.

Vehicleenergyconsumption:calculatedresultsforthedrivecycle Vehicleenergyuse:BTUs/mile .Theenergyusebythevehicleoverthe drivecycleiscalculatedbyaddinguptheamountofenergyconsumedduringeach “step”ofthecycle,anddividingbythesumofthedistancesforeachstep.Inthecaseof

71 theICEVsandFCEVs,weestimateBTUsoffuel(e.g.,gasolinefromthetank )permile oftravel.InthecaseofBPEVs,weestimateBTUsofelectricity(at3412BTUs/kWh) fromtheoutletpermileoftravel.Generally,weestimatetheenergyuserequiredatthe pistonheadorbatteryorfuelcell,andthendividebytheestimated(step-by -step) efficiencyoftheengine,fuelcell,orbatteryandchargerinordertogettheenergyusein termsoffuelorelectricityfromtheoutlet:

TEICEV ⋅0.948 EDSICEV = TD TE ⋅0.948 EDS = FCEV FCEV TD EO ⋅ 3412 EDS = BPEV BPEV RM

ETNICEV TEICEV = ∑ s ICEηi ,s

ETNFCEV TEFCEV = ∑ s FCηs EI EO = BPEV BPEV BCH ⋅B Re

∑Ds TD = s 1609

where:

EDS ICEV =theenergyconsumptionof theICEVovertheuser -specified drivecycle,measuredinBTUsoffuel(fromthegasolinetank;higher heatingvalue),permileoftravel. EDS FCEV =theenergyconsumptionoftheFCEVovertheuser -specified drivecycle,measuredinBTUsoffuel(fromthe fueltank;higherheating value),permileoftravel. EDS BPEV =theenergyconsumptionoftheEVovertheuser -specifieddrivecycle, measuredinBTUsofpowerfromtheoutlet(at3412BTUs/kWh),permile oftravel. TE ICEV =thetotalfuelenergyconsume dbytheICEVoverthedrivecycle(kJ, HHV) TE ICEV =thetotalfuelenergyconsumedbytheFCEVoverthedrivecycle(kJ, HHV) EO BPEV =thetotalelectricalenergyrequiredfromthewalloutletinorderto supplythedesireddrivingrange(kWh).

72 TD=thetotaldistanceofthedrivecycle(miles) RM=thetotalrequireddrivingrangeoftheEV(miles)(auserinputvariable). 3412=BTUs/kWh. 0.948=BTU/kJ. ETN ICEV,s =netenergyatthepistonheadintheICEV,requiredforeachsegment Softhedrivecycle (kJ).Thisiscalculatedbelow. ETN FCEV,s =netenergyattheoutgoingterminalsofthefuelcellintheEV, requiredforeachsegmentSofthedrivecycle(kJ).Thisiscalculated below. ICE ηi.s = theindicatedenergyconversionefficiencyoftheengine,alsoknownas thethermalefficiency(BTUs -workonthepistonhead/BTU -fuel consumed[higherheatingvalue]),ineachsegmentSofthedrivecycle. Thisiscalculatedbelow. FC ηs = theneten ergyconversionefficiencyofthecompletefuel -cellsystem, includinganyreformer(BTUs -electricatfuel -cellterminal[netoffuelcell auxiliaries]/BTUs -fuel -fromtank[HHV]),ineachsegmentSofthedrive cycle.Thisefficiencyiscalculatedinade tailedfuel -cellenergy -use submodel,whichincludesapolarityplotforthefuelcell. EI BPEV =whatwewilldesignateasthe“interior”capacityofthebattery,orthe potentialattheelectrodes,requiredtoprovidethedesireddrivingrange overthe actualdrivecycleselected(kWh).Itisanarbitraryconstruct,equal inessencetothenetenergyoutgoingattheterminalsdividedbythe dischargeefficiency.Thisisdiscussedbelow. BRe=theefficiencyofthebatteryrecharger(energyintobattery/ene rgyfrom outlet).DatareviewedinDeLuchi(1992)indicatethatconductive chargingingeneralisabout90%efficient.Gage(2000b)confirmsthat integratedon -boardconductivechargersalsoareabout90%efficient. BCH=theefficiencyofbatterychargin g(seeAppendixA). Ds=thedistanceofthesegmentSofthedrivecycle(meters).Thisiscalculated fromtheuser -inputvelocityandtimeforthesegment. 1609=meters/mile.

Σs=summationoverallsegmentsofthedrivecycle.

Vehicularfueleconomy. GiventheenergyconsumptioninBTUs/mi,itisa straightforwardmattertocalculatethefueleconomyineithermi/106BTUormilesper gasoline -equivalentgallon: 1000000 FE = EDS

MPGeq = FE ⋅ECG

where:

73 EDS isdefinedabove FE=thefueleconomy( mi/106BTU) 1000000=BTUs/106BTU. MPGeq=milespergasoline -equivalentgallonfueleconomy ECG=theenergycontentofconventionalgasoline(0.125.106BTU/gallon - gasoline)

TheefficiencyoftheEVpowertrainrelativetotheefficie ncyoftheICEV powertrain .TheefficiencyoftheEVpowertrainrelativetotheefficiencyoftheICEV powertrainisanoverallresultthatcanbeusedinenergy,economic,andenvironmental comparisonsofEVsandICEVs.Forexample,therelativepowertrainefficiencyisinput intothegreenhouse -gasemissionsmodelofDeLuchi(1991).Notethattherelative efficiencydoesnotaccountfortheefficiencyofthebattery,batterychargerorfuelcell (theseareaccountedforseparatelyinDeLuchi[1991]andhe reaswell),butdoes accountforthethermalefficiencyoftheICEV.Theobjectiveoftherelativepowertrain efficiencymeasureistorelatetheefficiencyoftheelectricdrivelinetotheknown overallfueleconomyoftheICEV,withtheefficiencyofth ebatteryandfuelcellthen beingestimatedseparately. Therelativepowertrainefficiencyiscalculatedas:

FEP Re p = EV FEICEV FE FEP = BPEV BPEV BRe⋅ BCH ⋅BDCH FE FEP = FCEV FCEV FCη

∑∆EIBPEV,s ⋅ BDCHs BDCH = s ∑ ∆EIBPEV,s s

∆EIBPEV,s = EIBPEV,s−1 − EIBPEV,s

where:

Rep=theBTU/mileenergyconsumptionoftheEVpowertrainrelativetothe BTU /mileenergyconsumptionofthegasolineICEVpowertrain,overthe user -specifieddrivecycle.NotethatEVpowertraindoesnotincludethe battery,fuel -cell,orbatterycharger.

74 FEP=thefueleconomyofthepowertrain(mi/106-BTUfromthebatteryorfue l terminals,inthecaseoftheBPEVorFCEV,andmi/106-BTUfuelinthe caseoftheICEV). BDCH=theoverallbatterydischargeefficiency. FC η = theoverall(drive -cycleaverage)netenergyconversionefficiencyofthe completefuel -cellsystem,includinganyreformer(BTUs -electricatfuel - cellterminal[netoffuelcellauxiliaries]/BTUs -fuel -fromtank[HHV]). Thisisequaltonetenergyfrom thefuelcellsystemdividedbytotalfuel energyinput,overtheentiredrivecycle. BDCH s=thebatterydischargeefficiencyduringsegmentSofthedrivecycle. Thisiscalculatedonthebasisofthebatteryresistanceandvoltage,which inturnareafunctionofthedepthofdischarge.SeeAppendixA. •EI BPEV,S =thechangeinwhatwehavedesignatedthe“interior”capacityofthe battery(seeabove). FE,BRe,BCH,andEI BPEV areasdefinedabove.

ThemodelpresentlyestimatesanRepofabout8. NotethattheRephereisnotquitethesameastherel ativepowertrainefficiency usedinDeLuchi(1991).Inthatreport,therelativeefficiencywas exclusiveoftheeffect ofanydifferenceinweightbetweentheEVandtheICEV.Here,Repisinclusiveofthe effectofallvehicleattributes:weight,drag,rollingresistance,andsoon. Averageandmaximumspeed(miles/hour)overthedrivecycle .Thecalculated averagespeed(includingstoptime)forthebase -casedrivecycleisabout20mph,and themaximumspeedis57mph. Vehicleweight .Theresultstabl esshowtheestimatedweightsoftheFordTaurus andFordEscort.Thecurbweightistheweightoftheemptyvehicle,butwithafullfuel tankintheICEVorfuel -cellEV.Thein -useweightincludes180poundsofpeopleand cargo,butonlya40%fullfue ltank.Forreference,the1991Escorthasacurbweightof 2364lbs,andthe1991Taurusacurbweightof2991lbs(AllisonGasTurbineDivision, 1994).

CALCULATIONOFPARAMETERVALUESINTHED RIVECYCLEENERGY CONSUMPTIONMODEL

Indicatedthermaleffi ciency Theindicatedthermalefficiencyistheratiooftheworkonthepistonheadtothe energycontent(higherheatingvalue,inouranalysis)ofthefuelinput.WuandRoss (1999)haveprovidedauseful,simplemodeloftheindicatedthermalefficiency asa functionofengineparametersthatwecanspecify. Thethermalefficiencydependsonanumberofparameters,including:

75 •theair/fuelratio(thehighertheratio -- the“leaner”thecombustion-- the moreairmoleculestodowork,perunitoffu elenergy,andhencethegreaterthe thermalefficiency •thecompressionratio(thehighertheratio,thegreaterthepressureonthe cylinderhead,thehighertheefficiency) •the“effective”combustionefficiency(essentially,theratioofthetotalfu el energyactuallyreleasedandavailablewithinthecylinderforwork,totheheatingvalue oftheinputfuel) •heat(energy)lossthroughthecylinderwalls,itselfafunctionofseveral parameters,includingbrakework,rpm,andenginesurface/volumeratio.

WuandRoss(1999)estimatethethermalefficiencyasafunctionofthe compressionratio,theeffectivecombustionefficiency,andheatloss,assumingthatthe air/fuelratioremainsatstoichiometric(wewilladjustlaterfornon -stoichiometric operation):

ηi = ηifa ⋅ ηc ⋅(1 − Q)

2 ηifa(s) = 0.4178 + 0.0202⋅ ()CR − 8 − 0.0012⋅ ()CR − 8

where:

ηi = theindicatedthermalefficiency ηifa = theindicatedefficiencyoftheconstant -volumeair/fuelcycle -- afunction ofthecompressionratioandtheair/fuelratio ηifa(s) = theindicatedefficiencyoftheconstant -volumeair/fuelcycleassuming st oichiometricair/fuelratio -- afunctionofthecompressionratioonly ηc = theeffectivecombustionefficiency(WuandRoss[1999]estimatethat unburnedfuel,andlossofcombustiongases,andothersourcesof combustioninefficiencyamounttoabout5%oftheinputfuelenergy,and soassumethattheeffectivecombustionefficiencyis95%) Q=theeffectiveheat-lossratio,theworklosstothecylinderwallsrelativetothe fuelenergy(discussedbelow) CR=thecompressionratiooftheengine(9.7for theFordTaurus,9.2forthe FordEscort) 8=thereferencecompressionratio

Theheat-lossratioisdependentonthebrakemeaneffectivepressure(BMEP -- theaverageheatlossincreaseswithload),theenginerpm(theheatlossasafractionof thesup pliedfuelpercycledecreaseswithincreasingrpm),thesurface -to -volume(S/V) ratioofthecylinder(atlargerratios,thereismoresurfaceareaforheatloss),andaheat lossconstant(WuandRoss,1999).WuandRoss(1999)normalizetheBMEP,rpm,and S/Vlosstermstoreferencevalues,tocomeupwithaunitlesslossfractionforQ:

76 β α γ  350   1800   SVR  Q = 0.13 ⋅ ⋅ ⋅ TDC  150 + BMEP   RPM  2.5 

where:

0.13=theheatlossconstant 350=typical(reference)indicatedmeaneffectivepressure(kPa) BMEP =brakemeaneffectivepressure(kPa) 1800=referencerpm RPM=actualrpmoftheengine SVR TDC =thesurface -to -volumeratiooftheengineattop -dead-center 2.5=thereferenceS/V,correspondingtothatofenginewith2cylindersperliter displacemen t

WuandRoss(1999)findthatthebestfitstotestdataareachievedwith β=0.2,α =0.5,andγ =1.0.Weadoptthosevalueshere.However,inplaceoftheratioofS/V (whichwedon’tknow)tothereferenceS/Vof2.5,weusetheratioofthecylinderper liter(CPL)displacement(whichwedoknow)tothereferencevalueof2CPL.As regardstheBMEP,weassumethatatthe“typical”drivecycle -valueof200kPa(Wuand Ross,1999),thebrakepoweris10kW.Thus,weassumethatSVR/2.5=CPL/2,and thatBMEP=200.brakepower/10:

0.2   0.5 350  1800   CPL Q = 0.13 ⋅  ⋅ ⋅  200     150 + ⋅ Pc  RPM 2  10  where:

abs[Pc]=theabsolutevalueofthepoweratthecrankshaft(kW;estimatedinthe section“Poweratenginecrankshaftorfuel -cellorbatteryterminals”) CPL=cylindersperliter(2.0fortheTaurus,2.0fortheEscort)

NotethatWuandRoss(1999)estimatetheefficiencywithrespecttothelower heatingvalue;wedivideby1.093togettheefficiencywithrespecttothehigherheating value. Adjustmentforleanorrichcombustion. Asnotedabove,theWuandRoss(1999) modelappl iestostoichiometricair -fuelratios.Modernvehiclesaredesignedtooperate atstoichiometryalmostallofthetime,becausethe3-waycatalyticconverterdoesnot functionproperlyifthereistoolittleortoomuchairintheexhaustgas.However, und erhardaccelerations,theenginecontroller“commands”enrichmentofthefuel/air ratio,inordertoprovideextrapower.Thisenrichedfuel/airmixturereducesthe thermalefficiencyoftheengineandincreasesemissionsofunburnedfuel.

77 Ross(1997)sa ysthattoa“fairlygoodapproximation,”theratioof ηifa atthe actualinstantaneousequivalenceratio Φto ηifa atstoichiometry(Φ=1.0;ηifa(s) )is:

ηifa 4 −Φ = ηifa(s) 3

Hence:

4 −Φ η = ⋅ η ifa 3 ifa(s)

Weneed,finally,todeterminetheair/fuelratioasafunctionofsomeparameter thatwemeasur esecond -by -second.ThomasandRoss(1997)citeananalysisofsecond - by -secondfueluseandemissionsdatafromtheFTPrevisionprojectwhichconcludes that:

Φ = 1forFR < 2.7g/ s

Φ=1+ 0.036 ⋅ FRforFR ≥ 2.7g/ s

whereFRisthefuelrateingrams/s ec.Inourmodel,thefuelratecanbe calculatedfromthepowerrequiredatthepistonhead,inkJ/sec:

ETN /Ts FR = ICEV 0.34 ⋅ kJg

where:

ETN ICEV =totalnetenergyatthepistonhead,requiredforeachsegmentofthe dr ivecycle(kJ)(discussedbelow). Ts=thedurationofthesegment(seconds). 0.34=theassumedindicatedefficiency(HHVbasis)forthepurposeof calculatingthefuelrate(ratioofworkenergytofuelenergy). kJg=theenergycontentofthefuel(kJ/g) (about46).

Wecalculatetheindicatedefficiencyforeachsegmentofthedrivecycle.

Totalnetenergyrequiredforeachsegmentofdrivecycle(kJatenginepistonheador fuel -cellterminals) Foreachsegmentofthedrivecycle,wecalculatetheindicatedenergyfromthe ICEpistonheads,ortheenergyfromthefuelcellterminals(omittingthesubscriptSfor convenience):

78  Etr  ETN = Max + Efr + Eac + Pau ⋅Ts;Kfr ⋅ Nlf ⋅ Le ⋅ Re ICEV  Te i 

ETNFCEV = PFr ⋅ P maxFC⋅Ts

where:

ETNisasdefinedabove(kJ). Etr=totalresistiveenergyatthewheels(kJ).Thisdoesnotincludeengine friction,transmissionfriction,airconditioningenergy,andaccessory loads.Thisiscalculatedbelow. Te=theefficiencyofenerg ytransmissionfromenginetowheels.Garveyand Studzinsky(1993)showthetransfercaseandrearaxleefficiencyasa functionoftheinputpowerinkW.Onthebasisoftheirgraphs,we assume60%below3kWinputpower(outputfromenginecrankshaft), 75%between3and10kW,85%between10and25kW,and94%above25 kW 23 . Efr=enginefriction(kJ).Thisiscalculatedbelow. Eac=theenergyconsumedbytheairconditioneroverthedrivecyclesegment (kJfromthecrankshaftorbatteryorfuel-cellterminals).Thisisinthe section“Air -conditioningenergy”. Pau=theaveragepowerconsumptionofvehicleauxiliariesoraccessories(kW). Thisiscalculatedinthesection“Averageelectricalpowerforauxiliaries andaccessories,excludingairconditioni ng” Ts=thedurationofthedrivecyclesegment(seconds).Thisisaparameterinthe designofthedrivecycle,specifiedbythemodeler. Kfr i=thefrictionalenergyatzeronetpoweratthecrankshaftandidlerpm(kJ - indicated-energy/engine -revolution/ liter-engine -displacement;discussed inthesection“Enginefriction”) Nlf=thenegativeloadfactor;theratiooftheminimumfuelflowrate(under negativeload)totheidlefuelflowrate(discussedbelow). Le=thedisplacementoftheengine(liters;discussedinthesection“Engine friction”). Re=therevolutionsoftheengineoverthesegment(estimatedinthesection “Revolutionsoftheengineormotor”).

23 Thedrivelinecomprisesthetransmission,driveshaft,differ ential,andaxle.TheBosch Automotive Handbook (1993)statesthatdrivetraininalengthwiseengineis88to92%efficient,andinatransverse engine91to95%efficient.Gillespie(1992)statesthatdrivelineisbetween80%and90%efficient.Anand Ro ss(1991)say85%to95%,anduse90%inanotheranalysis(AnandRoss,1993).However,more recently,Ross(1997)suggests80%forurbandrivingand90%forhighwaydriving,andnotesthatsome analystsassumelower.BroganandVenkateswaran(1991)assume adrivelineefficiencyof85%.The efficiencyoffront -wheeldriveprobablyishigherthantheefficiencyofrear -wheeldrive.Ourassumptions resultinalittleover80%fortheurbandrivecycle,whichisconsistentwiththebestestimatesabove.

79 PFr=thenetpowerrequiredfromthefuelcell,asafractionofthemaximum grosspower(di scussedbelow). Pmax FC = themaximumgrosspowerofthefuelcell(kW).Thisisinputbythe user,orcalculatedreadilyfromuserinputs.

ThetermEtr,theloadatthewheels,canbenegative.Whenitis,energyis potentiallyavailabletodousefulwork,orforstorage.In thecaseoftheICEV,this negativeenergyatthewheelscandrivethecrankshaftandtherebypowerthealternator andovercomeenginefriction 24 .However,weassumethatintheICEV,thisenergy cannotbestored,whichmeansthatiftheavailable[negativ e]energyatthewheels exceedstheworktobedonebypoweringthealternatororovercomingenginefriction, theexcessisdissipateduselesslyinthebrakes.Inthemodel,thisconditioniscreatedby requiringthattheindicatedenergyatthepistonheadnotbelessthantheminimumfuel flowrate(thesecondterminthe“maximum”quantitiesinthebrackets{}). IfanEVhasanenergystoragedevice,itcanrecapturetheregenerativebraking energy.Wediscussthismoreshortly.

Energycapacityofthebattery InthecaseoftheBPEV,asnotedabove,wecalculatetheC/3dischargecapacity ofthebatteryonthebasisofthe“interior”energycapacityofthebattery,andtheC/3 dischargeefficiency:

ESTBC/3 = EI ⋅ BDCHC/3

where:

ESTB C/3 =thenominaltotalenergy dischargecapacityofthenewtractionbattery, measuredattheC/3dischargerate(kWh). EI=whatwewilldesignateasthe“interior”capacityofthenewbattery,based ontheactualdrivecyclespecified(discussedinthissection). BDCHC/3 =theefficiencyofaC/3dischargeofthenewbattery(asopposedto theefficiencyoftheactualdischargeofthebatteryovertheselected drivecycle).ThisisdiscussedinAppendixA.

Thisprocedureisnecessary becausethenewbatterymustbesizedtomeetthe actualloadsofthespecifieddrivecycle,whichingeneralwilldifferfromaC/3load. However,becausethe“Wh”inthegravimetricenergydensity(Wh/kg)thatwederive asafunctionofthepowerdensity (seediscussionabove),andthe“kWh”intheenergy costfigure($/kWh)thatweestimate,botharebasedonaC/3discharge,wemust

24 Ina carwithamanualtransmission,thedrivercanputintheclutchandde -coupletheenginefromthe wheels,sothatthebrakingenergyisnotavailabletodousefulwork.

80 calculate,forthepurposeofusingourWh/kgand$/kWhfigures,whatthedischarge capacityofthebatterywouldbeatth eC/3rate. The“interior”capacityofthebatterycanbeunderstoodastheamountofenergy requiredtomeetalloftheloadsonthevehicle,afteraccountingforregenerativeenergy madeavailable,and theactualdischarge(butnotcharging)efficiency ofthebattery.Put anotherway,itisequaltothenetenergyrequiredatthebatteryterminalsforload dividedbytheactualaveragedischargeefficiencyoverthetest. Figure1showsbatteryenergyflowsgraphically.Formally,wecalculateEIas follows:

RM EI = abs EI ⋅ + abs min ()EI − abs EI [ s− final] TD [ s s [ s− final ]]

where:

EIisdefinedabove “abs”means“absolutevalueof” EI S-final =thevalueofEIafterthelastsegmentofthetripsimulatedinthe drivecycle(kJ) RM=thedesiredtotaldrivingrang e(miles)(inputbytheuser) TD=thetripdistance(miles)(estimatedinthesection“Vehicleenergy consumption:calculatedresultsforthedrivecycle”) EI s=thevalueofEIatsegmentS(kJ)

Thisequationisinterpretedasfollows.First,wemultiply thevalueofEIatthe endofthelasttripsegmentbythenumberoftripsthatcanbetakenwithinthedriving rangeofthevehicle.Now,iftherewerenoregenerativebraking,thentheresultantEI (thetripEImultipliedbythenumberoftripsperdriv ingrange)wouldbethefinalEI wewishtocalculate.However,becausethereisregenerativebraking,itispossiblethat, towardstheendofthelasttripmadebeforethebatteryiscompletelyexhausted,the batterycapacitywillbedrawndowntoalevellowerthanitisafterthelastsegmentof thetrip,becauseofenergyreturnedtothebatteryduringthelastbraking.Toaccount forthis,weaddtothetrip -scaledEIthedifferencebetweenthelowestEIinthe drivecycle(min s(EI s))andtheEIafterthelastsegmentofthedrivecycle(abs[EI S-final ]). NextwemustcalculateEI s,thebattery“interior”capacityateachtripsegment:

EIs−1 − Pt ⋅ Ts EIs = forpowerPt>0(underload) BDCHs ⋅ 3600

 EI − Pt ⋅ Ts⋅ BDCH  EI = min 0, s−1 s forpowerPt ≤0(braking) s  3600 

where:

81 Pt=thepowerrequiredatthebatteryterminals(kW)(discussedbelow). Ts=thedurationofthedrivecyclesegmentS(seconds). BDCHs=thebatterydischargeefficiencyduringsegmentS(App endixA). 3600=secondsperhour.

The“min”[]functionensuresthattheamountofregenerativeenergyreturned tothebatterydoesnotexceedtheavailablecapacityofthebattery.

Poweratenginecrankshaftorfuel-cellorbatteryterminals ForEVs underload,thepowerrequiredatthefuelcellorbatteryterminalis calculatedsimplyastheloadonthewheelsdividedbythepowertrainefficiency,plus theaccessoryandairconditioningpowerdemand.ForEVsbraking,theregenerative poweravailable atthebatteryterminalsissomefractionofthenegativeloadatthe wheels(thefractiondependingontheload),reducedbythepowertrainefficiencyand theaccessoryandairconditioningpowerdemand:

Etr Pt = + Pac forEtr ε0(underload) Pe ⋅Ts

  Etr ⋅ Pe   max −Pco, Etr ⋅ Pe   Ts   Pt = ⋅ 1 + + Pac forEtr <0(braking) Ts  Pco   

Eac Pac = + Pau Ts

where:

Pt=thepowerrequiredatthebatteryterminalsorfuel-cellterminals(kW) Etr=totalresi stiveenergyatthewheels(kJ).Thisiscalculatedinthesection “Totalresistiveenergyatthewheels”. Pe=theefficiencyofenergytransmissionfrombatteryorfuel-cellterminalsto wheels.Thisiscalculatedinthesection“Once − throughefficiencyfrom thebattery(orotherenergy -storagesystem)orfuel − celltothewheels (excludingstoragedeviceitself)” Ts=thedurationofthesegment(seconds).Thisisaparameterinthedesignof thedrivecycle,andsoisspecifiedbythemodeler. Pac =thepowerdemandoftheaccessoriesandtheairconditioner,attheengine crankshaft,orthebatteryorfuelcellterminals(kW)

82 Eac=theenergyrequiredbytheairconditioningsystemoverthedrivecycle segment(kJfromthecrankshaftorbatteryorfuel-cellterminals).Thisis calculatedinthesection“Air -conditioningenergy” Pau=theaveragepowerconsumptionofvehicleauxiliariesoraccessories(kW). Thisiscalculatedinthesection“Averageelectricalpowerforauxiliaries andaccessories,excludingairconditioning” Pco=maximumregenerativebrakingpowerintoenergystoragedevice(kW) (assumedtobe85%ofthemaximumoutputpowerofthebattery) The“max”[]termlimitstherecoverablebrakingpowertothemaximumthat canbeinputtoth eenergystoragedevice.

Thetreatmentofregenerativebrakingrequiressomeexplanation.First,wedo notassumethattheentirenegativeloadatthewheelsdrivestheelectricmotorasa generator;rather,weassumeonlythatsomefractiondoes,andth attheremainderof thenegativeloadisdissipatedinthefrictionbrakes.Thisisduepartlytotheneedto brakeanynon -drivenwheels,which,onaccountoftheirnotbeingconnectedtothe electricmotor,mustbebrakedexclusivelybyfriction. Inreal ity,andinourmodel,thefractionofthenegativeloadthatdrivesthe electricmotorasageneratordecreaseswiththebrakingpower.Thisfractionisgivenby the“1+”terminparentheses.Asthenegativeload(thetermEtr .Pe/Ts)increases,the rati owithPcoincreases,andthe“1+”termdecreases(becausetheratioisnegative).As thenegativeloadapproachesthemaximumallowableregenerativepower,thefraction oftheloadthatisusedtodrivethemotorasageneratorapproacheszero.The“max” [] termlimits theratiotobeingnolessthan -1,andhencelimitsthe“(1+..)”termtonoless thanzero. Ourtreatmentofregenerativebrakingthusisrealisticinseveralrespects:

i)theregenerativeenergyavailablefromthebrakes,asafraction ofthebraking power,decreaseswiththebrakingpower; ii)thereisamaximumregenerativebrakingpower,setatsomefractionofthe maximumbatterypower; iii)theregenerativebrakingenergyreturnedtothebatterycannotexceedthe availablecapaci tyofthebattery; iv)alltransferlosses -- transmission,motor,controller,batterydischarge(twice) areaccountedforbyusingtheactualsecond -by -secondcomponentefficiencies;and v)theregenerativeenergyisusedtomeettheaccessoryandairco nditioning powerdemandfirst,beforebeingchargedintothebattery(thisisthemostefficient method) 25 .

25 Iftheaccessoryandairconditioningpowerdemandexceedstheregenerativepowera vailable,andif thevehiclehasafuelcell,weassumethatthefuelcell,notthebattery,suppliestheunmetpowerdemand.

83 ForICEVs,thecalculationofthepoweratthecrankshaft(Pc)isessentiallythe sameasforEVs,exceptthatthetransmissionefficiencysubstit utesforthepowertrain efficiency,andthemaximumregenerativebrakingpowerisassumedtobezero, becausethereisnoenergystoragedevice.

Totalresistiveenergyatthewheels Thisissimply thesumoftheinertial,air -resistance,rolling -resistan ce,andgrade workterms:

Etr = Ei + Ead + Er + Egr

where:

Etr=totalresistiveenergyatthewheels(kJ).Thisdoesnotincludeengine friction,transmissionfriction,airconditioningenergy,andaccessory loads. Ei=tot alinertialenergy(kJ).Thisiscalculatedinthesection“Translationaland rotationalinertialenergy”. Ead=energyrequiredtoovercomeairresistance(kJ).Thisiscalculatedinthe section“Airresistance”. Er=energyrequiredtoovercomerolling friction(kJ).Thisiscalculatedinthe section“Rollingfriction”. Egr=energyrequiredforgradework(kJ).Thisiscalculatedinthesection “Gradework”.

Translationalandrotationalinertialenergy Thetotalinertialenergythatmustbeovercomeovereachsegmentofthe drivecycleisequaltothetranslationalinertialenergyofthevehicleplustherotational inertialenergyofthewheelsplustherotationalinertialenergyofeachoftherotating partsinthemotorandtransmission:

Ei = Eit + Nw ⋅ Eirw + Eirm

where:

Ei=thetotalinertialenergyoverthedrivecycle(kJ). Eit=thetranslationalinertialenergyoverthedrivecycle(kJ). Eirw=therotationalinertialenergyofonewheeloverthedrivecycle(kJ). Nw=thenumberofwheels.Weassumefour. Eirm=therotationalinertialenergyofthemotorandtransmissionoverthe drivecycle(kJ).

Inthisanalysiswewilltreatalloftheindividualrotatingpartsofthemotorand transmissionasasinglerotatin gmass.

84 ThetranslationalinertialenergyfromzerovelocitytovelocityVisgivensimply by: V 2 Eit =WIU ⋅ 2⋅1000

where:

Eit=thetranslationalinertialenergyoverthedrivecyclesegment(kJ). WIU=thein -useweigh tofthevehicle,includingthewheelsandthepassenger andpayload(kg).Thisiscalculatedinthesection“Totalweightand manufacturingcost”. V=thevelocityofthevehicle(m/s).Thistermeventuallywilldropoutofthe formula. 1000=J/kJ(aJo uleisaNewton -meter,or1kgm2s-2).

Therotationalinertialenergyofawheel(Eirw)isderivedasfollows.

ω2 Eirw = I ⋅ 2⋅ 1000

Rt2 I = Mw⋅ (forasolidcylinderofuniformdensity) 2

V ω= Rt

andthus:

V 2 Eirw = Mw ⋅ 4 ⋅1000

where:

Eirw= therotationalinertialenergyofonewheeloverthedrivecycle(kJ). 1000=J/kJ. I=therotationalinertiaofthewheel. ω=theangularvelocityofthewheel. Mw=themassofonewheel(kg) V=thetranslationalvelocityofthevehicle(m/s). Rt=theradiusofthewheel-plus -tire(discussedinthesection“Revolutionsof theengineormotor”)

85 (Notethatthisderivation assumesthatatire -plus -wheelisasolidcylinderof uniformdensity.) Therotationalinertialenergy(Eirm)oftherotatingpartsofthemotorand transmissionremainstobeestimated.Forsimplicity,wewillmodelthisasanaddition tothevehiclemas s.Gillespie(1992)statesthatthemassequivalenceoftherotational inertiaoftheengineisapproximatedbyatermC ∞ G2 ,whereCisaconstantandGis thegearratio.Hence: V 2 Eirm ≈ C ⋅G 2 ⋅WIU ⋅ 2 ⋅1000

where:

C=aconstant G=thecombinedgearratioofthetransmissionandthefinaldrive.

Thuswehave,forthetotalinertialenerg yEi:

V 2 V 2 V 2 Ei = WIU ⋅ + Nw⋅ Mw ⋅ + C ⋅ G2 ⋅WIU ⋅ 2⋅ 1000 4⋅ 1000 2⋅ 1000

V 2  Mw  = WIU ⋅ ⋅ 1 + Nw ⋅ + C ⋅G2  2 ⋅1000  2⋅WIU 

Now,let:

Mw’=thetiremassfractionoftotalvehicleweight=Mw/WIU

Andrecallthat:

V 2 WIU ⋅ =WIU ⋅ A⋅ D 2

where:

A=theaccelerationoverthe segmentofthedrivecycle(m/sec2).Thisis calculatedinthesection“Accelerationanddistance”. D=thedistanceofthesegmentofthedrivecycle(meters).Thisiscalculatedfrom theuser-inputvelocityandtimeforthesegment.

Thuswehave,forth etotalinertialenergyEi:

86 A⋅ D  Mw'  Ei = WIU ⋅ ⋅  1 + Nw ⋅ + C ⋅G 2 1000  2 

where:

Ei=totalinertialenergyoverthesegmentofthedrivecycle(kJ) WIU=thein -useweightofthevehicle(kg).Thisiscalculatedinthesection “Totalweightan dmanufacturingcost”. A=theaccelerationoverthesegmentofthedrivecycle(m/sec2).Thisis calculatedbelow. D=thedistancedrivenoverthesegmentofthedrivecycle(meters). Nw=thenumberofwheels.Weassumefour. Mw’=theratioofthewe ightofonewheeltothein -useweightofthevehicle. WeassumethateachtireontheICEVTaurusweighs38lbs(ACEEE, 1990),thateachtireontheICEVEscortweighs36lbs(ACEEE,1990),and thatthetiresontheEVsweigh10%lessthanthetiresonthegasoline ICEV. C=constant:themassfactorforrotatingengineandtransmissionparts.Thisis discussednext. G=thecombinedratioofthetransmissionandthefinalgear.Thisiscalculated fromalook -uptablethathasthetotalgearratioineach gearandagear - shiftingscheduleasafunctionofvehiclespeed.Seethediscussioninthe section“Revolutionsoftheengineormotor”.

Massfactorforrotatingmotorandtransmissionparts(rotationalinertia). Rather thancalculatetheactualrotati onalinertiaofalloftherotatingpartsofanICEV,we approximatetherotationalinertiawithanequivalent“massfactor”,whichismultiplied bythetotalgearratioandthenaddedtotheactualvehiclemassterminthecalculation oftotalinertia.(Inessence,wescaleupvehiclemassbyasmallfractioninorderto accountforrotationalinertia.)Accordingtoa1972sourcecitedbyGillespie(1992),a typicalmassfactoris0.0025.Weassumethatthefactorforpresentandnear -future vehiclesis slightlylower,0.0020. Thetotalrotationalinertia,andhencethetotalequivalentmassfactor,depends onthenumberandmassofrotatingparts.Anelectricvehiclehasfarfewerrotating partsthandoesanICEV,andhenceamuchlowerrotationalinertia.Lessteretal.(1993) remarkthat“theelectricpowertrainwithitssinglespeedreducerhasamuchlower inertiacomparedwiththeinternalcombustionenginerunninginitslowgears”(p.171). (TheonlysignificantrotatingpartsinanEVaretheelectricmotoritself,the transmissiongears,andthedriveaxles.)Consequently,weassumethatthemassfactor thatrepresentstherotationalinertiaofanEVis1/4thofthefactorforanICEV,or 0.0005.

87 Airresistance Theairresistanceworkisafun ctionoftheairdensity,vehiclevelocity,and vehiclefrontalareaanddrag:

(Vb +Vw)⋅ abs[ Vb + Vw]+ (Ve + Vw)⋅ abs[ Ve +Vw] Ead = 0.5 ⋅ρ ⋅Cd ⋅ Fa ⋅ D ⋅ air,Y 2⋅ 1000

where:

Ead=theenergyrequiredtoovercometheresistanceoftheair(kJ). ρair,Y =thedensityofdryairatpressur ePY(atelevationY)andtemperature

TE air (grams/literorkg/m 3).Thisiscalculatedbelow. Cd=coefficientofdrag(dimensionless).The1991FordTaurusandthe1991Ford EscorthaveaCdof0.34(AllisonGasTurbineDivision,1994).According toRoss (1997),the1995TaurushasaCdof0.33.Weassumethatthese valuescanbereducedeconomically.WeassumethattheCdoftheEV versionswillbereducedevenfurther,becauseofthegreaterimportance ofconservingenergyinanEVthaninICEV.Ouras sumptionsareshown below.Asdiscussedinthesection“Adjustmentstothe1989weightand costbaseline”,wealsoassumeslightlyhighercostforthelowerCd. Fa=vehiclefrontalarea(meters 2).The1991FordTaurushasafrontalareaof 1.99m2,andth e1991FordEscorthasafrontalareaof1.86m2(Allison GasTurbineDivision,1994).AccordingtoRoss(1997),the1995Taurus hasafrontalareaof2.12m2.Ourassumptionsourshownbelow.We assumeslightlylowervaluesfortheEVs,againbecauseofthegreat importanceofenergyconservationinEVs 26 .

Taurus Escort ICEV EV ICEV EV Drag(Cd) 0.30 0.24 0.30 0.24 Frontalarea(Fa) 2.00 1.95 1.85 1.80

D=thedistanceofthesegmentofthedrivecycle(meters).Thisiscalculatedfrom theuser-input velocityandtimeforthesegment. Vb=thevelocityatthebeginningofthesegmentofthedrivecycle(m/sec).This isaparameterinthedesignofthedrivecycle,andisspecifiedbythe modeler.

26 Wepresumethatthebatterypackisplacedsothatthevehiclefrontalareadoesnothavetobeincreased toaccommodatethepa ck.

88 Vw=thevelocityofthewindduringthetripsegment,alongthedirectionof vehicletravel(m/sec).Thisisaparameterinthedesignofthedrivecycle, andisspecifiedbythemodeler.Atailwindisenteredasanegativevalue (i.e.,isequivalenttoadecreaseinvehiclespeed),andaheadwindis enteredasapositivevalue(i.e.,isequivalenttoanincreaseinvehicle speed). Ve=thevelocityattheendingofthesegmentofthedrivecycle(m/sec).Thisisa parameterinthedesignofthedrivecycle,andisspecifiedbythemodeler. abs=absolutevalue 1000=J/kJ

Calculateddensityofair(kg/m3).Thedensityoftheairdependsonthe temperatureandthepressure,whichinturndependsontheelevation.Inthissection wewillderiveanexpressionforairdensityasafunctionoftemperatureandele vation. Webeginwiththedefinitionofdensity(ρ)

M ρ≡ V

where:

M=themassoftheair(gorkg) V=thevolumeoftheair(litersorm3)

Ambientairisclosetoanidealgas,sowecanusetheidealgaslawtofindthe ratioM/V:

PY ⋅V = n⋅ R ⋅TEair

M n = MW air

where:

PY=theairpressure,afunctionofaltitudeY(atmospheres). M=themassoftheair(g) V=thevolumeofthesampleofair(liters). n=thenumber ofmolesinthesampleofair. R=thegasconstant(0.08206liter-atm/mole- K).

TE air =theambientairtemperature(oK).Inourbasecasewewillassume68 oF. M=themassofthesampleofair(grams). MW air =themolecularweightofair(grams/mole).

89 Thuswehave:

M PY ⋅V = ⋅ 0.08206⋅ TEair MW air

PY ⋅ MW air M = ≡ρair,Y 0.08206⋅ TEair V

Theaveragemolecularweightofaircanbecalculatedfromthecompositionof airandmolecularweightoftheconstituents:

MW air = 0.7808 ⋅ 28.02 + 0.2095 ⋅ 32.00 + 0.0093⋅ 39.95 = 28.95 g / mole

where:

0.7808=thenitrogenmolarfractionofdryair. 28.02=themolecularweightofN2. 0.2095=theoxygenmolarfractionofdryair. 32.00=themolecularweightofO2. 0.0093=theargonmolarfractionofdryair. 39.95=themolecularweightofargon.

Withthis,andassumingthatthetemperaturewillbeinputindegreesFahrenheit (oF)(andconvertedinthemodeltodegreesKelvin)wehave:

P ⋅ 28.95 ρ = Y air,Y o TEair()F + 459.67 0.08206⋅ 1.8

Whatremainsistofindanexpressionforpressur e,PY,intermsofthestandard atmosphereatsealevel,andtheelevationYabovesealevel.Assumingthatthedensity ofairisproportionaltothepressure,andthatthegravitationalaccelerationdoesnot varywithaltitude(atleast,notuptoaltit udesthatcarscanreach),thenfromthe physicsofairpressureonecanderivethefollowing(seeanyphysicstextbook):

 ρ  −g⋅ air ,0  ⋅Y  P0  PY = P0 ⋅ e

where:

PY=pressureofairatelevationYmetersabovesealevel(atmospheres).

90 ∞ Po=U.S.standardatmosphereatsealevel(1atmosphereor1.01325 10 5 Pascals). g=thegravitationalconstant(9.807m/sec2). ρair,0 =thedensityofairattheconditionsofthestandardatmosphere,Po (kg/m 3).AccordingtoLutgensandTarbuck(1995),thestandard atmosphereatsealevelisdefinedat15 oC(59 oF).Weinputthis temperature(59 oF)andapressureof1atmosphereintotheequationfor density,above(derivedfromtheidealgaslaw),andcalculatethatthe densityofdryairatsealeveland15 oCis1.2245kg/m 3. Y=theelevation(m).Inourbasecaseweassume60m(about200ft.).  ρ  Thetermintheexponent,−g ⋅  air ,0  ,reducesto0.0001185meters -1(forPo=  P0  1.01325 ∞ 10 5Pascals,theunitthatmustbeusedintheexponent).Withthisreduction, andgiventhatPoinatmospheresisequalto1.0atm,andinputtingtheheightYinfeet ratherthanmeters,wehave:

−0.0001185⋅Y(ft⋅0.3048) PY = e

where:

0.3048=meters/foot.

Andfinally:

e−0.0001185⋅Yft( ⋅0.3048) ⋅ 28.95 ρ = air,Y o TEair()F + 459.67 0.08206⋅ 1.8

Rollingfriction Therollingresistanceworkisthevectorproductofthefrictionalforceandthe distanceoverwhichtheforceoperates.Thefricti onalforceisafunctionofthemass,the gravitationalacceleration,thegrade(i.e.,theangleoftheroadwithrespecttothe gravityvector),thecoefficientoffrictionbetweenthetiresandtheroad,the temperature,andotherfactors.Formally:

WIU ⋅ 9.81⋅ cos[ Gd ⋅0.01745]⋅D ⋅ Cr Er = 1000

where:

91 Er=theenergyrequiredtoovercometherollingfriction(kJ). WIU=thein -useweightofthevehicle(kg).Thisiscalculatedinthesection “Totalweightandtotalmanufacturingcost”. 9.81 =gravitationalacceleration(m/sec2).Weassumethatthisisthesame everywhereontheearth. Gd=theslopeofthegrade(degrees).Thisisaparameterinthedesignofthe drivecycle,andsoisspecifiedbythemodeler. 0.01745=radians/degree. D =thedistanceofthesegmentofthedrivecycle(meters).Thisiscalculatedfrom theuser-inputvelocityandtimeforthesegment. 1000=joules/kJ. Cr=thecoefficientofrollingfriction(dimensionless;discussednext).

Coefficientofrollingfrict ion .Thecoefficientoffrictionisafunctionofthetire characteristics,vehiclespeed,roadcharacteristics,andtemperature.Onthebasisof Gillespie(1992),weestimatethefollowingequationforCr:

 2.5 2.5   Vb   Ve     +      100  100  Cr =  Crf + Crv⋅ 3.24 ⋅  ⋅ CrROAD ⋅CrTEMP  2     

where:

Crf=thespeed-independent(orfixed)rolling -resistancecoefficient.(See discussionofCrv.) Crv=thespeed-dependentrolling -resistancecoefficient.Gillespie(1992) presentsagraphthatshowsCrfandCrvasafunctionoftirepre ssure.We estimatedthecoefficientsataninflationpressureof36psi,thenreduced themby15%toaccountformodestimprovementsICEVs.Weassume thatcoefficientsforEVsarealmost10%lowerthanthe[reduced] coefficientsforICEVs.Theresultsof thisestimationare:

ICEVs EVs Crf 0.0075 0.0070 Crv 0.0025 0.0023

Bycomparison,Ross(1997)estimatesthatanoverallCrfforthe1995Ford Taurusis0.009. Ve=thevelocityattheendofthesegment(mph).Thisisaparameterinthe designofthedrivecycle,andsoisspecifiedbythemodeler.

92 Vb=thevelocityatthebeginningofthesegment(mph).Thisisaparameterin thedesignofthedrivecycle,andsoisspecifiedbythemodeler. CrROAD =theratiooftheaverageroadfrictiononthesu rfaceofinteresttothe averageroadfrictiononaconcretesurface.Theoriginalequationin Gillespie(1992)appliestoconcretesurfaces;wehaveaddedthevariable CrROAD ,theroad -surfacecoefficient,tobeabletoestimateCrforany surface.(CrROADofcourseis1.0forconcretesurfaces.)Accordingto Gillespie(1992),thefrictionofawornconcrete,brick,orcoldasphaltroad is20%higherthanthefrictionofasmoothconcreteroad,andthefriction ofahotasphaltroad50%higher.Inourbase case,weassumeasurface with35%greaterfrictionthanhasconcrete,sothatCrROAD =1.35. CrTEMP =temperatureadjustmenttothecoefficientofrollingresistance (discussednext).

Effectoftemperatureonrollingresistance.Gillespie(1992)andEl lis(1994)show thattherollingresistanceoftiresincreasessubstantiallywithdecreasingtemperature. Gillespie(1992)showsagraphinwhichtherollingresistancedropsbyabout15%asthe tirewarmsbyabout40 oF,andremarksthatbecauseofthis,“itisthereforecommonto warmupthetirefor20minutesormorebeforetakingmeasurements..”(p.112).Ellis (1994)showsagraphofthesourceofenergylossintheGMImpactEV,asafunctionof theambienttemperature,ataspeedof55mph.Theenergylossesattributabletotiresat anambienttemperatureof20 oFareabouttwicethelossesat70 oF.(Presumably,the effectoftemperatureislessatlowerspeeds.) OnthebasisoftheGillespie’s(1992)remark,quotedabove,weassumefirstthat all oftheparametersintherolling -resistanceequationpertainto80 oF,andthenadjust thecalculatedrollingresistanceaccordingtothedifferencebetweentheassumed ambienttemperatureand80 oF.Thefollowingfunctionalformgivesreasonable adjustment factorsforambienttemperaturesfrom -20 oFto120 oF.

80 + 100 CrTemp = TEair + 100

where:

80=thereferenceairtemperature(oF),pertaining,weassume,totheparameter valuesinourrolling -resistanceequation TE air =the assumedambientairtemperature(68 oFinourbasecase)

Gradework Theamountofenergyrequiredtoliftavehicleupagradedependsofcourseon theangleandlengthofthegradeandtheweightofthevehicle:

93 WIU ⋅ 9.81⋅ sin[ Gd ⋅0.01745]⋅ D Egr = 1000

where:

Egr=theenergyrequiredtoliftthevehicleupthegrade(kJ) WIU=thein -useweightofthevehicle(kg).Thisiscalculatedinthesection “Totalweightandtotalmanufacturingcost”. 9.81=gravitationalacceleration(m/sec2). Weassumethatthisisthesame everywhereontheearth. Gd=theslopeofthegrade(degrees).Thisisaparameterinthedesignofthe drivecycle,andsoisspecifiedbythemodeler. 0.01745=radians/degree. D=thedistanceofthesegmentofthedr ivecycle(meters).Thisiscalculatedfrom theuser-inputvelocityandtimeforthesegment. 1000=joules/kJ.

Enginefriction Itisconvenientanalyticallytodefinethreekindsof“sinks”offuelenergyinan ICEV.Intemporalorder,thefirstiscombu stionheatlosttonon -workingpartsofthe engineandeventuallytotheatmosphere 27 .Thisisthedifferencebetweenthehigher heatingvalue 28 ofthefuel,andthework(called“indicated”work)doneonthepiston head.Nextisenergylosttoenginefricti on.Thisisthedifferencebetweenindicated workatthepistonhead,andbrakeworkasmeasuredatthecrankshaft.Finally,energy atthecrankshaftappliestoinertialandfrictionalloadsonthevehicle.Inthecomposite U.S.drivingcycle,thecombus tionlossisthelargest,andthefrictionlossthesecond largest(Ross,1997). Inthissectionweexplainhowweestimatethesecondcomponent,theengine frictionloss.Theenginefrictiondependsonmanyfactors(WuandRoss,1999;Pattonet al.,1989 ),includingseveral,suchasintakemanifoldpressure,thatwecannotmodel easily.WeadoptthesimplemodelsofRoss(1999,1997,1994b)andThomasandRoss (1997),inwhichenginefrictionisafunctionofthedisplacementoftheengine,the temperatur eoftheengine,theload,andtherpm:

27 Aminoramountoffuelevaporatesfromthefueltank,fuellines,andengine,andaminoramountis notcompletelyburnedintheengineandisemittedasunburnedfuel.Theselosses,however,areonly about1%ofthetotalfuelenergyputintoth egasolinetank.

28 Itmattersnotwhetherthehigherorthelowerheatingvalueisused,solongasthechoiceismaintained throughouttheanalysis.(Thehigherheatingvalueincludesthelatentheatreleaseduponthe condensationofthewater -vaporpro ductofcombustion.Thelowerheatingvaluedoesnot.).

94 Efr = Le ⋅Re⋅ Kfr

Kfr = Kfro ⋅Cfr ⋅ Rfr ⋅ Lfr Cfr = 1 +W 1

2  RPM  Rfr = 1 + α ⋅ − 20  60  Kfr' Ts Lfr = 1 + ⋅ Pc ⋅ Kfro Re⋅ Le α = 0.01ifRPM < 1200 α = 0.0001ifRPM > 1200 where:

Efr=theenginefrictionloss,atthepistonhead(kJ -indicated-energy) Le=thedisplacementoftheengine(liters).TheTaurushasadisplaceme ntof3.0 liters;therecentmodel-yearEscort,2.0liters. Re=therevolutionsoftheengine.Thisisestimatedinthesection“Revolutions oftheengineormotor”. Kfr=thefrictionallossperliterdisplacementperrevolution(kJ -indicated- energy/engine -revolution/liter-engine -displacement) Kfr o=thefrictionallossperliterperrevolutionatareferencerpm(1200), temperature(“warmedup”),andengineload(zero).Asexplainedbelow, weassume0.074kJ -indicatedenergy/rev/l. Cfr=theadjustment factorforcoldengines Rfr=theadjustmentfactorforthedifferencebetweentheactualrpmandthe referencevalueof1200 Lfr=theadjustmentfactorforthedifferencebetweentheactualloadandthe referencevalueofzero W1=fractionalincreaseinfrictionwhenengineiscold.WefollowRoss(1997) andassumethatwhentheengineiscold,thefrictionallossis7%greater thanwhentheengineiswarmedup.Weassumethattheenginetakes3 minutestowarmup.Thus,forthefirst180seconds,W1 =0.07;thereafter, W1=0.0. RPM=enginerevolutionsperminute(calculatedbydividingthenumberof revolutionsoverasegmentbythedurationofthesegmentinminutes) Kfr’=thechangeinfrictionalenergyperchangeinpoweroutputatcrankshaft power.(kJ -indicated-energy/kJ -crankshaft).Asexplainedbelow,we assume0.057kJ -indicatedenergy/kJ -crankshaft. Pc=thepowerrequiredatthecrankshaft(kW[kJ/s]).Thisisestimatedinthe section“Poweratenginecrankshaftorfuel-cellorbatteryte rminals”.

95 Ts=thetimeofthesegment(seconds).Thisisaparameterinthedesignofthe drivecycle,andsoisspecifiedbythemodeler.

Inthismodel,theenginefrictiontendstoincreasewithanychangeinrpmaway from1200,andtendstodecrease withanyincreaseinbrakepower,onaccountofthe reductioninair“pumping”friction.TheRPM -dependencetermsarefromThomasand Ross(1997),andtheload -dependenceterms,discussednext,arefromRoss’s(1994ab analysisofPattonetal.(1989). Fri ctionallossperliterperrevolution,referencevalue.ThomasandRoss(1997) assumethatKfr o,basedonthefuelenergy,ratherthantheindicatedenergyatthe pistonhead,is0.24kJ -fuel[LHV]/rev/l.Ross(1994b)analyzesdatafromPattonetal. (19 89)andassumesavalueof0.22.Ross(1999)statesthatfitstodatafromtestsonover 3001990svehiclesindicatethatKfr o,inkJ -fuel[LHV]/rev/l,rangesfrom0.18to0.25. Westartherewithavalueof0.20,whichiswithintherangereportedbyRoss (1999), butonthelowside,ontheassumptionthatthevehiclesthatwearemodelinghave slightlylessfrictionthanhastheaveragevehicle. WemustconvertfromRoss’unitsofkJoffuelenergy(lowerheatingvalue, LHV)perrevolutionperliter,to ourunitsofkJofindicatedenergyperrevolutionper liter.AccordingtoRoss(1997),the“best”indicatedefficiencyforconventionalengines is38%.ThemodelofWuanRoss(1999)producesarangeof34%to39%,dependingon RPMandpower,withvaluestypicalofmostdrivingfallingbetween36%and38% (LHV).Wethereforeassumethat,forthepurposeofconvertingfromRoss’unitsofkJ - fuel[LHV]/rev/ltoourunitsofkJ -indicatedenergy/rev/l,theindicatedefficiencyis 37%(LHVbasis).Thus,0.20x0.37=0.074kJ -indicatedenergy/rev/liter. Frictionallossasafunctionofbrakepower(asaproxyforthrottlinglosses). Ross (1994b)usesdataandmodelsfromPattonetal.(1989)tographtherelationship between:i)theamountoffuelusedtoovercomeenginefriction(inkJ -fuel [LHV]/revolution/liter),andii)thespecificbrakepoweroutputoftheengine(in kJ/revolution/liter).Pattonetal.(1989)definefrictionenergyaswedo:asthe differencebetweenindicatedenergyatthepistonhead,andbrakeenergyasmeasured atthecrankshaft.Thetotalenginefrictiondeclineswithincreasingpowerbecausethe pumping -losscomponentofthetotalfrictionlossdecreasesasthethrottleopens(as powerincreases)andde -constrictstheflowofair(R oss,1994b;Pattonetal.,1989).Ross (1994b)doesnotpresenttheformulaordatapointsthathederivedfromPattonetal. (1989)andusedtoconstructhisgraph.Ross’graphlookslikeastraightline;weassume thatitis,andestimatetheslope(-0.15kJ -fuel[LHV]/kJ -brake -energy)fromhisgraph. (AlthoughwehavethePattonetal.[1989]paper,itissimplerforustouseRoss’s [1994b]analysisofitthantore -doRoss’[1994b]analysis.) Itappears,however,thattherelationshipdepictedinRoss (1994b)graph combinestheeffectofchangesinrpm(asdiscussedabove)withtheeffectofchangesin pumpingloss.Sincewehaveaccountedseparatelyfortherelationshipbetweenchanges inrpmandenginefriction,wewishheretoisolatetherelationsh ipbetweenchangesin pumpingloss(forwhichchangeinbrakepowerisourproxy)andenginefriction.Given thatanychangeinrpmawayfromthereferencevalueof1200increasestheengine

96 friction,wecanassumethat,inRoss(1994b)graphofbrakepowe rvs.friction,the embeddedeffectofrpmisworkingtodampenthedecreaseinfrictionwithincreasing powerduetoreducedpumpingloss.Thus,agraphoftherelationshipbetweenengine frictionandbrakepowerateffectivelyconstantrpmpresumablywou ldhaveasteeper slopethandoesthegraphinwhichtherpmeffectworksagainstthepumping -loss effect.Weassumeaslopeof -0.20kJ -fuel[LHV]/kJ -brake -energy,andmultiplythisby theindicatedefficiency[LHV]of0.37toobtain -0.074kJ -indicated-energy/kJ -brake. Pattonetal.(1989)statethattheirmeasurementsofenginefrictioninclude frictionduetotheoilpump,thewaterpump,andthealternatorwhenitis not charging. Thisimpliesthatoursimplelinearformulationofenginefrictionasafunctionofengine power(fromPattonetal.viaRoss)doesnotincludeworktomeetanyelectricalloadat all.Consequently,whencalculatingenergyconsumption,wemustaddtotheengine frictiontheenergyrequiredtochargethebattery(viathealternator)tomeetall electricalloads. Weassumethattheenginefrictionlossequationsandparametervaluesare independentofthetypeoffuelusedinanICEV. ComparisonofKfr owithidlefuelflowrates. ThevalueofKfratzeropowerand idlerpmcan becomparedwithactualmeasurementsofthefuelflowrateatidle.In Table7weshowthemeasuredfuelflowrateatidleforseveralvehicles,andconvertthe ratetokJ -fuel[LHV]/rev/lforcomparisonwithourestimatedKfr.Atzeropowerand anidlerpmof750,andwithsomeallowancefortheenginebeingcoldduringthefirst fewidlingintervals,weestimatethatKfrisabout0.33(correspondingtoKfr o=0.20). ThiscanbecomparedwiththevaluesinTable7. McGill(1985)measuredtheidlefuelcon sumptionrate,inmilliliters/second,of 151981to1984model-yearcarsandlighttrucks.Thevehicleswerechosentorepresent “64%ofthe1980 -1992population”(p.1).Theaverageenginedisplacementwas3.1 liters,whichisclosetothefleet-averagedisplacementoflight -dutyvehiclesintheearly 1980s(Murrelletal.,1993).Morerecently,Haskewetal.(1996)reportedg/sec emissionsofCO,HC,andCO2fromaFordEscort,aFordMustang,andaFordTaurus, aspartoftheFTPrevisiondatacollection tests.Assumingthatthereformulated gasolinecontained86.6%carbonbyweight,onecancalculatethefuelflowrate,in g/sec,whichinturncanbeconvertedeasilytoml/sec(seeAppendixA). Givenmeasurements(orassumptions)ofml/sec,rpm,andlite rdisplacement, onecancalculateaKfrfuel-usetermwiththefollowingformula:

kJ -fuel[LHV]/revolution/liter-displacement=(ml/sec) ∞ (60sec/min)/(rpm)/ (liter-displacement)/(3785.4ml/gal) ∞ (115,400BTUs[LHV]/gallon) ∞ (1.0548 Joules/BTU)

Thedataandcalculatedfuel-useforeachvehicleareshowninTable7.The calculatedkJ/rev/lfuel-usespansaverywiderange,from0.17 to1.12 -- afactorof morethan5.However,mostofthevaluesofTable7-- especiallythoseforthemore recentvehicles -- tendtofallbetween0.3and0.6,orperhapsabitlessifoneadjuststhe

97 valuestonoloadfromtheelectricalsystem29 .Ourva lueof0.33iswithintheresultant Table -6-basedrangeofabout0.25to0.60,buttowardsthelowend,whichisconsistent withourassumptionofrelativelylowenginefriction. Minimumfuelflowrate(undernegativeload[deceleration]) .Itappearsthat undernegativeload,thefuelflowrateisthesameas,orlessthan,theflowrateatidle. AFordTaurustestedfortheFTPrevisionprojecthadthesamefuelflowrateduring decelerationasduringidle.However,fortheMitsubishiandtheToyotaengi nedata reportedbySantini(1998),thefuel-flowrateatnegativeloadgenerallywaslessthan thefuel-flowrateatzeroload,foranygivenrpm.Forexample,thefuel-flowrateat700 rpmandzeroloadwasslightlyhigherthantherateat700rpmandne gativeload.Ross (1999)suggestsassumingthatthefuel-flowrateundernegativeloadis“afraction”of theidlefuelflowrate. Weassumethattheminimumfuel-flowrateis50%oftheflowrateunderidle (no -load). EVmotorenergyconsumptionatzerotorqueandzerorpm. Weassumethatat zeroloadandzerorpm,anEVmotordoesnotconsumeanypower;i.e.,thatthereisno EVanalogof“idle”fuelconsumptioninanICEV.AccordingtoMore(1999),this generallyisareasonableassumptions,although thereareEVthathaveseparatefield excitationthatconsumespowerevenunderconditionsofzerotorqueandrpm. Thereisasmallamountoffrictionlossinanelectricmotor.However,thelossis sosmallthatitissimplertoincludeitanall -encomp assing“energyefficiency”term ratherthanestimateitseparately.

Revolutionsoftheengineormotor Tocalculatetherevolutionsoftheengineineachsegmentofthedrivecycle,one mustknow:i)thenumberofrevolutionsofthewheels -- afunctionoftheradiusofthe tiresandthedistancetraveled;andii)theratioofrevolutionsoftheengineto revolutionsofthewheels -- afunctionofthetransmissiongearratioandthefinal -drive gearratio. Atzerovelocity(i.e.,whentheengineisjustidling),thenumberofrevolutionsof theengineisequalto:

Is Re = ⋅Ti 60

29 Asnotedabove,ourvaluesdo not includeanyloadduetochargingthebatteryviathealternator.(It accountsforthemechanical -frictionloadofturninganon -chargingalternator -- becausethe alternatoris connectedtothecrankshaftpulley -- butnotfortheresistiveloadofgeneratingpower.)Ontheother hand,intheidletestsreportedinTable7,thealternatormayormaynotbecharging -- wedon’tknow.As wepresentelsewhere,theele ctricalignitionsystemconsumes40W(atthesystem),anelectricradiatorfan consumes60W(atthedevice),andthelights,lamps,radios,wipers,defrosters,andheatershavean installedcapacityof610W.Consideringthis,duringtheidletests,the electricalloadisnotlikelyto exceed200W.Allowingthatthealternator/batterychargingsystemisabout50%efficient,andtheengine 25%,thefuelinputtomeeta200Wdemandwouldbe1.6kW(kJ/sec),orabout0.04kJ/rev/liter.

98 Re=revolutionsoftheengine. Is=theidlingrateoftheengine(revolutionsperminute).Weassume700rpm fortheTaurus,and750 rpmfortheEscort. 60=seconds/minute. Ti=thetimespendidling(seconds).Thisisaparameterinthedesignofthe drivecycle,andisspecifiedbythemodeler.

AtconstantvelocityV1(zeroacceleration),thenumberofrevolutionsofthe engineis equalto:

Gv1 Re = D ⋅ 2⋅ π ⋅ Rt⋅ 0.0254

where:

Re=revolutionsoftheengine. D=thedistanceofthesegmentofthedrivecycle(meters).Thisiscalculatedfrom theuser-inputvelocityandtimeforthesegment. Gv1=thetotalgearratioatvelocityV1(revolutionsofengine/revolutionsof wheel).Thisisdiscussedbelow. Rt=therollingradiusofthetires(inches).TheAllisonGasTurbineDivision (1994)givesthewidthofthetire,theratiooftheheighttothewidth (calledthe“aspectratio”),andthediameteroftherim,forthe1991Taurus andthe1991Escort.Fromthesedata,wecalculatearadiusof12.25inches fortheTaurus,and11.4inchesfortheEscort. 0.0254=meters/inch

Whenthevehicleisaccelerati ngordecelerating,thenumberofrevolutionsis calculatedas: Ve 2 ⋅Gve + SGve −Vb2 ⋅Gvb − SGvb Re = 2 ⋅π ⋅ Rt ⋅ 0.0254 ⋅ 2⋅ A

where:

Re=revolutionsoftheengine. Ve=thevelocityattheendingofthesegmentofthedrivecycle(m/sec).Thisisa parameterin thedesignofthedrivecycle,andisspecifiedbythemodeler. Gve=thetotalgearratioattheendingvelocity(revolutionsof engine/revolutionsofwheel).Thisisdiscussedbelow. SGve=thespeed-gearresultoftheendingvelocity.Thisisdiscusse dbelow. Vb=thevelocityatthebeginningofthesegmentofthedrivecycle(m/sec).This isaparameterinthedesignofthedrivecycle,andisspecifiedbythe modeler.

99 Gvb=thetotalgearratioatthebeginningvelocity(revolutionsof engine/revolu tionsofwheel).Thisisdiscussedbelow. SGvb=thespeed-gearresultofthebeginningvelocity.Thisisdiscussedbelow. Rt=therollingradiusofthetires(inches).Thisisdiscussedinthesection “Revolutionsoftheengineormotor”. 0.0254=mete rs/inch. A=vehicleaccelerationoverthesegment(m/sec2).Thisiscalculatedbelow.

Thetotalgearratio. Thetotalgearratioisequaltotheengine:transmissionratio (whichdependsonthegear)multipliedbythetransmission:wheelratio(thefi nal -drive ratio,whichisfixed).TheAutomotiveHandbook (1993)listsengine:transmissionratios andfinaldriveratiosfortheFordProbeandtheFordEscortGhia,Gillespie(1992) showsthegearratiosforthe1989TaurusSHO,andvariousautomotivewebsitesshow thatthefinaldriveratioontheTaurusis3.77.Withthisinformation,weuseGillespie’s dataforthe1989TaurusSHO,andtheAutomotiveHandbook (1993)datafortheFord Escort.Thedataareshowninthefollowingtable.TheratiosshownfortheEVsareour assumptions,basedonthetotalgearratiosfortheFordMEVpowertrain(Ford,1991) andtheETX -1powertrain(Ford,1987). Onemustknowwhenshiftsfromonegeartoanotheroccur.Thus,wehave constructedalook -uptablethathasthetotalgearratioineachgearandagear -shifting scheduleasafunctionofvehiclespeed.ThomasandRoss(1997)useaschedulewith shiftsat8.0m/s(18mph),11.2m/s(25mph),17.9m/s(40mph),and22.3m/s(50 mph).Oursissimilar 30 .:

ICEVs: First Second Third Fourth Fifth Gear 0.0 7.2 12.5 18.8 23.7 VelocityVatshiftpoint(m/s) 12.0 7.8 5.2 3.8 2.8 Totalgearratioaftershift, Taurus 12.1 7.3 4.9 3.6 2.9 Totalgearratioaftershift, Escort EVs: 0.0 13.4 13.4 13.4 13.4 Speedat shiftpoint(m/s) 14.0 9.0 9.0 9.0 9.0 Totalgearratioaftershift

Thespeed-gearformula.Thespeed-gearformulaiscalculatedforeachgear. Essentially,thespeed-gearformulaaccountsforthechangeintherateofrevolutionas oneshiftsfromon egeartothenext.Forfifthgear,theformulais:

30 YamaneandFuruha ma(1998)includegearratioandshiftscheduleintheiranalysisoftheeffectoffuel - tankweightontheperformanceofhydrogenvehicles.

100 2 2 2 2 2 2 2 2 SG5 = VG2 ⋅G1 + (VG3 −VG2 )⋅ G2 + (VG4 − VG3 )⋅G3 + (VG5 − VG4 )⋅G4 − VG5 ⋅G5

where:

SG5=thespeed-gearresultforfifthfear. VGi =thevelocityatthepointofshiftintogear(G)i.Thisisshowninthetable above. Gi =Ratioingeari(revolutionsofengine/revolutionsofwheel).Thisisshown inthetableabove. i=1st,2nd,3rd,4th,or5thgear.

Thespeed-gearformulaefortheothergearsaresimilar,exceptthatthetermsfor thenumericallyhighergearsareomitted.

Air- conditioningenergy Theamountofenergyusedbyairconditioningduringeachsegmentofthe drivecycleiscalculatedsimplyas:

Fac ⋅ Pac⋅Ts Eac = [ICEVs] Eca

Fac ⋅ Pac⋅Ts Eac = [EVs] Eba

101 where:

Eac=theenergydemandoftheairconditioningsystem,overthedrivecycle segment,measuredattheenginecrankorbatteryorfuel-cellterminals (kJ) Fac=oftotalmilesoftravel,thefractiondrivenwiththea/cinuse(weassu meit thatitruns1/3ofthetimeintheJunethroughSeptember,orfor11%of totalannualdriving) Pac=theaverageinputpowertothea/csystemduringthecoolingseason(kW; notethatthisincludes“internal”or“parasitic”lossesbymotor, compress ors,controllers,fans,etc.)(discussedbelow) Ts=thetimeofthesegment(seconds).Thisisaparameterinthedesignofthe drivecycle,andsoisspecifiedbythemodeler. Eca=theefficiencyoftheenergytransferfromthecrankshafttotheair - con ditionermotor.Weassumethatthetransferis98%efficient,because theair -conditionercompressorinanICEVrunsdirectlyoffthecrankshaft, withessentiallynoenergyloss. Eba=theefficiencyoftheenergytransferfromthebatteryorfuel-cellterminals tothea/csystem(assume0.98).Weassumethatthea/csystemincludes itsowncontrollerorinverter,sothatthereisonlyasmallresistanceloss fromthepowersourcetothea/csystem.(Notethatthisassumption requiresthatourmeasureof theoperatingpowerofthea/cincludeall “internal”lossesforthemotor,controller,compressor,fans,andsoon. Theselossesmaybeontheorderof20%ofthetotalinputpowertothe system[DieckmannandMallory,1993].)

Powerinputtoa/csyste m. AccordingtoGlacierBay(1998b),thepower necessarytocoolamid -sizevehicleonawarmCaliforniadaywhiledrivingatroughly 30mphis586W.(Thisapparentlydoesnotincludeany“internal”or“parasitic”losses.) Thispowerproduces6000BTU/h rfromtheheatpump.DieckmannandMallory(1993) testedvariable -speedair -conditioningsystemsintheG-Van,TE -Van,andtheETX -II, travelingat30mphwithafullsolarload,andfoundthatthetotal steady-state input energyrequirementwasabout900 Wat90 oFand50%relativehumidity,and2000 - 3000Wat110 oFand40%RH.(Thesefiguresinclude“parasitic”consumptionofaround 300W.)Theenergyconsumptionofthea/csystemreducedtherangeofthevehicleby about10%at90 oF,andbymorethan20 %at110 oF(DieckmannandMallory,1993;see alsoGris,1994). AssumingthattheEVisrelativelywellinsulated,andequippedwitharelatively efficienta/csystem,butallowingfortheextra“transient”loadoftheinitialcooling,we assumethatthea/csysteminourbaselineEVsconsumesonaverage1000W,tocoola mid -sizevehicleinthesummerinCalifornia.(OnealsocanarguethatEVuserswillbe inclinedtotradeoffalittlecomfortforextendedrange,butwedonotassumesohere.) Thismin oruseofairconditioningturnsouttohavearelativelysmalleffecton vehicleefficiencyandlifecyclecost:itreducesvehicleefficiencybyabout4%,increases

102 batteryweightbyabout10k,or3%,andincreasesthebreak -evengasolinepriceby about $0.10/gallon.

Averageelectricalpowerforauxiliariesandaccessories,excludingairconditioning Manydevicesinamotorvehicledrawasmallamountofelectricalpower,which ultimatelymustbesuppliedbytheenergyinthefuelorthebattery.Unless specifically statedotherwise,weassumethatthepowerconsumptionofauxiliariesandaccessories inanEVisthesameasthatinanICEV. Thetrip -averageelectricalpowerforauxiliariesandaccessories(inkWofpower fromthebatteryorfuelcellte rminals,orengineshaft),excludingairconditioninginall vehicles,andfossil -fuelheatinginEVs(whicharemodeledseparately),iscalculatedas:

Pps Pig + Po + Ppb + + Pl ⋅ Fl + Ph ⋅ Fh⋅ Fhp V Pau = ave Ace

where:

Pau=theaverageelectricalpowerov erthewholetrip,excludingair conditioning(kW).fromthebatteryorfuelcellterminalsorengine crankshaft). Pig=thepowerconsumptionoftheelectricalignition(kW).TheBosch AutomotiveHandbook (1993)reportsthatelectricalignitionconsumes 0.04 kW.WeusethisestimateforICEVs,andofcourseassume0.0kWfor EVs. Po=thepowerconsumptionofotherelectricalmotororengineauxiliariesatthe device(kW).TheBosch AutomotiveHandbook (1993)reportsthatanelectric radiatorfanconsu mes0.06kW.WeusethisestimateforICEVs,and assumethatthemotorandcontrollerauxiliaryequipmentinanEV(fans, switches,etc.)consume0.22kWofpower. Ppb=theaverage“base”powerconsumptionofpowersteeringandpower brakes(kW).Weassu meanaverageof0.04kWforEVsandICEVs. Pps=theaverage -speed-dependentpowerconsumptionofpowersteeringand powerbrakes(kW -mph).Weassume0.40kW -mphforEVsandICEVs. Vave =theaveragespeedoverthedrivecycle(totalmilesdividedbytota lhours) Pl=theinstalledpowercapacityoflights,lamps,radio,windshieldwipers,and defroster(kW).TheBosch AutomotiveHandbook (1993)reportsthatthese haveaninstalledcapacityof0.49kW.Weusethisestimateforboththe EVsandtheICEVs. Fl=thefractionoftotaltriptimethatthelights,lamps,radio,windshieldwipers, addefrostoperateatfullpower.Weassumethattheseoperate25%ofthe totaldrivingtime.TheBosch AutomotiveHandbook (1993)appearsto assumethattheseopera teabout50%.

103 Ph=theinstalledpowercapacityoftheelectricalheatingsystem(kW).The Bosch AutomotiveHandbook (1993)reportsthattheheatingsysteminan ICEVconsumes0.12kW.WeusethisestimatefortheICEVs.Inourbase case,inwhichtheEVusesapropane -fueledheater,thisparameteris0.0 fortheEVs.However,theparameteris“active”inthemodel,sothatifthe userwishestospecifyanelectricalheatingsystemfortheEV,hecanenter avaluehere(weassume0.30kW). Fh=thefractionofmilesandtripsinthe(equivalentofthe)designambient temperature(assume0.20forthebasecase;seealsothesectionontheuse fossilfuelforheating). Fhp=thefractionofthemaximumelectricalheaterpowerused,onaverage.We assumethatwhentheheatingsystemintheICEVison,thatitoperatesat 50%ofitsmaximumpoweronaverage.Inourbasecase,inwhichtheEV usesapropane -fueledheater,thisparameteris0.0fortheEVs.However, theparameteris“active”inthemodelfor EVs,incasetheuserwishesto characterizeanelectricalheatingsystemfortheEV. Ace=theefficiencyofelectricitysupplytotheaccessories,fromthealternatorin ICEVs,andfromthefuelcellorbatteryterminalsinEVs.Thisisdiscussed below .

Notethatbecauseourbase -caseEVshaveafossil -fuelheater,ratherthanan electricalheat -pumpandresistance -heatsystem,theparametersPhandFhpare0.0in theEVbasecase.(Theparametersforconsumptionoffossil -fuelforheatingare discuss edinthesection“Fuelandelectricity”.Thereisaswitchinthemodelwhich specifieseitherafossil -fuelorelectricheatingsystem.) Efficiencyoftheaccessoryelectricalsystem. InanICEV,someelectricalsystems arerunoffthealternatordirectly,andsomearerunoffthe12 -Vchassisbattery,which ischargedbythealternator.Alternatorsareabout50 -60%efficientatconverting mechanicalenergyfromthecrankshaftintoelectricalenergytothebattery(Bosch AutomotiveHandbook ,1993),and 12 -VPb/acidbatteriesareabout75%efficient.We assumethathalfoftheelectricalsystemsrunoffofthealternatordirectly,andhalfrun offthe12 -Vbattery/alternatorsystem,whichresultsinanoverallaverageelectrical efficiencyof:0.5 ∞ 0.55 + 0.5 ∞ 0.55 ∞ 0.75=0.48.InanEV,thelow -powerelectricalsystems willrunoffofa12 -Vchassisbattery,whichwillbechargedbythemaintractionbattery viaadc -dcconverterthatwillreducethevoltage.Achassisbatteryisabout75% efficient,andadc -dcconverterabout85%efficient.Note,again,thatweassumethatthe airconditioner,becauseofitsrelativelyhighpower,isrundirectlyoffofthebattery,the fuelcell,ortheengine. AlloftheestimatesofelectricalpowerconsumptionfromtheBosch Automotive Handbook (1993)areestimatesof“absolute”orinstalledcapacity.Theinstalledcapacity ofcoursedoesnotaccountforthefractionoftimethatanaccessory(suchasthelights) areused.

104 Finally,notethatwehaveestimatedtheconsumptionofpowerbrakesand powersteeringasafunctionoftheaveragespeed,ontheassumptionthatthehigherthe averagespeed,thelessthebrakesandthesteeringareused.

Batteryheating Asdiscussedelsewhereinthisreport,Pb /acidbatteriesloseanappreciable amountofcapacityattemperaturesbelowabout40 oF.Toavoidthislossofcapacity, batteriesusedinverycoldclimatesshouldbeinsulated,andifnecessaryheated.NiMH batteriesprobablycanbekeptwarmenoughby managingtheventilationsystemto retainheat. Inourbasecase,weassumethatEVsareusedincomparativelywarmclimates, andhencedonotrequirebatteryheatingsystems.However,inascenarioanalysis,we considerthetotalinitialandoperatingco stofinstallingandusingabatteryinsulation andheatingsystem. Thecostandweightoftheheatingsystemarediscussedinthesection “Adjustmentstothe1989weightandcostbaselineinthisreport”;here,wediscussthe energyrequirementsofheati ng.Garabedian(2000)reportstheenergyconsumptionof batteryheatersonSolectria -ForceEVsoperatedintheNortheasternU.S.,asafunction oftheambienttemperature:about2-3kWh/dat -10.4 oC,1.5-2.5kWh/dat -4.4 oC,1.5 to2.0kWh/dat -1.6 oC,andabout0.5kWh/dayat4.6 oC.Jelinski(1996)reportsthata NissanEVequippedwithaninsulatedbatteryboxandfour50Wbatteryblankets consumed1-2kWhpernightwhentheambienttemperaturewaslessthan -5 oC.The energyconsumptionprobably dependsalsoonthesizeanddesignofthebattery,but notinanobviousway,becauseasmallerbatterytakeslessenergytoheatthanalarger battery,butalsoretainslessheat.Wethereforeassumethatthedailyelectricity consumptionisafunctiononlyoftheambienttemperature,andonthebasisofthedata inGarabedian(2000)andJelinski(1996)estimatethefollowing:

Dbh⋅ (3.30 − 0.074 ⋅TE ) BHEm = air AVMT

BHEm ≥ 0

where:

BHEm=theaverageelectricityconsumptionofthebatteryheater overthe courseoftheyear(kWh -ac/mi) Dbh=thenumberofdaysperyearthatthebatteryheaterisneeded(assume50 forthebattery -heatingscenarioanalysis) AVMT=theannualaveragenumberofmilesdrivenbythevehicleoveritslife (equaltolifeti memilesdividedbylifetimeyears) TE air =theaverageambientairtemperatureondayswhenthebatteryheateris used(oF;assume20 oFforthebattery -heatingscenario)

105 Theannualcostofelectricityusedforbatteryheating,plustheannualizedcost of theheatingsystem,addonly0.05to0.10cents/miletothelifecyclecostofEVs. Ahigh -temperaturebattery,suchasLi -Al/Fe -S,orNa -S.,mustbeheatedtobe maintainedatitsoperatingtemperature.Inthemodel,theaverageenergyrequirement for maintainingthetemperatureoftheLi -Al/Fe -Sbatteryiscalculatedasasimple functionofthethermallossperunitofbattery,thesizeofthebattery,andthestand time:

TLB ⋅ ESTB ⋅ HLT BHEm* = C/3 TVMT ⋅ EFFRE

where:

BHEm*=theave rageelectricityconsumptionrequiredtomaintainthe temperatureofahigh -temperaturebattery(kWh -ac/mi) TLB=thethermallossofthebattery(kWh -lost/kWh -battery;weassume0.0030 [theU.S.AdvancedBatteryConsortiumgoalis0.0032]) ESTB C/3 =thenominaltotalenergydischargecapacityofthenewtraction battery,measuredattheC/3dischargerate(kWh;discussedinthesection “weightoftheEVtractionbattery”) HLT=averagehoursofheatlosspriortoaveragetrip,afterreachinglowest allow abletemperature(weassume3inthebasecase) TVMT=averagevehiclemilespertrip(intheFUDS,whichisourbase -case drive -cycle,thetripis7.4miles) EFF RE =theefficiencyofresistanceheating(kWh -heat -to -battery/kWh -ac; assume95%)

Once − throughefficiencyfromthebattery(orotherenergy -storagesystem)or fuel − celltothewheels(excludingstoragedeviceitself) TheenergyefficiencyoftheEVpowertrain,fromthebatteryorfuel-cell terminalstothewheels -- i.e.,theefficiencyof themotorcontroller,themotor,andthe transmission -- iscalculatedastheproductoftheefficiencyofthecontroller,motor,and transaxle:

Pe = Ce ⋅ Me ⋅Te

where:

Pe=theefficiencyofenergytransmissionfrombatteryorfuelcellterminalsto wheels.

106 Ce=theefficiencyoftheelectric -motorcontroller.Thisiscalculatedsecondby secondfrommapsofinverterefficiencyasafunctionoftorqueandrpm. SeeAppendixA. Me=theefficiencyoftheelectricmotor.Thisiscalculatedsecondbysecond frommapsofmotorefficiencyasafunctionoftorqueandrpm.See AppendixA. Te=theefficiencyofenergytransmissionfrommotortowheels.Thisis calculatedsecondbysecondonthebasisofthemapoftheFor dMEV transaxleefficiencyasafunctionofmotoroutputtorqueandrpm.See AppendixA.

Accelerationanddistance Acceleration. Theaccelerationovereachsegmentofthedrivecycleissimply:

Ve − Vb A = Ts where:

A=theaccelerationoverthedrive -cyclesegment(m/sec2). Ve=thevelocityattheendofthesegment(m/sec).Thisisaparameterinthe designofthedrivecycle,andsoisspecifiedbythemodeler. Vb=thevelocityatthebeginningofthesegment (m/sec).Thisisaparameterin thedesignofthedrivecycle,andsoisspecifiedbythemodeler. Ts=thetimeofthesegment(seconds).Thisisaparameterinthedesignofthe drivecycle,andsoisspecifiedbythemodeler.

Notethatthiscalculatio nassumesthattheaccelerationisconstantovereach segmentofthedrivecycle.Or,putanotherway,themodelerissupposedtodescribe segmentsofconstantacceleration. Distancetraveled.Thedistancetraveledovereachsegmentofthedrivecycleis:

Ve +Vb D = ⋅ Ts 2

where:

D=thedistancedrivenoverthesegment(meters) Ve=thevelocityattheendofthesegment(m/sec).Thisisaparameterinthe designofthedrivecycle,andsoisspecifiedbythemodeler. Vb=thevelocityatthebeginningofthesegment(m/sec).Thisisaparameterin thedesignofthedrivecycle,andsoisspecifiedbythemodeler. Ts=thetimeofthesegment(seconds).Thisisaparameterinthedesignofthe drivecycle,andsoisspe cifiedbythemodeler.

107 Notethatthiscalculationassumesthattheaccelerationisconstantovereach segmentofthedrivecycle.

MODELOFVEHICLEPER FORMANCE

Overview Theperformanceofthevehicleismeasuredastheamountoftimethatthe vehicletakestoacceleratefromanybeginningspeedtoanyendingspeed,overany grade.ThistimeiscalculatedforthebaselinegasolineICEV,theAFICEV,andtheEVs. Thepurposeofthisistoshowtheperformanceofthevehiclegiventhemaximum powerspecifi edbytheuser. Themaximumpowerofthevehicle-- themaximumhorsepowerattheengine crankshaftintheICEVs,andthemaximumkWatthebatteryorfuel-cellterminalsin theEVs -- isaninputordesignvariable.Giventhismaximumpoweroutput,andth e averagevelocityovertheperformancetest,themodelestimates(crudely)theaverage powerovertheperformancetest.Withanestimateoftheaveragepower,andother calculatedorinputvehiclecharacteristics(suchasvehicleweightanddrag),themod el calculatesthetimeovertheperformancetest.Theuserthencancomparethe performancetimeoftheEVsorAFICEVwiththeperformancetimeofthegasoline ICEV.Iftherelativeperformanceishigherorlowerthanisdesired,theusercanre - specifyth emaximumpoweroftheEVorAFICEVtoproducethedesiredrelative performance.Alternatively,theusercanspecifythattheEVshavewhatevermaximum powerisneededtoresultinthesameacceleration(performancetime)asthebaseline ICEV.

Theperform ancecalculation Time.Themeasureoftheperformanceofthevehicleisthetimerequiredto acceleratefromabeginningvelocityVbtoanendingvelocityVe:

Ve − Vb Tp = Ap

where:

Tp=thetimerequiredforaccelerationintheperformancetest(seconds) Ve=thevelocityattheendofthetest(m/s).Thisisspecifiedbythemodeler. Vb=thevelocityatthebeginningofthetest(m/s).Thisisspecifiedbythe modeler. Ap=theaccelerationovertheperformancetest(m/sec2).Thisispresentednext.

Acceleration. Theaccelerationovertheperformancetestiscalculatedonthe basisoftheaverageavailablepower,andtheloadsonthevehicle:

108 Pavep ⋅ 0.746 ⋅Tep − Fad − Fr − Fgr Vap Ap = [ICEVs] Mit

Tep = 0. 80 + P max− adj ⋅(TemICEV − 0. 80)

Pavep ⋅ Paup ⋅ Pep − Fad − Fr − Fgr Vap Ap = [EVs] Mit

Po Paup = Ace

Pep = 0.65 + P max− adj⋅ ()Pem − 0.65

Pem = Mem ⋅Cem ⋅TemEV where:

Pavep=theaveragepoweravailableovertheperformancetest(discussed belo w)(hpfortheICEVs,kWfortheEVs) 0.746=kW/hp. Paup=inanEV,thepowerrequirementofelectricmotorauxiliariesthat must operateduringtheperformancetest(kW).AccordingtotheBosch AutomotiveHandbook (1993),performanceismeasuredwithonlynecessary accessoriesoperating,whichmeansthatthelights,defrost,radio,wipers, andthelikearenoton.(InICEVsPaup=0,becauseenginebrakepoweris measured net ofobligatoryaccessories.) Tep=theaverageefficiencyoftheICEVtransmiss ion,overtheperformancetest. Weassumethatthisisrelatedtotheefficiencyatthemaximumpower (seediscussionbelow). Pep=theaverageefficiencyoftheEVpowertrain,overtheperformancetest.We assumethatthisisrelatedtotheefficiencyat themaximumpower(see discussionbelow). Vap=theaveragevelocityovertheperformancetest(m/s) Fad=theair -resistanceforce(kiloNewtons).Fadiscalculatedusingtheequation forEad(energy),withoutthedistancetermD,becauseFad=Ead/D. Fr =therolling -resistanceforce(kiloNewtons).Friscalculatedusingthe equationforEr(energy),withoutthedistancetermD,becauseFr=Er/D.

109 Fgr=thegradeforce(kiloNewtons).FgriscalculatedusingtheequationforEgr (energy),withoutthedis tancetermD,becauseFgr=Egr/D. Mit=thetotaleffectiveinertialmassofthevehicle(accountingforrotational inertiaoftires,androtationalinertiaoftheengine)(kg).Theinertialmass canbederivedfromtheinertialenergy,whichisgivenelsewhereinthis Ei  Mw'  report: Mit = =WIU ⋅ 1+ Nw ⋅ + C ⋅G2  A ⋅ D  2 

Po=thepowerconsumptionofthemotorandcontrollerauxiliaryequipmentin anEV(fans,switches,etc.).Thisisestimatedinthesection“Average electricalpowerforauxil iariesandaccessories,excludingair conditioning”. Ace=theefficiencyoftheelectricitysupplytotheauxiliariesfromthefuelcellor batteryterminalsinEVs.Thisisestimatedinthesection“Average electricalpowerforauxiliariesandaccessori es,excludingairconditioning. Pmax -adj=themaximum -poweradjustmentfactor.Asexplainedbelow,this factorisacrudeestimateoftheratiooftheactualaverageavailable power fromtheengineormotor,overtheperformancetest,tothemaximum poweroftheengineormotor. Pem=theefficiencyoftheEVpowertrain,frombatteryorfuelcellterminalsto wheels,undermaximumpower. Mem,CemandTemEV ,aretheefficiencyofthemotor,controller,andEV transmissionundermaximumpower.Thismaximum -powerefficiencyis lookedupfromamapofefficiencyasafunctionoftorqueandrpm(see thediscussion,inAppendixA,ofefficiencymaps). TemICEV =theICEVtransmissionefficiencyatmaximumpower.Onthebasisof datainGarveyandStudzinsky(19 93),weassumeavalueof95%.

Estimationoftheaverageavailablepowerovertheperformancetest,giventhe maximumpower Ifthemaximumpowerofamotororenginewereavailableinstantaneouslyatall vehiclespeeds,then,inthecalculationoftheaccelerationintheperformancetest,one simplywouldusethemaximumpower.However,themaximumengineormotor powerisnotavailableinstantaneouslyatallvehiclespeeds,butratherisavailableonly ataparticulartorque -rpmpoint(inthecaseofICEVs),orwithinacertaintorque -rpm band(inthecaseofEVs).Thismeansthateitheronemustcalculatetheavailablepower second -by -secondovertheperformancetest,orusesomeapproximationoftheaverage availablepoweroverthetestasafunction ofthemaximumpower.Wechoosethe latter. Aplotofmaximumpowerversusvehiclespeed,duringaconstantfull -power acceleration,looksquitedifferentforEVsthanforICEVs,onaccountofthedifferent torquecharacteristicsofelectricmotorsversu sICEs.Themaximumtorqueofanelectric motorisavailablefromzerorpmtomoderaterpm(about3,000to4,000rpm);beyond thismoderaterpm,theavailabletorqueislessthanthemaximumavailableatthelower

110 rpm(AppendixAtables;Lessteretal.,19 93).Bycontrast,theavailabletorqueofanICE increaseswithrpm,beginningatzerorpm,untilthemaximumtorqueisreachedat moderatelyhighrpm;atstillhigherrpm,theavailabletorqueislessthanthismaximum (Bosch AutomotiveHandbook ,1993). Asaresultofthesetorquecharacteristics,thespeedatwhichanEVreachesit maximumpowerislowerthanthespeedatwhichanICEVreachesitmaximumpower. InthecaseofEVs,themaximumpowerapparentlyisreachedat1/3to1/2ofthetop - endspeed(seeAppendixAtables),whereasinthecaseofICEVs,themaximumpower isreachedatspeedsmuchclosertothetop -endspeed.This,inturn,meansthat,given anEVandICEdrivetrainofequalmaximumpower,theEVwilloutperformtheICE, especiallyat lowerspeeds.Thus,accordingtoLessteretal.(1993,p.171),“a100 -hp inductionmotordrivecangiveperformancesimilartoa150 -hpICEasitaccelerates.” ThegraphinLessteretal.(1993)actuallyshowsthata100hpelectricmotorwillout - accele ratea165 -hpICEfromzerotoanyspeedupto45mph.Thenominallymuch - higherpoweredICEisfasteracceleratingtospeedsabove45mph.Thisiswhatone wouldexpectonthebasisofthetorquecurves. Ifwedonotcalculatetheaccelerationsecond -by -second,onthebasisofthe availabletorque,thenwemustcalculatetheaccelerationovertheentiretestonthebasis oftheaveragepoweroverthetest.Todothis,weneedtofindarelationshipbetween themaximumpowerpoint,whichwepick,andtheaveragepower,asafunctionof someparametersofthetest.ThisrelationshipwillbedifferentforEVsandICEVs. Wethereforeassumethattheaveragepowerisequaltothemaximumpower multipliedamaximum -powerpointbyanadjustmentfactor,whichfact orisafunction oftheaveragespeedovertheperformancetest:

Pavep = P max⋅ P max− adj

 Vap  E2 P max − adj = min ,1  E1 

where:

Pmax=themaximumhorsepower(hp)attheenginecrankshaftintheICEVs, andthemaximumkWatthebatteryorfuel-cellterminalsintheEVs.This ischosenbythemodelersoastogivethedesiredperformance. the“min[]”functionensuresthattheadjustmentfactorisnotgreaterthan1.0.

ICEV EV E1 30 20 E2 0. 55 0.20

othertermsaredefinedabove

111 Withthesefunctions,thehighertheaveragevelocity,thehighertheadjustment factor.ThelowerdenominatorandexponentintheEVfunctionresultsinahigher adjustmentfactorfortheEV.TheadvantageoftheEVincreasesastheaveragevelocity, Vap,decreases. Theseadjustmentfactorsarereasonablyfaithfultothedifferences,discussed above,betweenICEVsandEVs,andalsoresultina0-60level-groundaccelerationtime consistentwithpublishedvaluesfo rtheEscortandTaurus(Edmunds,1999). Nevertheless,theadjustmentsarecrude,andthereadershouldkeepinmindthatour performancecalculationsdonotactuallysimulatethesecond -by -secondavailable power. Wemakeasimilaradjustment(shownelsewhereinthissection)toestimatethe averagedrivetrainortransmissionefficiencyasafunctionoftheefficiencyunder maximumpower. Asdiscussedinthesection“WeightoftheEVtractionbattery,”thebatteryis designedtosatisfytheperformanceta rgetsonthebasisoftheperformanceofa new battery.Neartheendofitslife,thebatterymayhaveanoticeablylowerpeakpower. Wedonotaccountforthishere.

Calculatedfuel-cellorbatteryorenginepowerrequiredtodelivertheaccelerationof gasolinevehicle Theprecedingcalculationstellusthevehicleperformancegivenanassumed maximumpoweroutput.Italsoisinterestingtodeterminethemaximumpoweroutput thattheAFICEVortheEVsmusthaveinordertohavethesameperformanceasthe baselinegasolineICEV.ThepowerrequiredforequalperformancebytheEVis calculatedas:

(Fad + Fr + Fgr + Mit⋅ Ap )⋅ Vap ICEV + Paup P max* = Pem P max− adj

where:

Pmax*=themaximumpowerrequiredfromthefuel-cellorbatteryintheEVor theengineinth eICEVtodelivertheaccelerationofthebaselinegasoline ICEV(assumingconstantvehicleweight)(kW).

Ap ICEV =theaccelerationoftheICEVovertheperformancetest(m/sec2) allothertermsaredefinedabove.

Calculatedaveragevelocityinperformancetest Theaveragespeedovertheperformancetestisatermintwooftheequationsin theperformanceanalysis,andsoiscalculatedseparatelyhere:

Ve + Vb Vap = 2

112 wherealltermsaredefinedabove.

Notethat thiscalculationassumesconstantacceleration.

113 PERIODICOWNERSHIPA NDOPERATINGCOSTS

The“periodic”ornon -investmentcostsofamotorvehicle-- maintenanceand repairs,insurance,fuelandoil,tires,parking,tolls,fees,fines,andtaxes -- accountfor roughlyhalfofthetotallifecyclecostpermile.Mostofthesenon -investmentcostsare differentforEVsthanforICEVs.Consequently,toproperlycomparethelifecyclecosts ofEVsandICEVs,onemustconsidertheperiodiccostsaswellastheinitialinvestment costs. Thereactuallyarefewcomprehensive,recentstudiesofthefulllifecyclecostsof EVsvs.ICEVs.Lipman(1999a)reviewsthestudiesfromthemid1990s,andfindsthat mostoftheanalysesofperiodiccostsarefairlysimple ,andbasedmainlyonliterature reviews.Forexample,in1995,theU.S.DOE(1995)publishedalifecyclecostanalysis similarinoutlinebutmuchlessdetailedthantheonepresentedhere.Cardullo(1993) describesalifecyclecostmodelthatmightbesimilarinoutlinetotheonedescribed here.ThebestoftherecentlypublishedlifecyclecostanalysesisthatbyArgonne NationalLaboratory(Vyasetal,1998). Inlightofthis,thereisaneedforadetailed,originalanalysisofperiodiccosts. Weha veattemptedsuchananalysishere.

MAINTENANCEANDREPA IRCOSTS

Introduction Thecostofmaintainingandrepairingamotorvehicleisoneofthelargestcosts ofoperatingamotorvehicle,onaparwiththecostoffuelandthecostofinsurance. Becausethemaintenanceandrepair(m&r)costisrelativelylarge,andisdifferentfor EVsthanforICEVs,itisimportanttoestimateitaccurately. Inthissection,wedefinearelevantsetofm&rcosts,estimateayear -by -yearm &rscheduleforthe baselinegasolinelight -dutyICEV,andthenestimatem&rcostsfor theEVrelativetotheestimatedm&rcostsforthebaselinegasolineICEV.Wedefinem &rcostswiththeobjectiveofidentifyingthekindsofcoststhatprobablyaredifferent forEV sthanforICEVs.ThecoststhatwethinkarethesameforICEVsandEVsweput intoseparatecategories. Thereareseveralsourcesofultimatelyoriginaldataonm&rexpendituresfor motorvehicles,butbyfarthemostcomprehensive,detailed,andaccu ratesourceisthe BureauoftheCensus’quinquennial CensusofServiceIndustries and CensusofRetail Trade. WeusetheCensus’datatoestimatem&rcostsperLDVperyear,andthen comparetheresultswithestimatesbasedonotherindependentdata.Wethenconsider estimatesbyFHWA(1984)totransformtheCensus’estimatesintoayear -by -yearm&r costschedule.

114 Whatwecountasmaintenanceandrepaircostsforlight -dutyvehicles(LDVs) IntheBureauoftheCensusclassificationsystem,thereare twomajorindustry groupsthatprovideautomotivepartsandservices:service -sectorSIC(Standard IndustrialClassification)75,“AutomotiveRepair,Services,andParking”,andretail - sectorSIC55,“AutomotiveDealersandGasolineServiceStations”.The searefurther brokenoutasfollows(OfficeofManagementandBudget[OMB]1987):

7513 Truckrentalandleasing,withoutdrivers 7514 Passengercarrental 7515 Passengercarleasing 7519 Utilitytrailerandrecreationalvehiclerental 7521 Automobil eparking 7532 Top,body,andupholsteryrepairshopsandpaintshops 7533 Automotiveexhaustsystemrepairshops 7534 Tireretreadingandrepairshops 7536 Automotiveglassreplacementshops 7537 Automotivetransmissionrepairshops 7538 Generalaut omotiverepairshops(includingrepairofdieseltrucks) 7539 Automotiverepairshops,notelsewhereclassified 7542 Carwashes 7549 Automotiveservices,exceptrepairandcarwashes(includesemissionstesting andrepair,diagnosticcenters,inspection services,lubricatingservices,road service,towing,rust -proofing,windowtinting,andundercoating.

551 Motorvehicledealers(newandused) 552 Motorvehicledealers(usedonly) 553 Autoandhomesupplystores 554 Gasolineservicestations 555 Boatdealers 556 Recreationalvehicledealers 557 Motorcycledealers 559 Automotivedealers,notelsewhereclassified

Thetaskhereistoidentifyorestimate,withineachoftheSICsabove,thosecosts (reportedasreceiptstotheindustry),formot orvehicleservices,repair,andparts,that pervehicleare:

•thesameforEVsandICEVs; •uniquetoICEVs; •commontobutnotthesameforEVsandICEVs

115 Notethat,inthecaseoftheretailSICs(551to559),weareinterestedonlyin receiptsfor servicesorparts;wearenotinterestedhereinreceiptsforsalesofvehicles orfuels. Note,too,thattherearesomeminorrelevantreceiptsinthewholesalesector(for usedmotorvehicleparts),andprobablyinothersectorsaswell.Weaddresstheselater. Also,wedeductcostscoveredbymotor -vehicleinsurance,becauseinouranalysis, thosecostsshowuptothevehicleownerasinsurancepayments,notm&rcosts. OncewehaveestimatedcoststhatarethesameforEVsandICEVs,coststhatare un iquetoICEVs,andcoststhatarecommontobutnotthesameforEVsandICEVs,we estimatethecostpervehiclein1992,bydividingbythenumberofLDVsforwhichthe servicesandpartswerebought.Wescaletheresultsto1997,andcomparetheresultan t per-vehiclecostswithestimatesfromothersources.Then,wedevelopayear -by -yearm &rcostschedule,onthebasisofestimatesbytheFHWA.Finally,weestimatetheEV costsrelativetotheICEVcostsforthosecoststhatarecommontobutnotthesamefor EVsandICEVs.

Maintenanceandrepaircostsforlight -dutygasolineICEVsin1992 SIC75Automotiveservices. TheCensusofServiceIndustries,SourcesofReceiptsor Revenue (1996)reportssourcesofreceipts,bytypeofserviceormerchandis e,forallof themotor -vehicleserviceindustrieslistedabove.Withthisreport,wecanclassifycosts, withineachSIC,thatarenotrelatedtomotor -vehiclem&r,thesameforEVsand ICEVs,uniquetoICEVs,orcommontobutnotthesameforEVsandICEVs.Inthe following,actualCensuscost(revenue)linesareshowninquotes.Unlessotherwise noted,thedatainthissubsectionforSIC75arefromtheCensus SourcesofReceiptsor Revenue report.

751Automotiverentalandleasing,withoutdrivers .Becauseweareinterested hereinthelifecyclecost owning anLDV,wedonotcountanycostsofrentingorleasing carsortrucks.Itisconceivablethatrentalandleasingfacilitiessellatinyamountof partsandservicestoprivatevehicleowners,butiftheamountisnotzeroitsurelyis insignificant.

7521Automobileparking .ThesecostslikelyarethesameforEVsandICEVs. Weassumethattheyare,andcounttheminacategoryentirelyseparatefromm&r, “parking,fines,andtolls”(discuss edbelow).

7532Top,body,andupholsteryrepairshopsandpaintshops. Weassumethat expendituresbody,upholstery,orpaintwillbethesameforEVsandICEVs.Hence:

116 Totalreceiptsin Notmotor - SameforEVs Uniq ueto Commonto SIC(10 9$) vehiclem&r andICEVs ICEVs EVsandICEVs other(non - allother none none motor -vehicle) receipts receipts,rental andleasing 12.263 0.283 11.980 0.000 0.000

Thedetailedbreakdownofsourcesofrevenueattheseestablishmentsdoesnot revealanykindsof receiptsthatarelikelytobeunrelatedtobody,upholstery,orpaint work.

7533Automotiveexhaustsystemrepairshops. Weassumethatservice identifiedspecificallyfortheexhaustsystemisuniquetoICEVs.Hence:

Totalreceiptsin Notmotor - SameforEVs Uniqueto Commonto SIC(10 9$) vehiclem&r andICEVs ICEVs EVsandICEVs “otherreceipts none “repairand “allothermotor from maintenance” vehicle customers”and and“salesof services" “allother merchandise” receipts” 1.953 0.010 0.000 1.936 0.006

TheCensusaccountingissuchthat“allothermotorvehicleservices”arethose notrelatedtothemainrepairandsalesactivityoftheindustry.

7534Tireretreadingandrepairshops. TheCensus’breakdownofreceiptsby kindindicatesthatallreceiptsinSIC7534areeitherfortires,orelseareunrelatedto motor -vehicleuse.Becausewecountcostsrelatedtotiresseparately,wedonotcount anyoftheSIC7534costsasm&rcostshere.

7536Automotiveglassreplacementshops. TheCensus’breakdownofreceipts bykindindicatesthatvirtuallyallreceiptsinSIC7536areforautomotiveglass. AssumingthatexpendituresrelatedtoautomotiveglassarethesameforEVsand ICEVs,wehave:

117 Totalreceiptsin Notmotor - SameforEVs Uniqueto Commonto SIC(10 9$) vehiclem&r andICEVs ICEVs EVsandICEVs “otherreceipts alltherest none, assumenone from apparently (assumeall customers”and relatedto “allother automotive receipts” glass) 1.889 0.086 1.803 0.000 0.000

75 37Automotivetransmissionrepairshops. TheCensus’breakdownofreceipts bykindindicatesthatvirtuallyallreceiptsinSIC7537areforautomotivetransmission repair,whichisacostcommontoEVsandICEVs:

Totalreceiptsin Notmoto r- SameforEVs Uniqueto Commonto SIC(10 9$) vehiclem&r andICEVs ICEVs EVsandICEVs “otherreceipts none none, assumenone from apparently (assumeall customers”and relatedto “allother automotive receipts” glass) 1.660 0.006 0.000 0.000 1.654

7538Generalautomotiverepairshops(includingrepairofdieseltrucks). The Censusreportsreceiptsfordieselrepairshopsseparately($2.5billionin1992).Since mostdieselvehiclesareheavy -duty(Delucchi[1996]estimatesthatin1991,heavy -duty dieselvehiclesaccountedfor83%oftotalVMTbyalldieselvehicles,and93%oftotal expendituresonm&rforalldieselvehicles),andweareinterestedhereinLDVsonly, weexclude93%ofreceiptsatdieselrepairshops.Thus:

Totalreceiptsin NotLDVm SameforEVs Uniqueto Commonto SIC(10 9$) &r andICEVs ICEVs EVsandICEVs other(non - “carwash none alltheother motor -vehicle) receipts” specifically receipts receipts,rental shown andleasing, tires,93%of dieselrepair 17.773 2.638 0.007 0.000 15.128

7539Automotiverepairshops,notelsewhereclassified. TheCensus’ 1992 CensusofServiceIndustries,UnitedStates (1994)breaksoutdataforradiatorrepairshops

118 andcarburetorrepairshops.Weassumethat98%ofthereceiptsatthe seshopsarefor workuniquetoanICEV(becauseEV’sdon’thaveradiatorsorcarburetorsortheir analogs.)Withthisassumption,andotherdatafromtheSourcesofReceiptsorRevenue report,wehave:

Totalreceiptsin Notmotor - SameforEVs Uniqueto Commonto SIC(10 9$) vehiclem &r andICEVs ICEVs EVsandICEVs other(non - none 98%of alltheother motor -vehicle) carburetorand receipts receipts,tire radiatorrepair repair shopreceipts 2.892 0.020 0.000 0.954 1.918

7542Carwashes. Presuma blyEVownersspendasmuchoncarwashesasdo ownersofICEVs.Hence:

Totalreceiptsin Notmotor - SameforEVs Uniqueto Commonto SIC(10 9$) vehiclem&r andICEVs ICEVs EVsandICEVs “otherreceipts “carw ash none motorvehicle from receipts” m&randparts customers”and “allother receipts” 2.644 0.056 2.315 0.000 0.273

7549Automotiveservices,exceptrepairandcarwashes. TheCensusshows receiptsforrepairandmaintenance,merchandise,andallothermotor -vehicleservices, atlubricatio nshops.Weassumethat95%ofthe“repairandmaintenance”pertainsto theenginelubricationsystem,whichisuniquetoICEVs.Weassumethat“allother motor -vehicleservices”atlubricationshopsarecommontoEVsandICEVs.Weexclude whatweestimate tobethecostofoil(80%of“salesofmerchandise),becausewemake aseparateestimate(inaseparatecostcategory)ofthetotalcostoflubricatingoil. AlthoughthisSICincludesestablishmentsthatdoemissionstesting(whichis uniquetoICEVs),wedonotattempttoseparateemissionstestingfromthisSIConly, butrathermakeaseparateestimateofthetotalcostofemissiontesting,andthen deductthat enmasse fromestimatedm&rexpenditures. Hence:

119 Totalreceiptsin Notmot or - SameforEVs Uniqueto Commonto SIC(10 9$) vehiclem&r andICEVs ICEVs EVsandICEVs otherreceipts, “carwash assume95%of allothermotor rentaland receipts” motorvehicle vehiclem&r leasing,oil servicesatlube andparts shops 3.403 0.124 0.014 0.76 5 2.500

SIC75total. AddinguptheamountsestimatedfortheindividualSICs,and countingamountsforSIC751(rentingandleasing)andSIC7521(parking)as“not motor -vehiclem&r,”wehave,for1992m&rcosts(10 9 $):

Totalreceiptsin Notmotor - SameforEVs Uniqueto Commonto SIC(10 9$) vehiclem&r andICEVs ICEVs EVsandICEVs 70.034 28.780 16.119 3.654 21.481

TheamountuniquetoICEVsisfortheexhaustsystem,radiator,carburetor,and engine -oillubrication.TheamountthatisthesameforEVsandICEVsisforbodyand upholstery,automotiveglass,andcarwashes. AdjustmentstotheSIC75totals.Wewishtoremovefromtheforegoingtotals receiptsforheavy -dutyvehicle(HDV)m&r(becauseweareinterestedinLDVsonly), receip tsforvehicleinspectionandtesting,whichweestimateseparately.Wealsomust addresscostsnotincludedintheCensusdata:salestaxes,workdonebyprivate contractorswhodonothaveapayroll,ormaintenanceandrepairworkdone“in house”bygove rnmentorbusinessesthatdonothaveseparatelyidentifiedservice establishments.Finally,wedeductcostscoveredbymotor -vehicleinsurance,becausein ouranalysis,thosecostsshowuptothevehicleownerasinsurancepayments,notm& rcosts. 1).First,wedeductreceiptsform&rofHDVs.Giventhatwealreadyhave excluded93%ofreceiptsatdieselrepairshops,thetaskhereistoestimatethem&r receiptsforworkonHDVsinotherSICs.Delucchi(1996)estimatesm&rexpenditures of$19bil lionforHDVsin1991,butthisincludesexpenditures“inhouse”atfleetsites, aswellasexpendituresonservicesinSIC75.Weassumethatofthe$19billiontotal, $2.3billionisrepairworkatdieselrepairshops(alreadyexcluded,above),$9billio nis m&rexpenditureinSIC75exceptdieselrepairshops,andtheremainderisin -housem &rexpenditurethatdoesnotshowupintheSIC75receipts.Wededuct$4billionfrom thecategory“sameforEVsandICEVs,”$1billionfromthecategory“unique to ICEVs”,and$4billionfrom“commontoEVsandICEVs”. 3).Second,wemustdeductwhatweestimatetobethereceiptsforvehicle inspectionservices,becauseweestimatethecostofinspectionseparately.(Wecouldnot deductinspectioncostsfromeach4-digitSICarea,aswedidwithtirecosts,because inspectioncostsarenotspecificallyidentified).WeassumethatinSIC75,businesses received$1.5billionformotorvehicleinspections.Thisamountstoroughly

120 $10/veh/year -- lessthanwhatweassumebelowforactualinspectioncostspervehicle peryear.Thisdiscrepancyisacceptablebecausenotallvehiclesaresubjectto inspections(intheCensusdata),butweareestimatingcostsforvehiclesthatdo undergoinspection.Wedeductthisamou ntfromthecategory“CommontoEVsand ICEVs”. 4).Wewishtoincludesalestaxes,becausetheyarepartoftheconsumerlifecycle cost,andalsoincludedotherdataserieswithwhichwewillcompareourCensus estimates.Everyfiveyears,theBureauof theCensus ServiceAnnualSurveyasksservice establishmentstoreporttheamountof“salestaxesandothertaxes(i.e.,amusement, occupancy,use,etc.)collectedfromcustomersandforwardeddirectlytotaxing authorities”(TheBureauoftheCensus ServiceAnnualSurvey:1992,1994,p.D-22).In 1992,thesesalesand“othertaxes”were3.4%oftotalreceiptsinSIC75,Automotive Services(BureauoftheCensus ServiceAnnualSurvey:1992,1994).Thus,wemultiply ourreceiptsinSIC75by1.034. 5).Wedonothavedataonworkdonebyprivatecontractorswhodonothavea payroll,butpresumethattheamountisinsignificantrelativetothetotalsforSIC75. 6).Assumingthatm&rworkdone“inhouse”atbusinessesorgovernment agenciesisforbusine ssorgovernmentvehicles,andnotprivatehouseholdvehicles,we canproperlyignorethese“in -house”costsifwemakesurethatweexcludefromour vehiclecount(whenweestimatem&rcostspervehicle)thosevehiclesthatbenefit fromin -houseservic es.Inotherwords,eitherweincludein -housem&rcostsinthe numerator,anddividebyallLDVs,orexcludein -housem&rfromthenumerator,and vehiclesthatusein -houseservicesfromthedenominator.Giventhatlater,whenwe deductm&rcostsco veredbyinsurance,weexcludevehiclesthatusedin -housem&r services,wedothesamehere. AutomotiveservicesprovidedinSIC55. Someretailfirms,inSIC55,also provideautomotiveservices.In1992,firmsinSICs551,552,553,and554received$23.9 billionforautomotiveservices(“laborchargesforworkbythisestablishment,”and “valueofservicecontracts”)(BureauoftheCensus,MerchandiseLineSales,1995).We excludereceiptsinSICs556 -559becausethoseestablishmentsdonotserveli ght -duty motorvehicles.Wecountpartsinstalledinrepairseparately,inthenextsection.We assumethatretailestablishmentsoutsideofSIC55didnotperformanyautomotive services. Weassumethat95%ofthetotal$23.9billionwasforserviceperf ormedonLDVs. In1992,salestaxesinSIC551were2.7%ofsales(Key,1997).Weassumethis percentagehere. Notethatwehaveincluded“thevalueofservicecontracts”atautodealers -- at least$2billionin1992(BureauoftheCensus,MerchandiseLi neSales,1995).Thesample Censusreportingformdirectsrespondentstoincludethe“totalvalueofservice contracts -- includeservicecontractsmadeonitsownbehalfofatheagentforothers (e.g.,sellingservicecontractsforthemanufacturer).”Th issuggeststousthatthevalue ofrepairworkperformedunderwarrantyisincludedinthereceiptsreportedtothe Census.However,thecustomerwithawarrantydoesnotpayforthesem&rcosts directly,astheyareincurred,butratherindirectlyintheformofahighervehicleprice

121 withthecostsofthewarrantyembedded(FHWA,1984).Thus,ifwecountthese warranty -coveredcostshere,weshouldmakesurethatourestimatedMSRPofthe vehicledoesnotdoublecountthewarranty -coveredcosts. Assum ingatleast$2billionforwarranty -coveredm&r,thecostpervehicleper yearwouldbeatleast$11,orabout$150pervehicle(assuminga14 -yearlife).However, thetotalcostcouldbeagooddealhigherthanthis,becausetheCensusdoesnot explici tlyidentifyall“valueofservicecontract”receipts.CuencaandGaines(1996) statethatwarrantycostsare5%ofMSRP,whichimpliesnearly$900.This,though,may beforanextendedwarranty,whichmightnotbeincludedinthedealercostestimates thatweusehere.Weassumeavalueof$300. Automobilepartssoldorinstalledinrepairintheretailsector. TheCensus, MerchandiseLineSales (1995)reportstotalretailsalesofnewandrebuiltautomobile partsandaccessories,includingtiresandtu bes,andpartsinstalledinrepair:$62.9 billionin1992.Fromthiswemustdeductreceiptsfortiresandtubes,whichwetreatas aseparatecostitem.Herewerunintoabitofaproblem.Thereisageneral merchandiseline,ML740,whichconsistsofau tomobileparts,tires,tubes,accessories, storagebatteries,etc.TheCensusreportstotalsalesof$45billionofML740,butdoes notgiveacompletebreakdownofthesalesbythecomponentmerchandiselines.A partial breakdownshowsabout$9billioninsalesofML745,“tiresandtubes,”(Bureau oftheCensus,MerchandiseLineSales,1995),butsomeunknownportionofthe remaining$36billioninML740isalsoforML745specifically. Atthewholesalelevel,salesoftiresandtubes,forpassengercarsand commercialvehicles(commodityline300),were$21billionin1992(Bureauofthe Census,1992CensusofWholesaleTrade,SubjectSeries,CommodityLineSales,UnitedStates, 1995).Thisfigureseemsquitehighcomparedtothe$45billionintotal retailsalesofall automotiveparts,tires,batteries,andaccessories(merchandiseline740)(Bureauofthe Census,MerchandiseLineSales,1995).Itmaybe,though,thatalargefractionofthe$21 billionisforheavyvehiclesandoff -roadvehicles. Inlightoftheforegoing,weassumethatsalesoftiresandtubesforlight -duty motorvehicleswere$12billionin1992. Weassumethat95%oftheresultant$50.9billiontotalwasforserviceperformed onLDVs. In1992,thesalestaxinSIC553was4.1% ofsales.Weassumethispercentage here. M&rcostscoveredbyinsurance.Weshoulddeductfromthetotalm&r receiptsamountsthatarepaidbyinsurancecompanies,becauseinouraccountingsuch costsarecoveredby,andclassifiedas,paymentsfo rinsurance 31 . In1992,automobileinsurerspaidoutthefollowingamountstocoverlosses incurredbyinsured(A.M.Best,1997)(10 9dollars):

31 Itisappropriatetodeducttheinsurance -coveredm&rreceiptshere,ratherthanfromthefinalyear -by - yearm &rschedule,becausetheFHWA(1984)estimatesthatweuseasthebasisofouryear -by -year schedulealreadyexcludem&rcostscoveredbyinsurance.

122 privatepassengerautos commercialautos liabilityinsurance 39.641 7.668 physical -damageinsurance 18.337 2.198

Weneedtodetermine,foreachofthefourcategoriesoflosses,thefractionofthe paymentthatcoveredm&rcostsforlight -dutyvehiclesthatusedm&rservices providedinSIC75orSIC55.Putanotherway,wemustexcludefromtheA.M.Best (1997)lossdatapaymentsforheavy -dutyvehicles,paymentsforcostsotherthan propertydamage,andpaymentsforreplacingasopposedtorepairingvehicles(because replacementcostsdon’tshowupintheSIC75orSIC55receiptdata).Partlyonthe ba sisofestimatesinDelucchi(1999c),weassumethefollowing:

privatepassengerautos commercialautos liabilityinsurance 100%isforLDVs;65%is 70%isforLDVs;65%of forpropertydamage, thatis forproperty and50%ofthatisrepair damage,and50%ofthat ratherthanreplacement isforrepairratherthan replacement physical -damageinsurance 100%isforLDVs,and 70%ofisforLDVs,and 50%isforrepairrather 50%ofthatisforrepair thanreplacement ratherthanreplacement

Theseassumpti onsresultinthefollowingcosts,tobedeductedfromthe adjustedSIC75+55totals(in10 9$in1992):

privatepassengerautos commercialautos total liabilityinsurance 12.883 1.744 14.628 physical -damageinsurance 9.169 0.769 9.938 total 22.052 2.514 24.566

Thefinalstepistodistributethegrandtotaltoour3m&rcostcategories (“same,”“unique,”and“common”).Itisplausiblethatagooddealofthetotal estimatedhereisbodyandglassrepair,whichisinour“same”category.Indeed, itis likelythataverylargefractionofthe$12.2billioninm&rreceiptsinSIC7532,“Top, body,andupholsteryrepairshopsandpaintshops,”iscoveredbyinsurance companies.Weassumethat$12billionofthetotalcostcoveredbyinsuranceisinthe “same”category,$10isinthe“common”category,andtheremainderinthe“unique” category. Anoteregardingtheinsurancedeductible:physical -damageinsuranceusually hasadeductibleamountthattheinsuredmustpay.FHWA(1984)assumesthatth e typicalmotoristwillberesponsibleforoneaccidentduringthetimesheorhecarries

123 physical -damageinsurance,andhencewillhavetopay,once,thedeductibleportionof theinsurance,whichFHWA(1991)assumestobe$250.However,anyinsurance deductibleamountpaidtowardsm&rshowsupintheCensus’dataonreceiptsfor automotivemaintenanceandrepairservices.Hence,paymentsofthedeductible alreadyareincludedinthem&rdataweusehere,andnoadditionalanalysisor estimationisrequired32 . Usedmotorvehicleparts. AccordingtotheOMB’sStandardIndustrial ClassificationManual (1987),theautoandhomesupplystoresofSIC553sellnewand rebuilt -- butnotused -- automobilepartsandaccessories.Insupportofthis,theCens us MerchandiseLineSales (BureauoftheCensus,1995),shows$11.5billioninsalesofnew andrebuiltpartsinSIC55,andonly$68millioninsalesofusedparts.IntheCensus system,salesofusedpartsareclassifiedas“wholesale,”andoccurmainly inSIC5015, “motorvehicleparts,used”.In1992,salesof“usedautomotiveparts,accessories,and equipment”(commodityline0240)were$3.571billion(BureauoftheCensus,1992 CensusofWholesaleTrade,SubjectSeries,CommodityLineSales,UnitedStates,1995). Weassumethat95%ofthetotal$3.6billionwasforpartsforLDVs. In1992,salestaxeswere0.5%ofsalesinallofSIC501(Key,1997).However,they likelywereahigherpercentageofsalesofusedparts.Weassume3%. Partsandserv icesclassifiedelsewhere.Finally,weaccountforexpenditureson items,suchasall -purposetools,thatareusedformotorvehiclesbutnotsoldin automotivestoresorclassifiedasautomotivemerchandise.Weassumethat expendituresonsuchitemsare1%ofthetotalexpendituresestimatedabove. Totalm&rcostsforLDVsin1992. Wedistributethecostsestimatedforretail andwholesalesectorm&rtothethreecategories(sameforEVsandICEVs,uniqueto ICEVs,andcommontoEVsandICEVs)accord ingtotheproportionsestimatedform& rcostsinSIC75.Thusweendupwith:

Totalm&r SameforEVs Uniqueto Commonto costs(10 9$) andICEVs ICEVs EVsandICEVs 85.21 31.24 6.90 47.07

Costpervehicle.Toobtainthecostpervehicle-- init ially,for1992 -- wedivide thetotalm&rcostsbytherelevantnumberofvehicles.Asnotedabove,ourestimates ofm&rcostsdonotincludecostsforHDVsorcostsofin -housegovernmentor businessm&r.Therefore,therelevantvehiclepopulation isalllight -dutyvehiclesthat usedm&rservicesfromSICs75and55,whichisallLDVslessthosethatwereserviced at“in -house”shops. In1992,FHWAreported190millionvehiclesinuse,andPolkreported182 million(Davis,1998).ThePolkfiguresprobablyareabitmoreaccurate,soweassume

32 Oneperhapscouldremovethedeductiblefromthem&rcategory,andadditinasan“insurance” exp ense,butweseennoreasonforthisaccountshifting,especiallybecausethedeductibleis not an insurancepayment,butratherapaymentnotcoveredbyinsurance.

124 185million.Fromthiswedeductthe4millionnon -lightdutytrucksinusein1992 (BureauoftheCensus,TruckInventoryandUseSurvey,,1995).Next,wenotethatthere wereontheorderof8millionLDVs inrelativelylargefleets(Davis,1998;Key,1994). Weassumethathalfofthosewereserviced“inhouse”.Theresultis177millionLDVs 33 . Togetthecostpervehiclein1997,wemultiplythe1992per-vehiclecostsbyour estimateofthe1997/1992ratio ofpervehiclecosts.Table9showsexpenditureson maintenance,repair,andparts,pervehicle,asreportedintheBLS’Consumer ExpenditureSurvey(CES)(BLS,1999).Thecurrent -dollarexpenditureseriesaccounts forchangesinthe“quantity”ofm&rconsumed,aswellaschangesintheprice,which iswhatwewant.Asshown,m&rexpenditurespervehicleincreasedby6%from1992 to1997.Wethereforeendupwiththefollowingm&rcostpervehicleperyear,in1997 $:

Totalm&r SameforEVs Uniqueto Commonto costs($/veh) andICEVs ICEVs EVsandICEVs 509.66 186.82 41.30 281.54

Thetotalhereincludescarwashes,tuneups,andaccessories(andsalestaxeson allofthem),butexcludestiresandtubes,emissionsanddiagnostictesting,oil,parking, tolls,andrentingandleasing 34 .

Comparisonwithotherestimates Thereareatleastfourotherindependentestimatesordataonm&r expendituresformotorvehicles. FHWA(1984). TheFHWAhasestimatedyear -by -yearm&rcostsforlarge, intermediate,compact,andsubcompactautomobiles,andforpassengervans,forthe Baltimorearea,in1984(Table8).TheFHWAdefinitionofm&risreasonablycloseto thedefinitionusedhere,themaindifferencebeingthattheyincludesafetychecks,and we don’t:

33 Thisisnotthesameasthenumberofpersonal -usehouseholdvehicles,becausethatnumb erexcludes certainbusinessandgovernment -ownedvehicles.The 1990NationwidePersonalTransportationSurvey (Hu andYoung,1993),onthebasisof22,000interviews,estimatesabout160millionvehicles“ownedbyor availableonaregularbasis”tohous eholdsin1990,excludingheavytrucks,recreationalvehicles,and motorcycles,butincludingbusinessvehiclesifusedregularlybythehousehold.TheEIAreport HouseholdVehiclesEnergyConsumption1991 (EIA,1993)estimatesabout150millionhousehol dvehiclesin 1991,excludingheavytrucks,recreationalvehicles,andmotorcycles,butincludingbusinessvehiclesif usedregularlybythehouseholdfor personal trips.Finally,theBureauofEconomicAnalysis,inmaking itsestimatesof“personalcons umptionexpenditures”fortheNationalIncomeProductAccountsofthe UnitedStates,estimatesabout140millionpersonal -usecarsandtrucksintheU.S.in1992 -- orabout147 millionifhousehold/businessautosareincluded)(Key,1994)

34 Keepinmind thattheseareestimatesofnational -averageexpenditures.Expendituresvaryregionally withvariationsinlaborcosts,partscosts,weather(inplaceswhereroadsaresaltedtomeltsnow,vehicles mayrustmorequickly),andotherfactors.

125 includedinFHWA: allrepairsandpartsandservices oilchanges(butnottheoilitself) tuneups safetychecks accessoryitemssuchaslightsandwipers washingandwaxing

excluded: tires oil optional“addons”suchasseatcoversandcupho lders costscoveredbyinsurance(but,notclear) 35

Theydistinguishbetween“scheduled”and“unscheduled”costs:“scheduled” costsarethecostofservicesexplicitlysuggestedorrequiredbytheownersmanual (e.g.,checkingtheemissioncontrolsystem,changingtheoil,tuningupthevehicle, checkingthebrakes).Costscontingentupontheoutcomeofanrecommended inspection,andallotherm&rcosts,areconsidered“unscheduled”.Forexample,ifthe manualrecommendsperiodicbrakechecks,andstates theconditionsunderwhich brakesshouldbereplaced,butdoesnotexplicitlyestablishareplacementinterval,then thecostoftheinspectionisconsideredscheduledmaintenance,butthecostofthe replacementisconsideredunscheduled(becausetherepl acementperseisnotexplicitly scheduledinthemanual). Toestimatem&rcosts,FHWAconsultedrepairmanuals,servicemanagersof majordealers,personnelintheautomotiveindustry,andpublishedstatistics.They assumedthat alllaborwasdoneby aprofessionalmechanic,at$26/hour(in1984). Theyusedretailpricesforparts.However,theyexcludedlaborandpartscostsforthose repairscoveredbyanormalvehiclemanufacturer'swarranty(but not anextended,5- year/50,000 -milewarranty) 36 . For comparisonwithourestimates,theFHWAestimatesmustbeadjustedfrom Baltimorein1984totheU.S.in1997.

35 Presumably, FHWA(1984)doesnotcountcoststhatarereimbursedbyinsurance,sincesuchcosts alreadyarecountedaspartofinsurancepayments.ThelaterFHWA(1991)reportstatesthatitexcludes costsorrepairsofcollisiondamage.

36 TheFHWAdidupdatethecos treportin1991(FHWA,1992),butchangedthemethodofestimating maintenanceandrepaircosts.Ratherthanbuildoriginalestimates,inthewaythattheydidin1984,they simplystartedwiththemaintenanceandrepairexpendituresreportedintheBLS’ ConsumerExpenditure Survey(CES).WeexaminetheCESindependently,andhencedonotneedtoreviewtheFHWA’s(1992) morerecentestimate.

126 1).GeneralizingfromtheBaltimoreareatothewholeU.S.,in1984.TheFHWA estimatesarebasedonpricesintheBaltimoreareain1984.Thefirststep,then,isto generalizetheseestimatestothenationasawhole.In1984 -85,householdsinthe Baltimoreareahad1.7vehiclesandspent$515/yearonmaintenanceandrepairs,or $303/vehicle(BLS,1989a)(notethatthedefinitionofm&risnotveryimportanthere, sinceweareinterestedinrelativecosts).In1984and1985,allurbanhouseholdsinthe U.S.owned1.9vehicles,andspentabout$480/year,or$250/vehicle(BLS,1989a).This suggeststhattheBaltimore- areaestimatesshouldbemultipliedby250/303=0.83,to yieldnationwideaverageestimates. 2).Updatingto1997.Since1984,boththepriceandaverage“quantity”ofm&r havechanged.Thesetwoeffectscanbeestimatedseparately,ortogether.Firstwe estimatethepriceandquantityeffectsseparately. TheConsumerPriceIndexhasanindexfor“motorvehiclemaintenanceand repair,”buttheirdefinitionof“maintenanceandrepair”doesnotincludeeverything thatweinclude.Theexpendituresthatwecountasm&rbuttha ttheCPIdoesnot apparentlyareinanotherCPIcategory,nowcalled“vehiclepartsandequipmentother thantires,”formerlycalled“otherpartsandequipment”.Tocombinetherelevantparts ofthesetwoindicesintoasingleindexform&raswedefine it,therateforeachCPI categorymustbeweightedbytheportionofthetotalm&rexpenditure(aswedefine it)thatitaccountsfor. TheCPIshowsthatconsumersspent2.2timesmoreonm&r(asdefinedinthe CPI)thanon“otherprivatetransportat ioncommodities,”whichisthecategorythat contains“otherpartsandequipment”.Assumingthatexpenditureson“otherpartsand equipment”were40 -50%ofexpenditureson“otherprivatetransportation commodities,”thenexpendituresonm&r(asdefinedbytheCPI)wereabout5times expenditureson“otherpartsandequipment.” For“motorvehiclemaintenanceandrepair,”theratioofthe1997tothe1984CPI is1.57,andfor“vehiclepartsandequipmentotherthantires”,theratiois1.08(BLS, 1999).Ass umingfivetimesasmuchexpenditureon“motorvehiclemaintenanceand repair,”ason“vehiclepartsandequipmentotherthantires,”theweighted-average priceofm&raswedefineitisequalto0.833x1.57+0.166x1.08=1.49. Totheadjustthequa ntityofm&rconsumedfrom1984to1997,wecanlookat totalhouseholdexpendituresonm&r,pervehicle,in1984versus1997,inconstant dollars,asreportedintheBLS’CES(Table9).Table9showsthatfrom1984to1997, reporteddirectm&rexp enditurespervehicleremainedrelativelyconstant,in1997$. Expenditurespervehiclein1984wereabout5%higherthanexpenditurespervehiclein 1997,in1997$.Thus,thequantityconsumedapparentlydeclinedby5%.Thus,the overall1997/1984scaling factoris1.49[price]dividedby1.05(quantity)=1.42. Thiscanbecomparedwiththeratioexpendituresin1997withexpendituresin 1984,incurrentdollars -- whichratiocapturesbothpriceandquantityeffects.As showninTable9thisratiois1. 34,somewhatlowerthanthe1.42calculatedabove.We useavalueof1.40. 3) Otheradjustments. TheFHWAestimatesexcludem&rcostscoveredbya “normal”manufacturerswarranty(asopposedtoanextended,5-yearor50,000 -mile

127 warranty),becausecons umersdonotpaythesecoveredm&rcostswhentheyincur them.Asnotedabove,wecountthesewarranty -coveredcostsasm&rexpenditures. Wewouldliketoaddwarranty -coveredcoststotheFHWA’sestimates,but unfortunately,FHWA’sanalysisdoesnotspecifythewarrantyoritsimplicitprice,or thecostofthem&ritcovers.Ontheotherhand,theFHWA(1984)includesinspection costs,whichwedonot.Wewillassumethattheomissionofwarrantycostscancelsthe inclusionofinspectioncosts. 4) .Summaryandcomparison. TheFHWAdata,transformedfromBaltimorein 1984totheU.S.in1997(Table8)resultinannualaveragem&rexpendituresof$525 foramid -size,$456foracompact,and$521forasubcompact.AssumingthatFHWA wouldhaveest imatedhigherm&rcostsforlargecars,luxurycars,sportscars,and light -dutytrucksandvans,theFHWAestimatesimplyanationalaveragem&r expenditureofontheorderof$530forallLDVs.Thisisveryclosetoourfigureof$510, derivedabove. BLSCES. AsshowninTable9,consumersreportedspendingonly $341/vehicle/yearonm&r,includingbatteries,tires,transmissionfluids,oilchanges, exhaustsystemrepairs,brakework,autorepairpolicies,andmuchmore.Thisismuch lessthanourestimatebasedontheCensusdata. Someofthisdiscrepancyisrelatedtothenumberofvehiclesoverwhichcosts aredistributed.IntheBLSsurvey,therewere105.6millionconsumerunits,211million vehicles,and$72billionintotalm&rexpenditure s.Thetotalnumberof“household” vehiclesseemsanomolouslyhigh,sincein1997therewerefewerthan210million registeredvehiclesofallkinds,includingheavytrucks,commercialvehicles, governmentvehicles,andbusinessvehicles.Ifwedistributedourtotalover211vehicles ratherthan177millionvehicles,ourcostpervehiclewouldbe$428ratherthan$510. Wecannotreadilyexplaintherestofthediscrepancyofabout$90/veh/year. EithertheestablishmentssurveyedbytheCensusgetanunexpe ctedlylargeshareof theirm&rrevenuefromcommercialvehicles,ortheconsumersintheCES significantlyunder-reporttheirexpenses,orembeddedwarrantycosts(whichwe countasanm&rexpense,butconsumersintheCESwouldnot)aremuchhigher than weestimate.Wesuspectthatconsumersunder-reporttheirm&rexpensesintheCES. TheU.S.GovernmentAccountingOffice(GAO,1991) .TheGAOreportsthatthe fleetofvehiclesoperatedbytheGeneralServicesAdministrationhasam&rcostof5 centspermile.Assuming12,000mi/year,andupdatingto1997,thisresultsinabout $700/year -- considerablyhigherthanourestimatebasedontheCensusdata.This, however,mayincludecollisionrepaircosts,whichwehaveremovedfromour estimates. RunzheimerInternational(1992,1989). Runzheimersurveysandestimatesthe maintenanceandrepairandtirecostsofvehiclesinbusinessfleet.Assuming12,000 mi/year,andupdatingto1997,theirestimatesresultin$400to$650/year,depending onthetypeofthecar,usage,andlocation(scaledto12,000milesperyear).Thisrange isconsistentwithourestimate.

[Other]methodologicalissues

128 Thecostofpersonaltimerelatedtovehiclemaintenanceandrepair.Many consumersdominorservicing,su chastuningthecarandchangingtheoil,themselves. Presumably,theseconsumersfeelthatwhattheypayforpartsandtools,plusthetotal valueoftheirtime,islessthanwhattheywouldpayaprofessionalforthesameservice (plusthetimecostof havingacarservicedprofessionally).Thetimecostofthesedo -it - yourselfersisnotincludedintheCensusdataonreceiptsform&ratcommercial,tax - payingestablishmentswithpayroll. TheCensusestimatesdonotincludeseveralothertimeorpsych ological“costs”: thepsychologicalcostofdiscoveringandhavingtodealwithanautomotiveproblem; thevalueofthetimerequiredtotakeacartoandfromamechanic;andthevalueofthe inconvenienceofbeingwithoutthecar(ifonedoesnotgeta replacementfromthe shop). Althoughwedonotestimatethesecosts(becauseinthisanalysis,weinclude onlymonetarycosts),wenotethattheyprobablyaresubstantial.Delucchi(1998a)cites estimatesofthetimespentrepairingandmaintainingvehicle sandbuyinggasoline,and concludesthatthetimecostisontheorderof$50 -$100billionperyear(in1991$,for theentireU.S.),withthebulkofthecostbeingduetom&rratherthanbuying gasoline.This(whichdoesnotincludeinconvenienceor aggravationcosts)isthesame orderofmagnitudeasactualexpendituresonm&r.IfEVsreducethesepersonalcosts, thenonmonetarysocialbenefitcouldbesignificant.Thus,byomittingthesepersonal costs,wefailtocountsomeofthepotentialsocia lbenefitsofreducedm&r requirementsofEVs. Futuremaintenanceandrepaircosts.Ideally,oneshouldcomparethem&r costsofEVswiththem&rcostsofICEVsinsomefutureperiods.Onemightdothis byprojectingfuturem&rcostsforICEV s,basedonhistoricaltrendsinrealm&r costs,andanticipatednewforcesinthefuture. Table9showsthatfrom1984to1997,reporteddirectm&rexpendituresper vehicleremainedrelativelyconstant,in1997$.Althoughitispossiblethat total expenditures(directcashexpenditures,plusdo -it -yourselfcosts,plustheactualor implicitpriceofwarranties)didchangeappreciably,becauseofasystematicbiasin reporting,orbecausewarrantiescoveredincreasinglymoreorlessrepairwork,or becauseconsumersweredoingmoreorlessworkthemselves,wedonothavereliable evidenceofsucheffects.Wethereforereasonablycanassumethatrealtotal expendituresonm&rhavebeenrelativelyconstantintherecentpast. Itispossiblethatthecostofmaintainingandrepairingincreasinglystringentand sophisticatedemissioncontrolequipmentwillraiseoverallm&rcostsoverthenext decade.However,anysuchtrendislikelytobedampenedsomewhatbytheuseofon - boardemissioncontrol diagnosticsystems,whichwillhelpkeepthesystemsoperating properly. Thisbriefanalysissuggeststhatthereislittlegroundforprojectingaradical changeinrealm&rcostsinthefuture.Therefore,weuseassumethatm&rcosts remainlevelin constantdollars.

Constructingayear-by -yearmaintenanceandrepaircostschedule

129 Ourfinalobjectiveistoestimatem&rcostsforeachvehicletypeineachyearof life.Wethenwilltakethepresentvalueofeachyear’sexpenditure,sumthepresent values,andannualizethesumoverthelifeofthevehicle,withtheultimateaimof arrivingatacost/milefigure. AsshowninTable8,theFHWA(1984)providesestimatesthem&rcostin everyyear,overthetwelve -yearlifeofthevehicle.Theaverage oftheFHWAseries (transformedtoa1997basis)isclosetothem&rexpenditurepervehicleperyearthat weestimatefromtheCensusdata.Toestimateayear -by -yearm&rscheduleconsistent withtheCensusdata,wescaletheFHWAestimate(scheduledplusunscheduledm&r) byafactortomakethemconsistentwiththeaveragem&rcostpervehicleestimated fromtheCensusdata(itturnsoutthatthefactorisabout1.0),andthendistributethe scaledFHWAtotaltothecategories“sameforEVsandICEVs,”uniquetoICEVs,”and “commontoEVsandICEVs”,accordingtotheproportionsestimatedfromtheCensus data(seeabove). Finally,becausethenetpresentvalueisafunctionoftime,butthem&r expendituresactuallyareafunctionofcumulativemileage,wehavetomapthe FHWA’syearlymaintenancescheduleontoourownscheduleofVMT/year,whichis differentfromFHWA’s.WedothisbymakingFHWA’sm&rscheduleafunctionof theirassumedaccumulatedmileage,ratherthanoftime,andthencalc ulatingtheage thatcorrespondstoeachcumulativemileagepoint,usingourownVMT/agefunction (seediscussioninsection“Lifetimeofvehicles,frompurchasetodisposal(years)”). Maintenanceandrepairafter120,000miles. TheFHWAestimatesm&r costs overwhattheyassumetobethetypical12 -year,120,000 -mileaveragelifeofthe gasolineICEV.However,becauseEVsandperhapssomealternative -fuelICEVswill lastlongerthangasolineICEVs,andbecauseweareestimatingm&rcostsforthe alt ernativesrelativetom&rcostsforthebaselinegasolineICEV,weneedtoextendthe m&rseriesforthebaselinegasolineICEVbeyond120,000miles.AlthoughtheFWHA (1984)estimatedrelativelyminorm&rexpendituresinthelastfewyearsofa12 -year life,perhapsundertheassumptionthatacarownerwouldnotspendalotofmoney fixingupacarthatheorshewasplanningtoscrapsoon,weassumethatthistrend wouldnotcontinue:presumably,iftheownerwasplanningtokeepthecarmuch beyo nd120,000miles,heorshewouldspendrelativelylargesumsperiodicallyinorder torepairmajorsystemsandpartsastheyagedandfailed.Withthisinmind,wehave estimatedam&rexpenditureseriesbeyond120,000miles(Table10).

Maintenanceandrepaircostsforelectricvehicles Eventually,whenEVsareproducedandservicedandmaintainedinlarge numbers,theymayhavelowerm&rcosts(excludingtiresandoil)thanICEVs, becauseelectricdrivetrainsaresimpler,morerobust,andcleanerthanICEdrivetrains. TurrentineandKurani(1998)write:

Hypothetically,EVsshouldhavefewermaintenanceandserviceneeds.Electricdrivesystems havefewermovingparts;producenocombustionproducts;operateatlowertemperatures,which shouldre ducelubricantandsealbreakdown;havenoairintakeorfuelfilters;and,ofcourseno

130 smogchecks.ClimatecontrolsystemsinEVswillprobablynothaveairfiltersbecausesuchfilters increaseenergydemands.(p.3 -49)

TheyalsosuggestthatEVswithregenerativebrakingmighthavelessbrake wear,althoughthismightbeoffsetbyhigherinertialmass. Arecentsurveyof“experts”onthestateofEVtechnologygivesmorenuanced results.TheexpertsbelievethatearlyEVs(year2000)willhaveabout20 %higherfuel andmaintenancecoststhanICEVs,butthatbytheyear2020,theEVswillhaveabout 15%lowerfuelandmaintenancecosts(Vyasetal.,1997).DixonandGarber(1996)take asimilarview,arguingthatisunlikelythatEVswillhavelowermain tenancecostsin theearlyyearsofdeployment.Weagreethatanymaintenancecostadvantageisnot likelytoberealizeduntilthereisalotofexperiencewithalotofvehicles. Manycostanalystshaveassumedthatthem&rcostsforEVswillbeabout half thecostsforcomparableICEVs(GM,n.d.;SolarEnergyResearchInstitute,1981;Asbury etal.,1984;Edwards,1984;Cohen,1986;HumphreysandBrown,1990;Morcheoineand Chaumain,1992;U.S.DOE,1995).Forexample,inananalysisdoneinsupport ofthe introductionof300commercialEVsinBritain,Edwards(1984)assumesthatEVswill have50%lowerm&rcoststhancomparableICEVs.Similarly,acostmodeldeveloped bytheJetPropulsionLaboratoryfortheUSDOEassumesthattotalmaintenancecos ts permileforaPb/acid -batteryEVwillbe40%lowerthanthecostsforanICEV (HumphreysandBrown,1990).GeneralMotors(n.d.)assertedthat“G -Vanowners couldsaveupto50%onnormalmaintenanceoperations”(p.2).Initslifecyclecost analysisofEVsandICEVs,theU.S.DepartmentofEnergy(DOE)(1995)assumesthat EVshave50%ofthescheduledandunscheduledmaintenancecostsofICEVs.Dixon andGarber(1996)areskepticalof50%reductions,andassumeinstead0%to33%lower m&rcosts. Th ereisafairamountofevidenceofthepotentialforlowerm&rcosts.Kocis' (1979)surveyofconsumerexperiencewithEVsfoundthatEVoperatorsconsidered maintenanceandoperatingcoststobesubstantiallylowerthanforICEVs.Theelectric milkdeliveryfleetinEnglandwasreportedtohave35%lowerm&rcoststhanthe comparableICEVfleet(Hamilton,1984).AutilityintheU.K.reportsthatEVshave 60%lowerunscheduledmaintenancecoststhancomparablediesel-poweredvans Marfisietal.(197 8),usingdatacompiledbyHamilton(1974)onthepercentageof engine -relatedbusinessatautorepairshopsandpartsstores,estimatedthatper-mile maintenancecostsfortheEVwouldbe66%lowerthanthoseforcomparableICEVs (theyexcludedtires,as wedo,butincludedoil). AcomparisonoftheGriffonelectricvanwithconventionalICEvansshowed thattheGriffonhadonlya25%lowermaintenancecost -per-milethantheICEVs, excludingbatterywateringandoil,butincludingtirecost(Brunneretal.,1987a,1987b). Furtheranalysisshowedthatcostsrelatedtotheenginewereonlyabout24%oftotal maintenancecostsforICEVs,afiguresharplylowerthanthatestimatedinHamiltonet al.(1974)andMarfisietal.(1978).Partofthisrelativelyhighm&rcostfortheGriffon vanswasattributabletounfamiliaritywithEVs.Moreimportantly,however,the authorsnotethattheICEvanswerewithdrawnfromserviceandsoldbefore accumulating60,000miles,whichwasaboutwhenmajortransmissionand engine

131 repairswereexpected.ThissuggeststhattheelectricGriffon’sm&radvantagewas greateroverthesecond60,000milesofbothvehicle'slives,andthatitaveragedbetter than25%lowerm&rcostsoverthewholeofbothvehicles’lives. Insu m,bothengineeringanalysesandoperationaldatashowthatEVscanhave lowerm&rcoststhanICEVs.Wewillestimatethisadvantagewithrespecttothecosts thatwehaveidentifiedas“commontoEVsandICEVs”.

Ourassumptionsformaintenanceandre pair Basedontheprecedinganalysis,weassumethatBPEVsinhighproduction volumeshave30%lower common m&rcoststhancomparableICEVs,overtheentire lifeoftheEV -- butwithout(forthemoment)accountingforanybatter-relatedcosts.Of cours e,weassumethatthecoststhatare“uniquetoICEVs”arezeroforEVs,andthat thecoststhatarethe“sameforEVsandICEVs”are,well,thesame.(Recallfromabove thatthecoststhatarethesamearealittlelessthanthecoststhatarecommon).Th e overallresult(includingbatterymaintenance,discussedbelow)isthattheEVhasabout 25%lowerm&rcostpermilethandoestheICEV. Thisresultislessofareductionthanistypicallyassumedintheliterature. However,wefeelthatbecauseitis calculatedmorecarefully,withrespecttodifferent kindsofm&rcosts,itismoreaccurate. ForEVsinlow -volumeproduction,weassumenoreductionincommonm&r costs,onthegroundsthatthecostofunfamiliaritywithEVs,duetotheirbeingfew of them,cancelsthe“inherently”lowerm&rcosts. Thebattery,fuelcell,andfuelstoragesystem.AdvancedPb/acid,NiMH,and Li -polymerbatteriesaredesignedtobemaintenancefree,andhence,iftheyworkas designed,theywillhavenom&rcosts .Butnothingworksasintended100%ofthe time,andwemustallowforperiodicrepairandmaintenanceofeven“maintenance - free”batteries.Weassumean“unscheduled”batterym&rexpenditureof$250once overthelifeofthevehicle,inyear6ofvehic leoperation. Givenhowwehavecalculatedthelifecyclecostofthebattery,theactual servicingcostofreplacingthebatteryisincludedinthebatteryinitialcost.Thisis becausewehavecalculateda“fullyloaded”batteryretailprice:theOEMco st (includingprofit)ofmanufacturingthebattery,plusthecostofshippingthebatteryto theautomanufacturer,plusalloftheautomanufacturercostsassociatedwiththe battery:assembly,design,testing,marketing,shipping,profit -- everything.Sincewe assumethattheconsumercostofareplacementbatteryisthesimilartothejust - explained“fullyloaded”implicitretailpriceoftheinitialbattery,thepriceofthe replacementbatterycanbeassumedtoincludemostifnotallofthecostsass ociated withtheinitialbattery,includingshipping,marketing,andinstallation.Hence,wedo notneedtoaddanadditionalcostfortheserviceofreplacingabattery;thatserviceis coveredintheretailorreplacementcost. However,wedononeedto considerthecostofremovinganddisposingofthe oldbattery.Thiscost(orsalvagevalue,iftheoldbatterycanbeprofitablyrecycled)is handledbyanexplicitterminourcalculationofthebatterycost:themodeltakesthe

132 presentvalueofthefin aldisposalcost(orvalue)whenitoccurs,andaddsthattothe actualinitialcostofthebattery. ComparedwithBPEVs,FCEVswillhavetwoadditionallargeandexpensive components:afuelcell,andafuelstorage/processingsystem.Toestimatethere lative m&rcostsofFCEVs,orofBPEVsorFCEVswithalongerlifethanICEVs,additional assumptionsarenecessary: i)FCEVswillhavetwokindsofadditionalm&rcosts:thoseassociatedwiththe fuelcellstack,andthoseassociatedwiththefuelst orageorprocessingsystem(the hydrogenstoragesystemorthemethanolreformer).Weassumethatthesecostswillbe relatedtothecomplexityofthesystem,andexpressthemasafractionoftheannualm &rcostoftheBPEV.Weestimatethatitwillcostlessthan$40/yeartomaintainPEM fuelcells,andverylittletomaintainhigh -pressurehydrogenstoragetanks,whichare simpleanddurable.(Hydrogentanksmightneedtobeleak -testedoccasionally.) ii)WeassumethattheratioofEVm&rexpend iturestoICEVm&r expendituresisthesameforthe“out -years”oflife(beyond120,000miles)asitisforthe first120,000miles.(Thisisanassumption,oranextensionoftheavailabledata,rather thananinterpretationofavailabledata,becausethepublishedcomparisonsofEVm&r expenditureswithICEVm&rexpendituresdonotextendbeyondthelifeofatypical ICEV.)Althoughtheelectricmotorprobablywillcontinuetofunctionreliablyintheout yearsoflife,thepartsthatanEVwillhav eincommonwithanICEV -- thesuspension, body,interior,brakes,frame,andmore-- willcontinuetodeteriorateandfail.The ownerofanoldEVeitherwillhavetopayalargeamountofmoneyoccasionallyto maintainandrepairtheseparts,orelsescrapthevehicle.Intheabsenceofactualdata onEVm&rexpenditureintheoutyearsoflife,weestimatethemrelativetoICEVm& rexpenditures,thesamewaythatweestimatem&rexpendituresoverthefirst120,000 miles.Theresultantm&rexpe nditurescheduleshowninTable10.(Notethatwehave, infact,triedtomaketheassumptionaboutvehiclelifeconsistentwiththem&rcost schedule,byaccountingfortheinevitabledeteriorationofthepartsthatEVswillhave incommonwithICEVs.) Thefinalassumedandcalculatedm&rcosts,forBPEVs,areshowninTable9. (Incrementsforfuelcellsorfuelstoragesystemsarenotshownhere.) Warrantycosts .Asnotedabove,ourestimatesofm&rcostsincludethevalue ofworkdoneunderawarranty.However,thecostofthisworkisnotchargeddirectly tothecustomer,butratherisembeddedinthedealercostportionofthepriceofthe vehicle.Thisgivesrisetoaquestion:ifEVshavelowerm&rcosts,willthisbereflected inalower implicitwarrantycost,inthevehiclepurchaseprice?Ouranalysisinessence assumesso,becausewetreatthem&rwarrantycostsexplicitly,andassumethatthey willbealittlelowerwithanEV.Itisdifficulttosaywhetherornotanylowerm&r costswillbetranslatedintoareductioninthevehicleprice:ontheonehand,normal competitivepressureswilltendtopushpricesdowntocost;ontheotherhand,thecost - reduction“signal”mightnotbeclearenoughorlargeenoughtowarrantprice differentiation.

133 Doconsumersrecognizeandevaluatemaintenanceandrepaircosts? Wehavearguedherethatelectric -drivevehicleswillhavelowerm&rcoststhan ICEVs,andthatthiscostreductionwillpartiallyoffsetthehigherinitialcost,froma life - cycle -costpointofview.Now,itiswidelyacceptedthatmanyfleetoperatorscalculate life -cyclecostsexplicitly,andsocanbeexpectedtoaccountforthem&rcostreduction ofEVsinthewaywehavehere.Unfortunately,though,thefleet-vehic lemarketistiny comparedtothehousehold -vehiclemarket,andmosthouseholdsapparentlydonotdo calculatelife -cyclecosts explicitly.(Forexample,PatilandHuff[1987]arguethat"life cyclecostsarenotusuallyusedtodetermineeconomicfeasibil ityinpassengercar applications"[p.998]).Ifhouseholdsdonoteven qualitativelyweighrunningcosts againstinitialcosts,theneitherthemaintenancecostreductionofEVswillnotbe realized,orelseitwillhavetobetranslatedintoapurchaseincentive.Itisofsome interest,then,frombothananalyticalandapolicy -makingstandpoint,todetermineif consumersarelikelytoweighlowerm&rcostsagainsthigherainitialcost. Toaddressthisquestioneconometrically,onewouldneedtokno w,foralarge setofvehicles,thesellingpriceandallattributesofthevehicles,includingm&rcosts, thatdetermineconsumerutility.Therewouldhavetobereasonablevariationinthe expectedm&rcosts,andonewouldhavetobelievethatbuyers wereawareof differencesinm&rcosts.Unfortunately,itisnotlikelythatmostbuyerschoosing amongspark -ignitionvehiclesconsiderm&rcosts,becausem&rcostsarenotposted onthevehicle,arenotevidentbyinspection,andgenerallyarenot wellknown. However,dieselvehiclesdohaveappreciablylowerm&rcoststhangasolinevehicles (Redselletal.,1988),andbuyerschoosingbetweenspark -ignition(gasoline)and compression -ignition(diesel)vehiclesapparentlyareawareofthis(Kurani and Sperling,1989). Itmightbeworthwhile,then,totrytofindtheimplicitpriceoflower maintenancecostsandlongervehiclelife,bycomparingpurchasesofdieselvehicles andgasolinevehicles.Forourpurpose,though,itissufficienttonoteth atcarbuyersdo indeedtakeaccountofreducedm&rcosts.Thecaseofdieselvehiclesisenlightening. Light -dutydieselvehiclesarehardertostart,noisier,dirtier,andupto$1000more expensivethantheirgasolinecounterparts,buthavelowerfuelandm&rcosts(Kurani andSperling,1989).Buyersoflight -dutydiesel-fuelvehiclesexpectthelowerfueland m&rcoststocompensateforthedisadvantages,includingthehigherinitialcost (KuraniandSperling,1989).KuraniandSperling's(1989)surveyofdiesel-carbuyers showsclearlythatpeoplewhochosedieselsovergasolinevehiclesdidsoinpart becauseofthelowermaintenancecostsofthediesel. Ofcourse,onecouldarguethatthepeoplewhochoosedieselsprobablyare unusuallyconcern edaboutmaintenance(andfuel)costs.Thisprobablyistrue. However,EVsarelikelytohavelowerm&rcoststhanevendiesels,andsowillappeal topeoplewhoarelessconcernedwithm&rcosts.Interviewsofparticipantsinarecent EVtest -drivecl inicdosuggestthatconsumerswillrecognizethelowerm&rcostsof EVs.Turrentineetal.(1991)write:

TheinitialinspectionofEVsconvincedsomeparticipantsthatthemotorwassosimplethere wouldbelittletorepair...Whenaskedtoreflectupon maintenancecostsofEVs,manythought

134 aboutelectricappliancessuchastheirrefrigeratorandcommentedthattherewaslittlethatcould gowrong(p.30).

Similarly,TurrentineandKurani(1998)citeanarticlebyCambridgeReportsthat statesthat80% ofsurveyrespondentssaythattheyaremoreinterestedinEVsafter learningthattheirmaintenancecostsarelower.TurrentineandKurani(1998)alsonote that“carmakershavebeenkeentoreducemaintenanceforconventionalvehicles, awareofthecost andhassletoconsumers”(p.3-49). Itappears,then,thatconsumerslikelywillaccountforthelowerm&rcostsof EVs.(Whethertheydosoexplicitly,usingtherateofinterestusedhere,isanother question,whichwedonotaddress.)

INSURANCE

Overview Ourlifecyclecostmodelhandlesinsurancepaymentsinsomedetail.Webegin withanestimateofthemonthlypremiumforcomprehensivephysical -damage insuranceandliabilityinsuranceforareferencevehicle.Then,weformulatea relationshipbetweentheliabilityandphysical -damageinsurancepremiums,andthe valueandannualtravelofavehicle.Generally,weassumethatpremiumsarenearly proportionaltoVMTandvehiclevalue.Withthisrelationship,andanestimateofthe valueofthemodele dvehiclerelativetothevalueofthereferencevehicle,andofthe VMTofthemodeledvehiclerelativetotheVMTofthereferencevehicle,wecalculate theinsurancepremiumsforthemodeledvehiclerelativetotheestimatedpremiumsfor thereferencevehicle. Wealsospecifythenumberofyearsthatphysical -damageinsuranceiscarried,in ordertoaccuratelycalculatethelifecyclecost.

Dataoninsurancepremiums Thereareseveralindependentsourcesofdataoninsurancepaymentsformotor vehicl es.However,themostcomprehensive,primarysourceofdataonpremiumsand expensesintheinsuranceindustryisA.M.Best’s AggregatesandAverages,Property - Casualty (1997).(ThesedataarecomprehensiveenoughthattheBureauofEconomic AnalysisusestheminitsNationalIncomeProductAccountsfortheU.S.)A.M.Best (1997)reportspremiumsearned,andlossesincurred,bycompanieswritingauto liabilityinsuranceandphysical -damageinsuranceforprivatepassengervehiclesand commercialvehicles. (“Physicaldamage”includescollision,vandalism,fire,andtheft insurance;and“liability”includesuninsuredmotoristcoverage.)Thefollowingshows A.M.Best’s(1997)estimatesofbillionsofdollarsofnetpremiumsearnedfor automobileinsurancein1996,fromwhichwecalculate$/vehicleassuming170million privatepassengervehicles(includinguninsuredvehicles):

135 10 9$(1996) $/veh/yr. $/veh/mo. physicaldamage 38.76 228.00 19.00 liability 67.15 395.00 32.92 total 105.91 623.00 51.92

Fo rthepurposeofcomparingtheA.M.Bestestimateswithotherestimates,and ofdevelopingourown$/insured-vehicle/monthfigures,wederivefromtheabovean estimateoftheaverageinsurancepremiumsperinsuredvehicle,in1997.First,we updatefrom 1996to1997,bymultiplyingby1997/1996motor -vehicle -insuranceCPI ratioof1.03(BLS,1999).Next,weremoveuninsuredvehiclesfromthenumberof vehiclesoverwhichwedividetheaggregatepremiumsreportedbyBest.Marowitz (1991)estimatedthatin Californiain1990,about20%ofthevehicleswereuninsured. Todaythepercentageprobablyislower,asaresultoflawsthatrequireproofof insurancewhenapersonregistersavehicleorispulledoverbythehighwaypatrol.We assumeanationalrateof12%.Next,weassumethatatanytime,onlyhalfofthe vehiclesthatdohaveliabilityinsurancealsocarryphysical -damageinsurance.(We assumethatnobodyhasphysicaldamageinsurance,butnotliabilityinsurance.)With theseassumptions,weestimat ethefollowing:

$-insured- $-insured- 10 9$(1996) 10 9$(1997) veh/yr. veh/mo. physicaldamage 38.76 39.92 533.73 44.48 liability 67.15 69.16 462.33 38.53 total 105.91 39.92 996.06 83.00

Thesearenationalaverage figuresforallinsuredprivatepassengervehicles. Later,wewillusethesetodevelopestimatesofthemonthlyinsurancepremiumsfor theTaurusandEscortICEVsandEVs,ontheassumptionsthattheaveragesabove applytotheaveragepricevehicle,and insurancepremiumsareafunctionofvehicle value.First,though,wewillcomparetheA.M.Best(1997) -derivedestimateswithother estimatesofinsurancecosts. TheFHWA(1984)estimatedthatin1984,insuranceagainstliability,property damage,pers onalinjury,anduninsuredmotoristscost$36/monthforthemid -sizecar and$33/monthforthesubcompact.Collision -damageinsurance,heldonlyforthefirst fiveyears,cost$25/monthforamid -sizecarand$20/monthforasubcompactcar.In 1991,theyupdatedtheirestimates(FHWA,1991).MultiplyingtheFHWAestimatesby the1997/1984and1997/1991CPIforinsurance(factorsof2.33and1.32 -- thepriceof insurancedoubledbetween1984and1993)resultsinthefollowingmonthlypremiums

136 FHWA(1984) (1997$/mo.) FHWA(1991)(1997$/mo.) subcompact midsize subcompact midsize physicaldamage 47 58 30 30 liability 77 84 70 70 total 124 142 100 100

AccordingtoRunzheimerInternational’s Survey&AnalysisofBusinessCar Policies&Costs1991-1992(1992),businessfleetspaidamedianvalueof$650/yearfor insurancein1991($860at1997prices).Similarly,theMVMA(1990)citedestimatesby theAmericanAutomobileAssociation(whichinturngotitsdatafromRunzheimer International)thatin199 0property -damageandliabilityinsurancecost$26.50/month, andphysical -damageinsurancecost$30.74/month($21.58/monthforcollision -damage and$9.16/monthforfireandtheftinsurance),foratotalof$57.24/monthor$686/year ($970at1997prices). TheRunzheimer(1992)andMVMA(1990)estimatesareconsistentwiththeA. M.Best(1992)data,buttheFHWAestimatesofliabilityinsurancearequitehigh, perhapsbecauseofhighinsurancepricesintheBaltimorearea,wherethedatawere collected. Afi nalsourceofdataistheConsumerExpenditureSurveyadministeredbythe BureauofLaborStatistics(BLS)oftheU.S.DepartmentofLabor.Accordingtothese surveysofactualconsumerexpenditures,householdsin1997spent$750oninsurance for2.0vehi cles,or$375pervehicle($31/month/vehicle)(BLS,1999).Thisis considerablylowerthantheaverageper-vehiclepremium(includinguninsured vehicles)ofabout$630,asshownabove.Thissuggeststhatconsumersseriouslyunder- reporttheirinsuranceexp enditures,justas,webelieve,theyunder-reporttheir expendituresonvehicularmaintenanceandrepair(seeabove).

MonthlypremiumsforEVsandICEVs Giventheaverageinsurancepremiumperinsuredvehicleestimatedfromabove fromtheA.M.Bestdat a,wewishtoestimatethepremiumsfortheTaurusandEscort ICEVsandEVsmodeledhere. Insurancepremiumsareafunctionofmanyfactors,includingtheamountand kindofprotection,thevalueofthevehicle,thecharacteristicsofthedriversandthearea wherethevehicleisdriven,andtheamountandkindofdriving.However,wethinkit reasonabletoassumethatthevehiclesthatwemodelherearedriventhesameway,in thesamesortsofplaces,asisthe“average”vehicletowhichtheA.M.-Best (1997) - derivedaveragesapply.Butthevehiclesthatwemodelingeneralwillnotbeworththe same,andmightnotbedriventhesamedistanceannually,asthe“average”vehicle. Hence,wecanestimatetheinsurancepremiums,forthevehiclesthatwemodel,onthe basisofthevalueandannualVMTofthemodeledvehiclesrelativetothevalueand annualVMTofthe“average”vehiclewiththeestimatedaverageinsurancepremiums. Ourformalmodelassumesasimplenonlinearrelationshipbetweenrelative insur ancepremiumsandrelativevehiclevalueandannualVMT:

137  PV  PE  RCV   AVMT'V  PDPV = PDPV * ⋅ ⋅  RCV *   AVMT'V* 

 LV  LE  RCV   AVMTV  LPV = LPV* ⋅ ⋅  RCV *   AVMTV*  LVM AVMT = LVY

where:

PDP V=thephysical -damageinsurancepremiumforthevehiclebeingmodeled ($/month) PDP V* =thephysical -damageinsurancepremium forthereferencevehicle ($/month)(theaveragecalculatedabove,fromtheA.M.Best[1997]data) RC V=Theretailcostofthevehiclebeingmodeled($)(calculatedabove) RC V* =Theretailcostofthereferencevehicle($).TheBEA(Morris,1998)repor ts thattheaverageexpenditurepernewmodel-year1997carwas$20,273, andtheaverageexpenditurepernewmodel-year1998carwas$20,787. (“Expenditure”includeseverything:taxes,options,shipping,dealer preparation,etc.,andsoisequivalenttoou r“RC”parameter.)Weweight the1997modelyearby0.75,andthe1998modelyearby0.25,tocomeup witha1997calendar -yearfigureof$20,400. PV=exponentthatdeterminestherelationshipbetweentherelativevehicle valueandtherelativephysical -damageinsurancepremium(discussed below) AVMT’ V=averageannualvehiclemilesoftravelbythevehiclebeingmodeled, overthelifethatphysical -damageinsuranceisheld 37 AVMT’ V* =averageannualvehiclemilesoftravelbythereferencevehicle,over thelifethatphysical -damageinsuranceisheld(assumedtobethesameas thatestimatedfortheICEVinthisanalysis) PE=exponentthatdeterminestherelationshipbetweentherelativevehicle travelandtherelativephysical -damageinsurancepremium (discussed below) LP V=theliabilityinsurancepremiumforthevehiclebeingmodeled($/month) LP V* =theliabilityinsurancepremiumforthereferencevehicle($/month)(the averagecalculatedabove,fromtheA.M.Best[1997]data)

37 WedistinguishAVMTfromAVMT’becauseEV/ICEVratioofAVMTcanbedifferentfromthe EV/ICEVratioofAVMT’, onaccountofdifferentannualmileageaccumulationschedules.

138 LV=exponentthat determinestherelationshipbetweentherelativevehicle valueandtherelativeliabilityinsurancepremium(discussedbelow) AVMT V=averageannualvehiclemilesoftravelbythevehiclebeingmodeled, overitslife AVMT V* =averageannualvehiclemilesoftravelbythereferencevehicle,over itslife(assumedtobethesameasthatestimatedfortheICEVinthis analysis) LE=exponentthatdeterminestherelationshipbetweentherelativevehicle travelandtherelativeliabilityinsurancepremium(discu ssedbelow) LVM=thelifeofthevehicleinmiles(inputbytheuser) LVY=thelifeofthevehicleinyears(calculatedfromafunctionofmile accumulationv.time;seediscussioninsection“Lifetimeofvehicles,from purchasetodisposal(years)”)

Gi venassumptionsormodel-calculatedresultsforvehiclevalueandannual VMT,andassumingthatAVMT V* =AVMT ICEV ,thenthekeyremainingparametersin thesefunctionsaretheexponentsPV,PE,LV,andLE.Iftheyarezero,thendifferences invehiclevalu eorVMThavenoaffectoninsurancepremiums,andthepremiumsfor themodeledvehiclesareequaltotheaveragepremiums.Iftheexponentsareequalto 1.0,theninsurancepremiumsareproportionaltovehiclevalueandVMT. Therelationshipbetweeninsu rancepremiumsandannualtravel. Mostifnotall autoinsurancepremiumsaresomefunctionofannualVMT.Insomecasesthepremium issetbyVMTcategory(“second -car,”“lessthan5,000mi/yr.,”etc.);inothers,the premiumischargedpermileoftrave l,andhenceisproportionaltoVMT. Aninsurancepremiumcanbeanalyzedintwoparts:apaymentthatcovers expectedlosses,andapaymentthatcoverstheinsurancecompany’smanagementand administrationcost,andprofit.Theexpectedlossesareafunc tionoftheprobabilityand costoflosses(theft,accident,etc.),andareequalto•iPi .Ci,wherePi istheprobability oflosstypeiandCiisthecostoflosstypei.Themanagementandadministrationcost, andprofit,mayalsobeafunctionofthe expectedlosses. Itmightseemreasonabletosupposethattheprobabilityofanaccidentperyear isproportionaltotheamountoftravelperyear,buttherecanbeimportant“feedback” effectsthatunderminethisproportionality.Forexample,thereisevidencethatastotal VMTincreasesandstreetsbecomemorecrowded,driversexercisemorecare,and hence“compensate”fortheincreasedexposurebyreducingtheaccidentratepermile (SimonetandWilde,1997;Blomquist,1986;Evans,1985).Moreover,an increaseinVMT mightreduceaveragespeed,whichinturnmightreducetheaverageseverity -- and cost,Ci -- ofaccidents. Turningnowtotherelationshipbetweenphysical -damageinsuranceandVMT, wedonotknowhowthelikelihoodoftheft -- oneofth elossescoveredby comprehensivephysical -damageinsurance-- isrelatedtoVMT.Wesuspect,though, thattherelationshipisnotoneofproportionality,becausevehiclesarestolenwhenthey

139 areparked,notwhentheyarebeingdriven,andtheymightbejustaslikelytobestolen whenparkedathomeaswhenparkedawayfromhome. Finally,asregardstherelationshipbetweenVMTandtheadministrationand managementcost,andprofit,itispossiblethatprofitisafixedpercentageofthe premium,rathe rthanafixedabsoluteamount. Withtheseconsiderations,weassumethatallexpectedlossesexcepttheftare virtuallyproportionaltoVMT;thattheftlossisonlyweaklyrelatedtoVMT;andthat profitisnearlyafixedpercentageofthepremium.Quali tatively,wejudgethatthe exponentPE,whichrelatestherelativeannualVMTtotherelativephysical -damage premium,is0.75,andthattheexponentLE,whichrelatestherelativeannualVMTto theliabilitypremium,is0.90.(Recallfromabovethatava lueof1.0makesthepremium proportionaltoVMT,whereasavalueof0.0makesthepremiumcompletely independentofVMT.) Therelationshipbetweeninsurancepremiumsandvehiclevalue.Thetaskhereis toquantifytherelationshipbetweenvehiclevaluean dinsurancepremiums.Theissue maybeputasfollows:ifEVs,withtheirexpensivebatteries,fuelcells,andhydrogen storageequipment,cost,say40%morethanICEVs,willtheirphysical -damage premiums,orevenliabilitypremiums,be40%higher?Whatistherelationshipbetween therelativevehiclevalue,andtherelativeinsurancepremium?(Inourformalmodel, weembodythisrelationshipinthePVandLVparametersshownabove.) Toanswerthis,wemaydistinguishthreekindsofinsurance,relatedto theft, propertydamage,andinjury. Sincetheftinsurancepremiumspresumablyareequaltoexpectedlossesplus insurers’administrationandmanagementcostandprofit,andtheexpectedlossesare equaltothevalueoflostvehiclesmultipliedbythenum beroflostvehicles,then,fora givenprobabilityofloss,thetheftinsurancepremiumisproportionaltothevehicle value.Ifweassumethattheprobabilityoftheftisindependentofthetypeofdrivetrain orfuelusedbyavehicle,thenthetheftcom ponentoftheEVinsurancepremiumis equaltothecomponentforsomereferencevehiclemultipliedbytheratioofthevalue oftheEVtothevalueofthereferencevehicle 38 . Similarly,property -damageinsurancepremiumsareequaltoexpectedpayments for damagesplusinsurers’administrationmanagementcostandprofit.Asnotedabove, expectedpaymentsfordamagescanberepresentedas•iPi .Ci,wherePi isthe probabilityoflosstypeiandCiisthecostoflosstypei.AssumingthatthePiare unaffe ctedbythevalueofthevehicle 39 ,thequestionbecomes:whatistherelationship betweenchangesinthevalueofthevehicle,andchangesintheaveragedamageper

38 Onecouldarguethattheprobabilityoftheftincreaseswithvehiclevalue;ifso,andassumingthatthe lossisproportionaltovehiclevalue,thenthiscomponentoftheexponentPVwould begreaterthan1.0. However,itisnotcleartousthattheextracostofanEVorAFICEVisespeciallyvaluabletowould -be thieves.

39 Thisofcoursemightnotberight:perhapsasthevalueofavehicleincreases,theownerdrivesmore carefully.

140 incident?Toanswerthisquestion,letusfirstdefinethe“valueratio,”astheratioof the valueofvehicleXtothevalueofvehicleY,ortheratioofthevalueofcomponentPof vehicleXtothevalueofcomponentPofvehicleY.Withthis,wemaysaythatif damagetendstooccurdisproportionatelytocomponentswhosevalueratiois sig nificantlydifferentfromthevehiclevalueratio,thentheaveragedamageper incidentwill not beproportionaltothevehiclevalue. Anexamplewillhelp.SupposethattheonlydifferencebetweenvehicleXand vehicleYisthefuelstoragesystem,which costs$CinvehicleX,and$10 .CinvehicleY, withtheresultthatvalueofvehicleYis1.1timesthevalueofvehicleX.Ifallaccidents involvecomponents other thanthevehiclestoragesystem,thentheaveragedamageper incidentwillbethesamefo rXandY,andhencewillbeindependentofthevehicle value.Conversely,ifallaccidentsinvolveonly thefuelstoragesystem,thentheaverage damageperincidentwillbe10timeshigherforvehicleYthanforvehicleX -- much morethanthe1.1ratio ofvehiclevalues.If,however,thefuelstoragesystemis damaged50%ofthetime,thentheaveragedamageperincidentforvehicleYwillbe1.1 timesthatofvehicleX -- thesameasthevehiclevalueratio. Becausewehavenoreasontoassumethatdam agetendstooccur disproportionatelytocomponentswhosevalueratioissignificantlydifferentfromthe valueratio,weassumethatpropertydamageisproportionaltovehiclevalue. Finally,asregardsinjuriesandrelatedcosts,thereisnoobviousrelationship betweenthevalueofvehiclesandtheprobabilityandseverityofinjury -accidents,sowe assumethatthepersonal -injuryportionoftheliabilitypremiumisindependentof vehiclevalue.Inordertoseparatethis“value -independent”portionofthepremium, weassumethattheportionoftheliabilitypremiumthatcoverscostsrelatedtoinjuryis twicetheportionthatcoverscostsrelatedtopropertydamage(basedinpartonMiller etal.,1991,andBlincoe,1996).Wefurtherassumethattheinsu ranceadministrationand managementcostandprofitis20%ofthetotalpremium(basedinpartonA.M.Best, 1997). Withtheseconsiderations,weassumethatalltheftloss,andallpropertydamage whetherunderphysical -damageinsuranceorliabilityins urance 40 ,isvirtually proportionaltovehiclevalue;thatliabilityinsuranceforpersonalinjuryisindependent ofvehiclevalue;andthatprofitisnearlyafixedpercentageofthepremium. Qualitatively,wejudgethattheexponentPV,whichrelatestherelativevehiclevalueto therelativephysical -damagepremium,is0.90,andthattheexponentLV,whichrelates therelativevehiclevaluetotheliabilitypremium,is0.45.(Recallfromabovethata valueof1.0makesthepremiumproportionaltoVMT,whe reasavalueof0.0makesthe premiumcompletelyindependentofVMT.)

40 Th euseofamorevaluablevehicledoesnotaffecttheliabilitypremiumoftheuserofthemorevaluable vehicle,butitdoesaffecttheproperty -damageportionoftheliabilitypremiumofall other drivers, becauseeveryoneelsenowhastoinsureagainstd amagingamorevaluablevehicle.Weassignthis increaseinthedamagepremiumtotheinsuranceofthemorevaluablevehicle.

141 Deductibleandother Deductible.Asmentionedabove,wetreatanypaymentsoftheinsurance deductible,whichtypicallyisaround$250 41 ,asanexpenditureonm&r.Sinceany suchpay mentisincludedintheCensusdataonreceiptsforautomotivemaintenance andrepairservices,thepaymentsofthedeductible,ifform&r,alreadyareincludedin our“maintenanceandrepair”category.Weleavethematterthisway. Notethat,sincewedowecountinsurancepaymentsassuch(i.e.,inthe “insurancecategory),wemakesurethatanym&rcoststhatarecoveredbyinsurance arenot counted(asecondtime)inthe“maintenanceandrepair”category.Wedothisby removingfromthegrandtotal m&rreceiptstheamountthatweestimateispaidby automobileinsurance. Lengthoftimecarryingphysical -damageinsurance .Weassumethatthelength oftimethatphysical -damageinsuranceiscarriedisrelatedtotheinitialvalueofthe vehicle,and estimatethetimerelativetothatforthereferencevehicle,basedonthe relativevehiclevalues:

 0.5  RCV  CDTV = CDTV* ⋅  RCV*  where:

CDT V=thenumberofyearsthattheownerofthemodeledvehiclecarries physical -damage insurance CDT V* =thenumberofyearsthattheownerofthereferencevehiclecarries physical -damageinsurance(weassume5.5) RC V,RC V* aredefinedabove K=dampeningexponent(0eliminatestheeffectofdifferencesinvehicleprice;1 makesCDTpropor tionaltothepriceratio;weassume0.5)

Thecostpermileofinsurance Thecostpermileofinsuranceiscalculatedinthreesteps:

1)sumthepresentvalueoftwopaymentseries: i)monthlyliabilityinsurancepremiumoverthelifeofthevehicle,and ii)monthlyphysical -damageinsurancepremium,overthetimethatitis paid;

41 Initsanalysisofthecostofowningandoperatingcarsandtrucks,FHWA(1984)assumedthatthe deductibleamountfrominsur ancecoverage“usually”was$100.However,RunzheimerInternational (1992)reportsthatamongbusinessfleetssurveyedthemediandeductiblein1991was$250,andthe MVMA(1990)citesestimatesbytheAmericanAutomobileAssociation(whichinturngotits datafrom RunzheimerInternational)thatthedeductiblefromphysical -damageinsurancewas$250from1978to 1990.

142 2)annualizethissummedpresentvalueoverthelifeofthevehicle;

3)dividebymilesoftravel.

Thepresent -valueandannualizationformulaearethestandardones,andare presentedinthesectiononthelifecyclecostpermile(seealsothelifecyclecostpermile ofthetires,whichcostiscalculatedinamannersimilartothatforinsurance).The relevantinterestrateforthepresentvalueandannualizationcalc ulationsisthereal annualormonthlyinterestrateforegoneoncashusedfortransportationexpenditures, aftertaxes(seethediscussioninthesectiononfinancialparameters). Asshowninthetablesofresults,theEVs,becauseoftheirappreciablyhigher totalvalue,haveaconsiderablyhigherinsurancecostpermile.

OTHERPERIODICCOSTS ANDPARAMETERS

Fuelandelectricity Gasoline.TheEnergyInformationAdministration(EIA)(1998)projectsthatoil willcostabout$20/bbl,andgasolinewillretailfor$1.20 -$1.30/gallon,including FederalandStatebutnotlocaltaxes(1997$)fromabout2005onwards.Inthemodel, wespecifya$20/bbloilcost(andassumethatgasolineis90%crudeoil),a$0.30/gallon refiningcost,a$0.17distributionand retailingcost,and$0.38intaxes(seeDeLuchi, 1992,fordataonrefining,distribution,andretailcosts),foratotalsellingpriceof $1.31/gallon. Electricity. Itislikelythatifelectricvehiclesbecomewidespread,utilitieswill offerlowoff –peakrates,toencourageconsumerstorechargewhencapacityis available.InCalifornia,allfivemajorutilities-- SouthernCaliforniaEdison,PacificGas andElectric,LosAngelesDepartmentofWaterandPower,SacramentoMunicipal UtilityDistrict,andSanDiegoGasandElectric -- haveproposedoradoptedtime -of -use ratesthatwillencourageEVownerstochargeduringoff -peakhours(CaliforniaEnergy Commission,1994).Allfiveutilitieschargeorhaveproposedtochargefrom3to5 cents/kWhfrom midnightuntil6:00am.Ratesgoashighas36cents/kWhinthe afternooninsummertime(CaliforniaEnergyCommission,1994). Inanyevent,theEIAprojectsthataverageelectricitypricenationwidewillnot bemuchhigherthantheoff -peakratesinCali fornia:abouta8.0cents/kWh(1997$)to theresidentialsectorthroughtheyear2020(EIA,1998). Withtheseconsiderations,weassumeanaveragerateof$0.06/kWh. FuelfortheEVheater. Asdiscussedabove,weassumeinourbasecasethatthe EVhasapropaneheater,becausetheEVdrivetraindoesnotproduceenoughwaste heattowarmtheinteriorcabin,anditismoreefficient(Garabedian,1999)andcost - effectivetouseafuelheaterratherthanaresistanceheaterinthevehiclecabin.Thecost of theheateritselfisincludedinourofthecostofheatingandcoolingsystem.Thecost - per-mileoftheheatingfuel(weassumepropane)isafunctionofthesteady -stateheat requirementperhour,theinitial(transient)heatingrequirement,theaveragespeed,the

143 fractionofmilesandtripsdrivenin“average”coldconditions,theefficiencyofthe heater,andthecostofpropane.Theheatingrequirementscanbeestimatedasa functionoftheambienttemperature,thedesiredcabintemperature,andthere coveryof wasteheatfromthedrivetrain,givenparticularvehiclecharacteristics:

 HLH  LPGC FHM =  + IHR ⋅ Fh ⋅ ⋅100  V ave  1000000 ⋅EFFH

 TE − TE  HLH = 5800⋅  i air  −WHPT  65 

 TE −TE  IHR = 6000 ⋅  i air   75 

∑Ts ⋅()1− Pes ⋅ abs[Pts ] ⋅ 0.948 WHPT = FWHA ⋅ s ∑Ts / 3600 s

where:

FHM=theaveragefuel-heatingcostpermile(cents/mi) HLH=thesteady -stateheatinputfromthepropane heatertothevehicle interior,tomaintainthedesiredtemperature,giventhedesignambient temperature(BTU/hr) Vave =theaveragespeedoveratrip(mph;calculatedforthesecond -by -second drivecyclespecified) IHR=theinitialheatinputfromthepropaneheatertothevehicleinterior,to raisefromthedesignambienttemperaturetothedesiredtemperature,per trip(BTU) Fh=thefractionofmilesandtripsinthe(equivalentofthe)designambient temperature(assume0.20forthebasecase;seealsothesectionontheuse ofelectricalenergyforauxiliariesandaccessories) EFFH=theefficiencyofthepropanespaceheater(BTU -delivered/BTU -fuel- HHV;weassume85%,onthebasisofDelucchi[1999d]) LPGC=theretailcostofpropane,includingta xes($12/10 6BTU;national averagepriceofliquefiedpetroleumgasintheresidentialand transportationsectorsin1997;EIA,AnnualEnergyOutlook2000,1999) 100000=BTUs/10 6-BTU 100=cents/$ TE i=desiredinteriorcabintemperature(oF;weassume68o)

144 TE air =designambienttemperature(oF;weassume45 o) WHPT=thepowertrainwasteheatactuallydeliveredtothevehicleinterior,in steadystate(wefollowDieckmannandMallory[1991]andassumethat thepowertraincannotsupplyanyofthe“transie nt”heatatthestartofa trip,becauseithasn’twarmedupenough)(BTU/hr) FHWA=ofthepowertrainwasteheatgeneratedtheoretically,thefractionthat actuallyisdeliveredtothevehicleinterior(0.20;seediscussionbelow) subscripts=segmentof thedrivecycle. Ts=thedurationofsegmentsofthedrivecycle(seconds) Pe s=theefficiencyofenergytransmissionfrombatteryorfuel-cellterminalsto wheels,forsegmentsofthedrivecycle.Thisiscalculatedinthesection “Once − throughefficiencyfromthebattery(orotherenergy -storage system)orfuel − celltothewheels(excludingstoragedeviceitself)” abs[Pt s]=theabsolutevalueofthepowerthroughthedrivetrainduringsegment softhedrivecycle(kW;thisisdisc ussedinthesection“Poweratengine crankshaftorfuel-cellorbatteryterminals”) 0.9480=BTUs/kJ 3600=sec/hr

Theequationforthesteady -stateheatloss,HLH,andtheinitialheatinput,IHR, arebasedinpartongraphsthatshowthesteady -stateand transientheating requirementsasafunctionoftheambienttemperature,foraminivan(Dieckmannand Mallory,1991).WeassumethatourbaselineEVhasasmallercabinandbetter insulationthanhastheminivanintheDieckmannandMallory(1991)analysi s,andso reducetheheatingrequirementsinDieckmannandMallory(1991)byabout20%. DieckmannandMallory(1991)notethatthewasteheatfromtheEVdrivetrain, thoughmuchlessthanthewasteheatfromtheICEVdrivetrain,can,ifcompletely recovere d,supplyasubstantialfractionofthesteady -stateheatingneeds.Usingthe actualsecond -by -seconddataontheenergyrateandefficiencyofthepowertrain,we cancalculatefairlyaccuratelytheamountofwasteheatgeneratedtheoreticallybythe drive train(seetheequationsabove).However,thedifficultquestionis:whatfractionof thistheoreticallyavailablewasteheatiseconomicallyrecoverable?Withoutany analysis,weassumethat20%oftheavailableheatactuallyisdeliveredtotheinterior of thevehicle,atessentiallynocapitalcost. Asshowninthetablesofcents -per-mileresults,theseassumptions,whichare relativelymoderate(e.g.,theEVisoperated20%ofthetimein45 oFambient temperature),stillresultinanon -trivialcost permileforpropanefuelforheating. Indeed,inourbasecase,theheatingfuelcostpermileisaboutthesameasthetire replacementcostpermile,ortheregistrationcostpermile.Andinverycoldconditions -- say,35%ofthetimein30 oweather-- thecostofheatingfuelisthesameasthecostof electricitytopowerthevehicle! NotethatinICEVs,theheatfortheinteriorcabinisessentiallyfree.

145 Itispossibleinthismodeltospecifyanelectricalheatingsystem(aheatpump andaresis tanceheater)insteadofafossil -fuelsystem.Theparametervaluesforthe electricheatingsystemarepresentedinthesection“.Thereisaswitchinthemodel whichspecifieseitherafossil -fuelorelectricheatingsystem.

Thelifecyclecostofhome recharging:offboardchargeranddedicatedhigh -power circuit WeassumethatbatteryEVswilluseanintegratedconductivechargingsystem, whichpromisestodeliverhighrechargingpoweratcomparativelylowcost(NewFuels andVehiclesReport, 1999;ACPropulsion,1999;Gage,2000a;Oros,1999a).Thissystem maybeanalyzedinthreeparts:

1). Adedicatedhigh-powercircuitinthehouse. EVownerspresumablywillwanta separate220 -V,30 -to -50 -ampcircuitforrechargingEVs.AsDeLuchi(1992)shows,a standard120 -V/30 -Acircuitinmanycaseswillnotprovideenoughpowertochargean EVovernight.Althoughsomeownersalsomaywantaseparateelectricitymeterfor theirEVcircuit,wedonotincludethisinourcostanalysis. 2).Offboardoutletorcharger.Theoff -boardchargertransferspowerfromthe externalhigh -powercircuittothevehicle.Thebox,orcharger,iswiredintothehome circuitatoneside,andhasacableandvehicleconnectorattheother.Ifitisrelatively sophisticated,itdo eshandshakeandsafetychecks,andcanbeprogrammedbythe user. 3).Integratedon -boardchargingcomponents. Onboardthevehiclearethe componentsthatconverttheacpowerfromtheoffboardchargetodc,monitorthe batteryvoltage,andcontrolthe currentflowandchargetermination.Gage(2000a)lists fourcomponents:achargeport,acommunicationmodule,abatterymonitorcomputer, andanintegratedcharger.Thesecomponentsareintegratedwiththemotor controller/inverterintheEVdrivetrain, toavoidduplicationandthusreducecosts.

Weestimatethecostoftheon -boardcomponents(number3above)inthesection “Costoftheelectricdrivetrain”.Inthissection,weestimatethecostofthehigh -power circuitandoff -boardcharger. Theli fecyclecostofthecircuitandoff -boardchargerisestimatedasafunctionof theinitialcost,theinterestrate,andtheamortizationperiodoftheinvestment.The modelcalculatesthelengthoftimerequiredtofullyrechargethebatterygivena volta geandcurrentinputbytheuser,andthesizeofthebatteryrequiredtosatisfythe inputvehiclerangeandpower.IftheuserspecifiesthatthebatteryinanFCEVbe rechargedbytheoutlet,themodeldeductsfromthetotalrechargingrequirementthe amountofenergyreturnedtothebatterybyregenerativebrakingoverthespecified drivecycle,whenthevehicleisoperatingonthefuelcell.Iftheuserspecifiesthatthe batteryintheFCEVberechargedbythefuel-cellinsteadofbytheoutlet,then thehome rechargingcostisassumedtobezero. Formally,thecostpermileofthededicatedhigh -powercircuitandtheoff -board chargeriscalculatedas:

146 AHRC HRCM = AVMT

iA AHRC = IHRC ⋅ −LHRY 1 − ()1 + iA where:

HRCM=thecostpermileoftheho merechargingsystem(circuitandcharger) ($/mi) AHRC=theannualizedcostofthehomerechargingsystem($/peryear) IHRC=theinitialcostofthehomerechargingsystem($;discussedbelow) LHRY=thelifeofthehomerechargingsystem(assumedtobe30years,thesame astheusual“life”ofahome) iA=therelevantannualinterestrate(forconsumerexpendituresrelatedto transportation;seesectiononfinancialparameters) AVMT=annualvehiclemilesoftravel(equaltolifetimemilesdividedby li fetimeyears)

Thekeyparameterinthiscalculation,ofcourse,istheinitialcostofaddinga dedicated,high -power“smart”EVhomerechargingsystem(circuitandcharger). Thededicatedhigh -powercircuit. ThecostofaddinganEVrechargingcircuitto ahomedependsonseveralfactors:whetheroneputsthecircuitinanewlyconstructed homeorretrofitsanexistinghome;ifoneretrofits,whetherornottheexistingpanelhas adequatecapacity;thelengthoftherunfromthepaneltotheoutlet;local wagerates; anddetailsofhomeconstruction.. Itdoesnotcostmuchtoaddanextra220 -voltcircuitandinstallaslightlylarger panel(thanonewouldotherwise)atthetimeofconstruction,butitcostsquiteabit moretoremoveanexistingpanel,pu tinalargerpanel(perhapsinadifferentplace), andrunwiresthroughexistingwalls.Inanewinstallation,onepaysonlyfortheextra costofthelargerpanel,andfortheextralaborandmaterialstoaddtheextracircuit. (Theinstallationofthe panelisfree,becauseonemustdoitanyway.)Inaretrofit, however,intheworstcaseonemustpaytoremovetheoldpanel,payforallofanew largerpanel,paytorelocateandinstallthenewpanel,paytorelocatetheexisting wiringasnecessary,andpaytoinstallwiringinexistingconstruction(whichalwaysis morecostlythaninstallinginnewconstruction). DeLuchi(1992)presentscostestimatesfromtheliterature,andfrom conversationswithelectriciansandbuildinginspectorsacrosstheUnitedStates.These estimatesindicatethatretrofittinganexistinghousewitha240 -voltEV -recharging circuitwouldcostatleast$200iftheinstallationwasrelativelysimple,and$700 -$800if theinstallationwascomplex.Buildingarechargingcircu itintoanewhomeatthetime ofconstructionwouldaddatleast$100tothepriceofthehome. SincethepublicationofDeLuchi’s(1992)estimates,amorerecent,detailed analysisofcustomercostshasconfirmedthehighendoftherangecitedabove.

147 Accordingto KeepingCurrent (1993),AssociatedUtilityServices(AUS)surveyed314 customersofthreemajorutilitiesinCalifornia,estimatedthecustomer’sload,examined theexistingwiring,andcalculatedthecostforinstallinganEVchargingcircuit tothe garageortheparkingarea.TheyestimatedthattheEVchargingcircuitryandplug wouldcostanaverageof$709intheSouthernCaliforniaEdisonservicearea,$830in theLosAngelesDepartmentofWaterandPowerservicearea,and$874inthePaci fic GasandElectricservicearea.Theseestimatesincludeaplug,butnotanoff -board charger,load -managementdevice,orseparatemeter.Theyfoundthatitcostmuchless thantheaveragetoretrofithomesthathaveanattachedgarageandanadequatepa nel, andmuchmorethantheaveragetoretrofithomesthathadadetachedgarageand neededanewservicepanel. Theoff -boardcharger. Offboardchargersprobablywillcostfrom$200to$500, dependingontheirdesignandpowerrating.Recently,FordMotorCompanyanda suppliercompany(Avcon)haveannouncedthattheywillofferaconductivecharging boxforaslittleas$295(retailpricetoconsumer).Thisdoesnotincludeastate -of -charge indicator,oraseparatemeter(NewFuels&VehicleReport, 1998),butapparentlydoes includearecharging(Gage,2000b).ElectricVehicleInfrastructureInc.,amajor supplierofoff -boardconductivechargingequipment,projectsacostofatleast$300for aprogrammableoff -boardchargerwithastate -of -cha rgeindicator(Oros,1999b). ACpropulsion(Gage,2000a)estimatesthatthesimplestlow -power(1 -10kW) rechargingbox,suchasisusedtosupplypowertoparkedrecreationalvehicles,costs $170,notincludingthecostofaseparatecord,whichtheyest imatewillcostan additional$200!(Gage[2000b ]believesthatthe$295Avcon“PowerPak”mentioned aboveincludesacord.)ACpropulsion(Gage,2000a)estimatesthatahigher-power versionoftheAvconchargingbox(5 -20kWratherthan7kW)willcost$4 50. Itthusseemsreasonabletoassumethattheoff -boardcharger(andcord)willcost aslittleas$300atwhatweassumearemodestvolumesofproduction. “Smart”meters. SomeEVowners(andutilities)maywantseparatemetersand load -managementdevicesthatcommunicatebetweentheutilityandeachindividual chargingstationtominimizecostandmaximizethereliabilityandperformanceofthe grid.Presently,asecondordinarymechanicalmeterdedicatedtoanEVcosts$0.12/day fromSouthernCalifo rniaEdison(Gonzalez,1994),equivalenttoanup -frontcostof around$200to$400.Smart”electronicmetersandload -management/meterdevices probablywillcostlessthantheseadditionalmechanicalmeters.However,wedon’t includetheseinourcostana lysis. Ourassumptions. Itprobablyisreasonabletoassumethatintheshortterm, costswillberelativelyhigh.Inthelongrun,ifEVsaremadeinhighvolume,andnew housesarebuilttoaccommodateEVcharging,costscouldberelativelylow.Withthe se considerations,weassumethat,inthelongrun(athighproductionvolumeforEVs), thereisanincrementalconsumercostof$150forahigh -powercircuitinsteadofan ordinarycircuit,andanincrementalconsumercostof$250forarelativelysimple offboardchargerandcordsetproducedinhighvolume.Intheshortrun(atlowEV productionvolumes),weassumethathouseshavetoberetrofitted,andthatthetotal costofthehomerechargingsystemisthreetimeshigher($1,200).

148 Replacementtires Thecostpermileoftiresiscalculatedasafunctionoftheinitialcostofthetires, thelifeofthetiresandtheinterestrate.ThelifeofthetiresonthegasolineICEVis specifiedinmiles,andiscalculatedbythemodelfortheothervehicletyp esonthebasis oftheweightoftheothervehicletyperelativetotheweightofthegasolinevehicle. Thus,ifanEVweighsmorethanthebaselineICEV,thenitstireswillbereplacedsooner andhencewillhaveahigherlifecyclecost.Themodeldoesno treplacethetiresifthe lastreplacementintervalisneartheendoflifeofthevehicle. Inmoredetail,thecalculationproceedsasfollows.First,themodelcalculatesthe numberoftirereplacementsbydividingthelifeofthevehiclebythelifeofthetires.If thelastreplacementisscheduledtofallsuchthattheownerwouldgetonly20%orless ofthefulluseofthetiresbeforethevehicleisscrappedattheendofitslife,the replacementisassumednottotakeplace,andthefinalsetof tireswornbeyondthe normalperioduntilthevehicleisscrapped.Thelifetime,again,isassumedtobe proportionaltotheweightofthevehicle,ontheassumptionthattirewearislinearwith vehicleweight 42 .(Thisassumptionisreasonablebecausetheforceoffrictionisequalto thevehicleweightmultipliedbythecoefficientoffriction,whichdependsonthe characteristicsofthetwocontactingsurfaces.) Formally:

 LVM  TR = Integer EV − 0.2  TL 

WIUEV TLEV = TLICEV ⋅ WIUICEV

where:

TR=thenumbe roftirereplacements “Integer”returnstheintegerportionofthequantityinthebrackets[]. 0.2=factortopreventreplacementifuserwouldgetlessthan20%ofuseofthe finalsetoftires LVM EV =thelifeofthevehicleinmiles(input). TL=li feoftires(miles). TL EV =thelifeofthetiresfortheEV. TL ICEV =thelifeofthetiresforthebaselineICEV(assumedtobe45,000). WIU EV =thein -useweightoftheEV(calculatedinthesection“Totalweightand totalmanufacturingcost”).

42 InitsanalysisofthelifecyclecostsofEVsandICEVs,theU.S.DOE(1995)simplyassumesthattireson EVslasthalfaslongastires onICEVs,onaccountoftheextraweight.Itismorereasonabletomakethe tirelifeproportionaltoweight.

149 WIU ICEV =thein -useweightofthebaselineICEV(calculatedinthesection “Totalweightandtotalmanufacturingcost”).

Next,themodeltakesthepresentvalueoftheseriesofreplacements:

1− (1 + i )−TR PVTRC = TRC ⋅ TR iTR TL iTR = ()1+ iA AVMT −1

where:

TR, TLareasdefinedabove. PVTRC=thepresentvalueofthetirereplacementcost. TRC=thecostofreplacingasetoftires(assume$260fortheTaurus,$220forthe Escort). iTR=theperiodicinterestratewheretheperiodisthetire -replacementperiod iA=therelevantannualinterestrate(forconsumerexpendituresrelatedto transportation;seesectiononfinancialparameters). AVMT=annualvehiclemilesoftravel(equaltolifetimemilesdividedby lifetimeyears).

Finally,thepresentvalueisam ortizedannuallyoverthelifeofthevehicle,and dividedbytheannualmileage:

ATRC TRCM = AVMT

iA ATRC = PVTRC ⋅ −LVY 1 −()1 + iA LVM LVY = AVMT

where:

PVTRC,iA,LVM,andAVMTareasdefinedabove. TRCM=thetirereplacementcostpermile($/mi). ATRC=the annualizedtirereplacementcost(peryear). LVY=thelifeofthevehicleinyears.

150 Vehicleregistration Registrationfeesvaryfromstatetostate.Manystateshaveeitheraflatfeeora weight -basedfeeforpassengervehicles;afewstateshaveavalu e-basedoranage - basedfee(FHWA,1995).Someoftheweight -basedfeesaregraduatedperton,some distinguishonlyafewweightclasses(e.g.,under14,000lbsorover14,000lbs),and somehaveseveralclasses. Mostfeesrangebetweenabout$20and$100,with$50appearingtobearough average(FHWA,1995).Thisisconsistentwith$8billioninregistrationfeescollectedin 1997(FWHA,1998),whichimpliesroughly$50perpassengervehicle.Alsoconsistent withthis,householdssurveyedfortheCES,reportedspendingabout$35toregistera vehiclein1990(DivisionofCES,1993).Dataontotalrevenuesfromautomobile registrations,andtotalautomobileregistrations,indicateabout$42/vehiclein1990 (FHWA,1991a). Giventhisdatabackground,the modelreplicatesthepracticeinmoststatesand calculatestheregistrationfeeasafunctionofvehicleweight(heaviervehiclespaya higherfee).Weuseaweight -basedfeebecauseitiscommonandhasasolidrationale, inasmuchasroaddamageispropo rtionaltovehicleweight.Thecostprogramassumes a$50dollaryearlyfeeforthebaselinepassengerICEV,andincreasestheEV registrationfee,comparedtotheICEVregistrationfee,inproportiontotheextraweight oftheEV:

AVRC VRCM = AVMT

WIUEV AVRCEV = AVRCICEV ⋅ WIU ICEV

where:

VRCM=thevehicleregistrationcostpermile. AVRC=theannualvehicleregistrationcost. AVMT=averageannualvehiclemilesoftravel(calculatedonthebasisofa mileageaccumulationschedule). AVRC EV =th eannualvehicleregistrationcostfortheEV. AVRC ICEV =theannualvehicleregistrationcostforthebaselineICEV(assumed tobe$50). WIU EV =thein -useweightoftheEV(calculatedinthesection“Totalweightand totalmanufacturingcost”). WIU ICEV =thein -useweightofthebaselineICEV(calculatedinthesection “Totalweightandtotalmanufacturingcost”).

151 Vehicleinspectionfee Presently,somestatesrequiresafetyinspectionsandinspectionsoftheemission - controlsystems.TheCleanAirAct Amendmentsof1990requireinspectionand maintenanceinozonenon -attainmentareas;thefurtherfromattainment,themore stringenttheI&Mrequirement(EPA,1990).InCaliforniatheinspectioniseverytwo years,andcostsabout$35ifthecarpassesthe firsttime.Ifthevehiclefailsandhastobe fixed,buthasnotbeentamperedwith,theownerisrequiredtospendseveralhundred dollarstorepairit.Ifthepollutioncontrolequipmenthasbeentamperedwith,the ownermustpayallrepaircosts. In 1991,householdssurveyedfortheCESreportedspendingabout$4/vehicle forvehicleinspection(DivisionofConsumerExpenditureSurveys,1993).In1992, dedicatedautomotiveinspectionfacilitiesreceivedontheorderof$2/vehicle(Bureau oftheCensus, CensusofServiceIndustries,SourcesofReceiptsorRevenue, 1996).Since 1991/1992,theamountspentoninspectionalmostcertainlyhasincreased,inpart becauseoftheCleanAirActAmendmentsmentionedabove. Weassumethatmostvehiclesundergoabiennialsafetyandemissioninspection andtest.Weassumethatthesafetyinspectioncosts$20(everytwoyears),andthatthe emissionsinspectionandtest,whichrequiresmoresophisticatedequipment,costs$40 (everytwoyears).Theseassumptionsresu ltinatotalcostof$60everytwoyears,or $30/year/vehicle,ofwhich$10/yearisthecostofthesafetyinspection.(Notethatthe costofanyrequiredrepairalreadyisaccountedforinm&rexpenditures.) EVsdonothaveanypollutioncontrolequip ment,andhencearenotsubjectto inspectionandmaintenanceofemissioncontrols.Theyaresubjecttosafetyinspections, however.Thus,wedistinguishbetweenfeesforsafetyinspectionandfeesfor inspectionoftheemissioncontrolsystem.Theuseren terstheannualfeeforthebaseline gasolinevehicle,andthefeefortheothervehicletypesrelativetothegasolinevehicle fee.(Forexample,EVswouldbesubjecttoasafety -inspectiononly,notanemissions inspection,andsowouldhavealowerfee. )

Oil TherearethreewaystocalculatetheICEVoilcostpermile,andtheygive reasonablysimilarresults.First,in1992,retailstoressold$3.5billionworthof automotivelubricants(BureauoftheCensus,1992CensusofRetailTrade,Merchandise Li neSales,1995).Allowingforsalesofanother$0.5billionintheserviceindustries,and dividingbyabout2trillionVMTresultsin$0.0020/mile.Second,Delucchi(1999a) estimates1.35g-lube -oil/mi -travel,or0.0016quarts/mi,whichat$1.30/quartis $0.0020/mi.Third,ifoneassumes1quartper1000miles,theresultis$0.0013/mi.We assumeonequartper1000milesfortheEscort,andonequartper750milesforthe Taurus,at$1.30/quart. Thecostofoilchanges,apartfromthecostofoilperse,alreadyhasbeen estimatedseparatelyasam&rcostuniquetoICEVs.(Notethatthecostoftheoilwas deductedfromthem&rcosts.) EVsdonotconsumelubricatingoil.

152 Parking,tolls,fines,andaccessories Weassumethatthesecosts,permile ofvehicletravel,arethesameforallLDVs. Delucchi(1999c)estimatesthatin1991,allparkingestablishmentsintheU.S. receivedabout$8billioninrevenues,includingparkingtaxes.From1991to1997, revenuesreceivedinSIC752increasedby29%(BureauoftheCensus,ServiceAnnual Survey:1997,1998).Hence,weassume$10.3billioninpaymentsforparkingin1997.In addition,FHWA(1998)reports$4.4billionintollreceiptsbyalllevelsofgovernmentin 1997.Delucchi(1999b)estimatesabout $5billionintrafficandparkingfinesin1991;we assume$6.5billionin1997.Thetotalthusfaris$21.2billion.Dividingthisby200 millionvehiclesyields$106/vehicle/year,or$8.83/month. TheFHWA(1984)estimatedthatin1984ownersofmid -siz eautomobilesspent $16.50/yearonvehicleaccessories.Weassume$30/yearin1997. TheyearlyormonthlycostsaredividedbyyearlyormonthlyVMTtoobtainthe costpermile.

Federal,state,andlocalexcisetaxes Themodelcalculatesthecostper mileofthecurrentgovernmentexcisetaxeson gasoline,andthencalculatesthecost -per -milefortheothervehiclesrelativetothisby usingascalingfactor(0.0to1.0)specifiedbytheuser.Inthebasecase,weassumethat allvehiclespaythesame taxpermile,sothatgovernmentrevenuesfromhighwayusers (forthehighways)wouldbethesameregardlessofthetypeofvehicleorfuel. In1997,theFederalexcisetaxongasolinewas$0.184/gallon,andtheweighted - averageofstateexcisetaxeswas $0.191/gallon(FWHA,1998),foratotalof $0.375/gallon.Inaddition,a fewstatesandlocalities(mostnotablyCaliforniaand NewYork)chargesalestaxongasoline(FHWA,1995):inthepast,thetotalsalestaxon gasolinenationallyhasbeenabout2%ofpre -taxsales.Withthis,thetotaltaxon gasolinebecomes$0.383/gallon.

Themileageaccumulationschedule Asshownthroughoutthisanalysis,thelifecyclecostpermileisequaltoan annualcostdividedbytheaverageannualVMT.Theaverageannua lVMTiscalculated fromyear-by -yearmileageaccumulationschedulefortheICEVsandAFICEVs,anda continuousfunctionthatrelatesagetomileage;theuserspecifiesthevalueofthe coefficientsinthisfunctioninordertoproducethedesiredmileage schedule.(Seethe discussionrelatedtoTable5)Acontinuousfunctionisusedtoavoidhavingto interpolatebetweenyearstogetexactmileage(orviceversa)inthosecalculations whereonemustcalculatemileageoragegiventheother.Themodelhastwofunctions specified:onereplicatesamileage -accumulationschedulederivedfromtheResidential TransportationEnergyConsumptionSurveyoftheU.S.DepartmentofEnergy,andthe secondproducesascheduleofmoreintensiveuse,inwhichmoremilesare drivenin theearlyyearsoftheavehicle’slife.

153 FINANCIALPARAMETERS

Overview Themodelcharacterizesatypical,“weighted -average”vehiclepurchaseby calculatingortakingasinputadetailedsetoffinancialparameters:thefractionofnew carbuyerswhotakeoutaloantobuyanewvehicle;theamountoftheaveragedown - paymentonthecar(inputasafractionoffullvehiclesellingprice);thelengthof financingperiodforcarsboughtonloan(inmonths);therealannualinterestrateon loanstakenouttobuyanewcar,beforetaxes;therealannualinterestrateforegoneon cashusedfortransportationexpenditures,beforetaxes(theopportunitycostofcash usedfordown -paymentoroutrightpurchase);theeffective(average)incometaxpaid onbankinginterestearned,afterdeductions;theannualdiscountratetoapplytoyearly mileage(seediscussionbelow)theannualrateofinflation(assumedtobezeroinour analysishere);thebaseyearandthetargetyearfortheinflationanalysis (ifinflationis notzero);andwhetherornotinterestpaymentsbedeductedfromtaxableincome. Wedistinguishbetweenpayingcashandfinancingbecausetheproper opportunity -costaccountingforacashpaymentisdifferentfromthatforaloan.Fora cashpayment,theopportunitycostisthealternativeuseofthemoney,whichisbest representedbyaninterestrateforordinarycashinvestment.Aninitialcashpayment, then,issimplyannualizedattheinterestrateforegoneonalternativepersonaluse sof themoney.Butinthecaseofaloan,theactualcosttotheconsumerisnottheinitial price,buttheloanpayment.Hence,onefirstmustcalculatetheactualloanpayments, whichofcoursedependontheamountoftheloan,thelifeoftheloan,and theinterest rateontheloan.Theresultingloanpaymentseriesistreatedasanordinarycost (annuity):onefindsthepresentvalueoftheloanpaymentseries,onthebasisnowof theinterestrateforordinarycashinvestment(thepersonalopportunity costofmoney). Finally,thepresentvalueisannualizedovertheentirelifeofthevehicle,againonthe basisofthepersonalopportunitycostofmoney.(Theformulaeforpresentvalueand annualizationcalculationsareshowninthesectiononcostpe rmile.) Thisthreestepprocedure -- calculatetheloanpayment,calculatethepresent valueoftheloanpaymentseries,andannualizethepresentvalue -- isnecessary becausetheinterestratethatpertainstoloansisdifferentfromtheinterestrate that expressestheconsumersopportunitycostofmoney,andbecausethelifeoftheloanis differentfromthelifeofthevehiclefinancedwiththeloan. Themodelusercanspecifya“discountrate”tobeappliedtotheannualmileage. Thisallowstheus ertoperformaquasicost -benefitanalysis,inwhichmilesoftravelare the“benefit”oftravel,andarebediscounted(orannualized)inthesamewaythatthe costsare.(Itturnsoutthatifoneassumesdifferentmileageschedulesfordifferent vehicle s,thenwhetherornotonetreatsVMTasabenefitandappliesadiscountrate canmakealargedifferenceintheoverallcost -per -mileresults.) Thefinancial-costsub -modelalsoperformsahighlysimplifiedmacro -economic simulation:itassumesthatth einterestrate,thefractionofnewcarbuyerswhotakeout aloan,andthelengthofthefinancingperiodareanonlinearfunctionofthevalueofthe vehicle.Thus,themorecostlythevehicle,thegreaterthenumberofpeoplewhotake

154 outaloantobuy it,thelongerthefinancingperiod,andthehighertheinterestrate (becauseofthegreaterdemandformoney).Ofcourse,thehigherinterestrateincreases theamortized(per -mile)initialcost.

Down -paymentonthecar(fractionoffullvehicleselli ngprice) From1972through1998theloan-to -valueratiofornewcarsrangedbetween0.85 and0.94,andaveragedabout0.89(FederalReserveStatisticalRelease,1999).One wouldexpectthisratiotobeafunctionoftheinterestrateontheloan,theint erestrate availableonsavedmoney,theavailabilityofmoney,thecostofnewcars,thelengthof timeoftheloan,andprobablyotherfactors.However,wesimplyassumethe10-year averageof0.89,whichmeansthat11%ofthevalueofthecarmustbeadown -payment. Weassumethispercentageforallvehicletypes.

Calculatedlengthoffinancingperiodforcarsboughtonloan(months) Theloanperiodfornewcarsrosesteadilyfromaround35monthsin1970,to45 monthsin1980,to55monthsin1990.How ever,inthe1990s,theperiodhasremained relativelyconstant,ataround55months(FederalReserveStatisticalRelease,1999).On thebasisofthistrend,weassumethattheaverageloanperiodfornewgasolineICEVs is55months. Weexpectthatovertime,theaverageloanperiodisafunctionoftheaverage costofmotorvehicles,personalincome,demandformotorvehicles,themoneysupply, andotherfactors.WethereforeassumethattheloanperiodforEVs,relativetothe periodforICEVs,isafun ctionofthecostofEVsrelativetothecostofICEVs.However, becausetheloanperiodundoubtedlyisafunctionofotherfactorsbesidesthecostofthe car,itcannotbestrictlyproportionaltothecostofacar.Givenaloanperiodforthe baselinegasolinevehicle,wecalculatetheloanperiodfortheEVas:  K1  MSRPEV  LPEV = LPICEV ⋅  MSRPICEV  where:

LP EV =loanperiodfortheEV(months) LP ICEV =loanperiodforthebaselineICEV(months;seediscussionintext) MSRP EV =Manuf acturersSuggestedRetailPriceoftheEV($) MSRP ICEV =ManufacturersSuggestedRetailPriceofthebaselineICEV($) K1=priceexponent(seediscussioninthetext)

Thepriceexponentdeterminestherelationshipbetweentheretailpriceratioand theloanperiodratio.Avalueof0eliminatestheeffectofpricedifferences,andavalue of1.0makestheloanperiodratioequaltothepriceratio.Weassumeavalueof0.3

155 Calculatedfractionofnewcarbuyerswhotakeoutaloantobuyanewvehicle In1988,70%ofcarbuyersfinancedtheirpurchase(MotorVehicle Manufacturer’sAssociation,1990).In1990,thefigurewas62%(MotorVehicle Manufacturer’sAssociation,1992).Weassume68%forthebaselineICEV. Thefractionofbuyerswhofinancemus tberelatedtotheaveragepriceof vehicles(atconstanthouseholdincome).Givenourassumptionregardingthefraction ofbuyerswhowouldfinancethepurchaseofagasolineICEV,wecalculatethefraction whowouldfinancethepurchaseofanFCEVorBP EVas:

 K2  MSRPEV  FLEV = FLICEV ⋅  MSRPICEV  where:

FL EV =fractionofpeoplewhowouldtakeoutaloantobuyanEV FL ICEV =fractionofpeoplewhowouldtakeoutaloantobuythebaselineICEV (discussedinthetext) MSRP EV =Manuf acturersSuggestedRetailPriceoftheEV($) MSRP ICEV =ManufacturersSuggestedRetailPriceofthebaselineICEV($) K2=priceexponent(analogoustoK1intheequationforLP EV ;weassume0.40)

IfthevalueofFL EV calculatedbythisequationisgrea terthan1.00,1.00isused.

Calculatedrealannualinterestrateonloansforbuyinganewcar,beforetaxes From1980through1990automobilefinancecompanieschargedanaverage nominalinterestrateof13.1%forloansfornewcars,and17.4%forloa nsforusedcars, andcommercialbankschargedanaverageof13.2%forloansfornewcars(Federal ReserveStatisticalRelease,1999).However,since1992thenew -carrateatcommercial bankshasbeenaround9%,andinthepastcoupleyears,thenew -carra teatauto financecompanieshasdroppedto6%(FederalReserveStatisticalRelease,1999).Asof 1998,commercialbanksheld35%oftheconsumercreditoutstandingforautomobile loans,automobilefinancecompaniesheld23%,creditunionsheld22%,saving s institutionsheld4%,andpoolsofsecuritizedassetsheld16%(FederalReserve StatisticalRelease,1999). Giventhesestatistics,weassumeanominalinterestrateof10%forthegasoline ICEVbasecase. Toderivearealinterestratefromthis,theeffectofinflationmustbenettedout. From1980through1990,inflation,asreflectedintheGNPimplicitpricedeflators, averaged4.8%peryear(SurveyofCurrentBusiness ,1991;BureauoftheCensus, StatisticalAbstractoftheUnitedStates ,1990).Th erehasbeenasimilarchangeinthe ConsumerPriceIndex.(Whilethisaveragedoesreflecttheunusuallyhighinflationof theearly1980s,sodoestheaverageofthenominal-interest -rateseriesoverthesame period.)Inthe1990s,though,inflationhas beenataround3%orlower(BLS,CPIdata

156 extractedfromBLSwebsite,1999).Assumingavalueof3%,wecalculatean7%real rateofinterestonloansfornewgasolineICEVs. Itseemsreasonabletoassumethatinterestratesforloansareafunctionofthe totalamountofmoneyborrowed.Iftheintroductionofelectricvehiclesincreasesthe totaldemandforloanedmoneyforautomobiles,becauseofthehigherinitialcostof EVs,itislikelythatinterestrateswillbehigherthantheyotherwisewouldbe 43 .Given aninterestrateonloansforthebaselinegasolinevehicle,wecalculatetheinterestrate onloansforthefuelcellvehicleas:

K3  FL ⋅ MSRP ⋅ 1 − DPF   EV EV ()EV RIEV = RIICEV ⋅   FLICEV ⋅ MSRPICEV ⋅ ()1− DPFICEV 

where:

FL EV ,FL ICEV ,MSRP EV ,MSRP ICEV areasdefinedabove RI EV =realinterestrateonloansfornewEVs RI ICEV =realinterestrateonloansfornewICEVs DPF EV =fractionofsellingpricethatisadown -payment,forEVs(seediscussion inthesection“Down -paymentonthecar(fractionoffullvehiclesell ing price)”) DPF ICEV =fractionofsellingpricethatisadown -payment,forICEVs(see discussioninthesection“Down -paymentonthecar(fractionoffull vehiclesellingprice)”) K3=priceexponent(analogoustoK1intheequationforLP EV ;weassume0.15, togreatlydampentheeffectofpricedifferences)

NotethatbecauseFL EV andFL ICEV cannotbegreaterthan1.00,andFL EV is greaterthanorequaltoFL ICEV ifMSRP EV >MSRP ICEV ,assoonasFL EV reaches1.00,an increaseinFL ICEV resultsinnocha ngeinFL EV ,andhenceinadecreaseinRI EV .

43 Arguably,achangeintheaveragecashoutlay,apartfromachangeintheaverageloanpayment,could affectsavingsrates.Wedonotaccount forthis.

157 Realannualinterestratethatwouldhavebeenearnedonthemoneyusedfor transportationexpenditures,beforetaxes Weassumethattheinterestopportunitycostofmoneyspentonanewcaristhe rateth emoneywouldhaveearnedinareasonablyliquidbutalsoreasonablyhigh - yieldinginvestment,wereitnotspentonanewcar.Inthelate1980s,thenominal interestratesonvariouskindsofmoney -marketfundsanddepositsrangedbetween7% and9%(Feder alReserveBulletin,1991).ThenominalratesonU.S.Treasurybondsof variousmaturitieswerebetween8%and9%;thenominalratesonstateandlocalbonds werebetween7%and8%,andthenominalratesoncorporatebondswerebetween9 and10%.Therate sonordinarysavingsaccountstypicallyarelower,andsometimes considerablylowerthanratesonbonds.Recently,rateshavebeenrelativelylow (FederalReserveStatisticalRelease,1999).Consideringthesedata,weassumethatthe nominalopportunityinterestcostofmoneyspentontransportationis7%.Givenan inflationrateof3%(discussedabove),therealbefore -taxopportunityinterestrate becomes1.07/1.03=1.039=3.9%.Theafter -taxrate,ofcourse,willbeevenlower.

Effective(average)in cometaxoninterest,afterdeductions Tocalculatetheafter -taxrealrateofinterest,wemustknowthemarginalstate andFederalinterest -incometax.ThemarginalFederaltaxrateforamarriedcouple with2childrenandincomeuptoabout$35,000/yea ris15%;athigherincomes,therate is28%.Stateincometaxesarebetween2and10%(TheBookoftheStates ,1990).We assumeacombinedmarginalrateof20%.InterestincomeisnotchargedtheFICAtax. Weignorethefactthatsomeformsofinterestar etax -free. Oneperhapscouldargue(althoughwethinknotconvincingly)thattheeffective averagetaxrate,equaltotaxliabilitydividedbystatedpersonalincome,andnotthe marginaltaxrate,shouldbeused.In1989,theeffectiveaverageFederalin cometaxrate was7.1%fora4-personhouseholdwithatotalincomeof$25,000/year,9.3%fora4- personhouseholdearning$35,000/year,and12.6%fora$50,000/yearhousehold (BureauoftheCensus,StatisticalAbstractoftheUnitedStates ,1990).In1986 ,statetaxes paidwere27.5%ofFederaltaxespaid(whichisconsistentwiththemarginaltax -rate datacitedabove).Thisindicatesatotaleffectiveaveragetaxrateof11.9%fora $35,000/yearhousehold. Themodelhasanoptiontoallowinterestpayme ntstobedeductedfromtaxable income.However,presently,interestpaymentscannotbedeductedfromtaxable income.

Realannualinterestratethatwouldhavebeenearnedoncashusedfortransportation expenditures,aftertaxes Inordertoarriveatatotallifetimelevelizedmonthlycostforthepurchaseofan automobile,wemustapply,toallpaymentsfortheautomobile -- totheloanpayments aswellastothedown -payment -- therealannualinterestratethatwouldhavebeen earnedoncashusedfortransportationexpenditures,aftertaxes.Weproceedasfollows. First,themonthlyloanpaymentsarecalculatedusingtheloanrate,loanperiod,and amountoftheloan.Thepresentvalueofthesepaymentsiscalculated,usingthereal

158 annualinterestrate thatwouldhavebeenearnedoncashexpenditures,andaddedto theactualdown -payment.Thistotal(down -paymentpluspresentvalueofloanseries) isthenlevelizedoverthelifeofthecar(nottheloanperiod,butthelifeofthecar), using,again,th eforegonerealinterestrateoncash.Notethattheloanpaymentis simplyamonthlybill,whichmustbehandledusingtheforegonerealannualinterest rateoncashexpenditures.Theloanratedoesnotrepresenttheconsumer’sopportunity costofmoney;theforegoneinterestrateoncashdoes.

CALCULATINGTHECOST PERMILE

Thelevelized(orannualized)presentvalue,whichistheconceptuallycorrect expressionofthelifecyclecostpermile,iscalculatedinthreesteps.First,themodel calculatesthepresentvalue(atspecifiedinterestrates)ofeverycoststream.Forinitial orinvestmentcosts,suchasabatteryorvehicle,thepresentvalueisequaltotheinitial cost,lessthepresentvalueofanysalvagevalueattheendofthelifeoftheinvestment:

REPI ⋅Vel PVCI = CI +⋅ LIY ()1+ iA

where:

PVC I=thepresentvalueoftheinitialinvestment($) CI=theinitialinvestment,inyear0oftheanalysis($) REP I=thereplacementcostofthecapitalinvestment Vel=thesalvagevalueofthecapitalattheendofitslife,asafractionofthefull replacementcost iA=theannualinterestrate LIY=thelifeoftheinvestmentinyears

Forregular(periodic)coststreams(e.g.,tires)thepresentvalueisthepresent val ueofaperiodicpayment:

−TP 1− (1+ iP ) PVCP = CP ⋅ iP

where:

PVC P=thepresentvalueoftheperiodiccoststream CP=theperiodiccost($/period) iP=theperiodicinterestrate(fractionalinterestperperiod) TP=theto talnumberofperiods(thatfallwithinthelifeofthevehicle)

159 Ingeneral,anyperiodicinterestrateiPmustbecalculatedonthebasisofthe knownannualinterestrateiA:

−TPY iP = (1 + iA) − 1

TPY=thetotalnumberofperiodsofinterest,inyears

Forirregularcoststreams(e.g.,maintenanceandrepair),themodelcalculatesthe presentvalueofeachperiod’scost,andsumsallofthepresentvalues,forallofthecost occurrencesthatfallwithinthelifeofthevehicle:

CT PVCT = ∑ T T ()1+ iP

where:

PVC T=thepresentvalueofacostincurredattimeT CT=thecostincurredattimeT($) iP=theperiodicinterestrate(fractionalinterestperperiod,wheretheperiodis theunitofT(e.g.,years,months) T=thetimewhencostCTisincurred

Byconvention,allinitialandpresent -valuecostsareannualizedoverthelifeof thevehicle.Thepresentvalueanyregularorirregularcoststreamisannualizedover thelifeofthevehicle,because,byconvention,foranyparticularkindofcost(e.g., maintenanceandrepair),allcoststhatoccuroverthelifeofthevehicleareincludedin thepresentvaluecalculation.Theformulais:

iA APVC = PVC ⋅ −LVY 1 − ()1+ iA where:

APVC=theannualizedpresent -valuecost($/year) PVC=thepresentvaluecost($) iA=theannualinterestrate LVY=thelifeofthecost

Finally,theannualizedpresentvalueisdividedbythecalculatedannualaverage mileag e:

160 APVC CM = AVMT

AVMT = f( MPY,iM )

where:

CM=thecostpermile($/mi) AVMT=averageannualvehiclemilesoftravel(lifetimemilesdividedby lifetimeyears) MPY=themileage -per-yearschedule(seediscussionrelatedtoTa ble5) iM=thediscountratepertainingtomilesoftravel(assumedtobezerohere)

Ofcourse,iftheperiodoftheregularpayment(P)isayear,andthetotalnumber ofperiods(TP)isthesameasthelifeofthevehicleLVY,thentheannualizedprese nt - valuecost,APVC,isjusttheannualpayment,CP.Thisisthecaseforannualregistration fees,parking,tolls,gastaxes,andafewothercostitems.Butforseveralimportant periodiccosts,oneortheothercondition(P=year;TP=LVY)doesnotho ld.For example,physical -damageinsuranceisaperiodicpayment,butismadeforatotal numberofyears(TP)lessthanthelifeofthevehicle(LVY).Hence,toannualizethe physical -damagecostoverthelifeofthevehicle,theprocedureabovemustbeused.On theotherhand,tirereplacementcostsareincurredoverthelifeofthevehicle,butan intervalofmanyyears,notyearly.

161 RESULTS

PRESENTATIONOFRESU LTS

Inthissection,wepresentanddiscusstheresultsoftheanalysis.Inthetable belowwesummarizeourestimatesoftheretailcostandthebreak -evengasolineprice, forthebasecase(high -volumeproduction,FUDS,etc.),andforseveralscenarios(low - volumeproduction,highwaycycle,andsoon).Thebreak -evenpriceisthefullretail priceofgasoline,includingallsalesandexcisetaxes,atwhichthetotallifecycle ownershipandoperatingcostofthegasolinevehicle(incents/mile)isequaltothetotal lifecycleownershipandoperatingcostoftheEV.Thesummarytablehereshows results fortwodifferentdrivingrangesforeachbatterytechnology.

Pb/acid NiMHGen2 Li -ion NiMHGen4 Retailcost,Taurus($) 65mi 110mi 90mi 165mi 140mi 260mi 100mi 190mi Basecase 24,553 29,422 28,034 35,759 27,678 32,448 25,487 29, 692 Highwaycycle 24,623 28,276 27,706 34,422 27,485 31,879 25,346 29,215 Low -volumeproduction 36,566 44,955 44,920 61,801 52,942 72,819 40,357 50,563 10%lesspower 23,789 28,039 27,116 34,208 26,648 30,894 24,716 28,542 Retailcost,Escort($) Basecase 19,784 23,384 22,725 28,822 22,280 25,948 20,623 23,904 Highwaycycle 19,566 22,574 22,518 27,893 22,179 25,563 20,540 23,571 Low -volumeproduction 30,726 36,782 37,826 50,921 44,369 60,053 34,117 42,157 10%lesspower 19,218 22,434 22,038 27,659 21,517 24,785 20,055 23,075 Break-even,Taurus($/gal) Basecase 2.64 4.14 4.19 6.66 2.77 4.33 1.83 2.91 Highwaycycle 3.71 5.63 6.26 9.60 4.11 6.40 2.59 4.20 Low -volumeproduction 6.01 8.69 9.96 15.65 10.49 17.09 5.80 8.60 Samevehicl elife 2.92 4.40 4.53 6.36 2.97 4.57 2.09 2.87 20%longervehiclelife 2.44 3.68 3.51 6.62 2.17 3.56 1.65 2.83 Nolimitonshelflife 2.63 3.59 4.19 5.33 1.37 2.71 1.82 2.27 10%lesspower 2.33 3.67 3.85 6.10 2.46 3.85 1.60 2.60 Break-even,Escort($/g al) Basecase 3.27 4.84 5.04 7.73 3.38 5.06 2.40 3.59 Highwaycycle 4.50 6.37 7.20 10.64 4.83 7.15 3.36 4.99 Low -volumeproduction 7.41 10.12 11.95 17.96 12.47 19.61 7.33 10.33 Samevehiclelife 3.62 5.11 5.42 7.35 3.66 5.32 2.73 3.53 20%longervehiclelife 3.06 4.34 4.32 7.68 2.74 4.20 2.20 3.46

162 10%lesspower 2.98 4.39 4.68 7.14 3.07 4.57 2.19 3.28

DetailedtablesofresultsfollowAppendixA.Thedetailedtablespresentsresults forbothkindsofvehicles(FordEscortandfordTaurus)an dallfourkindsofbatteries (Pb/acid,NiMHGen2,Li -ion,andNiMHGen4),inhigh -volumeproduction.Thetables ofresultsaregroupedfirstbybatterytype,thenbyvehicletype.Inallthesedetailed tables,thedrivecycleistheaggregatedFUDScycleshowninTable6.Also,inallthese tables,wehavesetthe0-60accelerationperformanceoftheEVtobethesameasthatof thegasolinevehicle.Foreachvehicle,weshowresultsforsixdifferentdrivingranges. Therearefourkindsofdetailedtables:i)Vehiclecharacteristics,including power,life,weight,andenergyuse;ii)Costsummary,withretailcostandlifecyclecost; iii)Lifecyclecostsummary,bycostitem;andiv)Manufacturingcostandweight.Note thatthereareslightdiscrepanciesbetweenthecostsandweightsshowninseries iv tables,andthevaluesshowninseriesi and ii tables,onaccountofslightlydifferent resolutionsofthecircularitiesinthemodel,indifferentmodelruns.

DISCUSSION

Initialcost:base -caseresults Inallcasesanalyzed,andindeedinmostconceivablecases,theretailcostofthe EVishigher -- usuallymuchhigher -- thanthe$20,085retailcostofthebaselineICEV Taurusorthe$14,909retailcostofthebaselineICEVEscort: Thehigherinitial costoftheEVisduemainlytothehighcostofthebattery. Batteriesusuallycostatleast$300/kWh,attheretaillevel,andtypicallymustsupply30 orsokWh -- resultinginaretailleveltotalcostofontheorderof$9,000inmanycases (see“Cost Summary”and“VehicleCharacteristics”tables).Thus,theEVwitha Pb/acidbatteryandashortrangeistheleastexpensive,becausethisbatteryhasalow costperkWh,andrelativelyfewkWhareneededtosupplytherelativelyshortrange. However,the batteryinthisvehiclemustbereplacedafewtimes,andthis,asweshall see,increasesthelifecyclecost. Interestingly,theretailcostdifferentialisgreaterfortheEVEscortthanforthe EVTaurus,onaccountoftherelativelylowcostoftheICEdrivetrainintheICEV Escort.Seethe“Costsummary”tablesfollowingAppendixA,fordetails. Itispossiblethatso -called“neighborhoodelectricvehicles”(NEVs),whichhave atopspeedof25mphorless,andadrivingrangeof35miles,willhavearetailcost veryclosetothatofacomparablegasolineICEneighborhoodvehicle.Thebatteryina NEVisverysmall,onaccountoftheveryshortrangeandveryhighefficiencyofthe vehicle(thehighefficiency,inturn,resultsfromthelightweight) ,andhenceis relativelyinexpensive.Iftheelectricdrivetrainscalesdownmorecosteffectivelythan doestheICEdrivetrain,thentheresultantsavingswiththeelectricdrivetrainwillat leastpartiallyoffsettherelativelysmalladditionalcostof thebattery.Webelievethat thisisaninterestingtopicforfurtherresearch.

163 Lifecycle -cost(break-evengasolineprice):base -caseresults Thelifecyclecostisexpressedherethebreak -evenpriceofgasoline,in1997 $/gal.includingtaxes.Thisbre ak -evenprice,showninthesummarytableabove,and inthedetailedtablesfollowingAppendixA,canbecomparedwiththeEIA’s(1999) mostrecentprojectionthatthepriceofgasoline,includingFederalandStatebutnot localtaxes,willholdsteadyat $1.29/gallonbetween2005and2020(in1997$).Local taxeswouldaddabout$0.01/gallon.(TheEIA’sprojectionsweremadebeforethe recentrun -upingasolineprices.) Weobservethatinthebasecase,thereisonlycombinationofvehicletype, batterytype,productionscenario,anddrivingrangethatresultsinaremotely reasonablebreak -evengasolineprice(i.e.,under$2/gallon):theNiMHGen4battery,in aFordTauruswitharelativelyshortdrivingrange.Inallothercases,thehighlifecycle cost permileofthebatterydominatesallotherlifecyclecostdifferencesbetweentheEV andICEV,andcausestheEVtohaveacomparativelyhighlifecyclecostandbreak -even price(see“Lifecyclecostsummary”detailedtables).Weremindthereader,though, that ourcharacterizationoftheNiMH -Gen4(andtheLi -ionbattery,forthatmatter)ismuch morespeculativethanisourcharacterizationofthePb/acidandNiMHGen2batteries. TheNiMHGen4caseshouldbeviewedassomethingakintoa“bestbattery”sc enario. AsshowninthedetailedtablesfollowingAppendixA,theEVshavesomewhat lowerm&r,oil,andinspectioncosts,and,iftheyuseoff -peakpower,lowerenergy costsaswell.However,mostorallofthislowercostpermileisoffsetbyhigher insurancecostspermile,duetothehighervalueoftheEV(due,inturn,tothehighcost ofthebattery),plusthemodestadditionalcostofthehomerechargingstation,plusthe costofpropaneforcabinheating,plusinsomecasesslightlyhigherregis trationcosts. Thus,overall,differencesinvehicleoperatingcostspermiledonotfigureprominently inthefinallifecyclecostresults(see“Lifecyclecostsummary”detailedtables).The lifecyclecostcomparisoncomesdowntothelifecyclecostofth ebattery. Theonecaseshownaboveinwhichthebreak -evengasolinepriceislessthan $2/gallonnicelyillustratestheworkingofthemodelandtheimportanceofcost parametersrelatedtothebattery.TheFordTauruswitha100 -milerangeonaNiMH Gen4batteryhasarelativelylowlifecyclecostbecausethecost -per-mileofthebatteryis considerablylowerthaninothercases.Thebatterycostpermileislowinpartbecause thevehiclehasashortrangeandthebatteryhasrelativelyhighspecific energyand relativelylowmanufacturingcost,butalsobecausethebatterylastsformorethanhalf thelifeofthevehicle.Furthermore,therelativelylowweightofthebatteryreducesthe weightofthevehicleandtherebyreducesfuel,tire,and(inour analysis)registration costs.Andtherelativelylowcost(andhencereplacementvalue)ofthebatteryreduces thecostofinsurance.Ittakesallofthesefavorableinteractionsinordertoproducea break -evengasolinepriceunder$2/gallon.

Scenario analyses Inthissection,weexaminetheimpactoncostofvaryingsomekeyparameters awayfromtheirbase -casevalues.

164 Highwaycycle.First,weconsidertheimpactofdesigningtheEVstosatisfythe rangerequirementoverthehighwaycyclerathertha ntheFUDS.Inalmostallcases,the initialcostoftheEVdesignedtothehighwaycycleislowerthanfortheEVdesignedto theFUDS.ThisisbecauseEVsareabout10%moreefficientinhighwaythanincity driving,becauseinhighwaydrivingthedrivetrainoperateslessoftenatlowtorqueand lowrpm,whichisarelativelyinefficientcombination(seethetorquevs.rpmefficiency mapsafterAppendixA).Theincreaseinefficiencydecreasestheamountofbattery - storageenergy -- andhencebatterycost -- requiredtosupplythedesiredrange. However,eventhoughthedifference incents/milelifecyclecostdecreases slightlyoverthehighwaycyclethanovertheFUDS,thebreak -evengasolineprice increasessubstantiallycomparedtothatovertheFUDS,.Thisisbecausethefuel economyofthegasolineTaurusismuchhigherinthehighwaythaninthecitycycle(32 mpgvs.20mpg),andahigherICEVfueleconomyrequiresahigherbreak -even gasolinepricetocoveranygivencents/miledifferencebetweentheEVandICEV.In thecalculationofthebreak -evenprice,theeffectoftheincreaseinICEVfueleconomy effectoutweighstheslightreductioninlifecyclecents/mile. Productionlevel. Obviously,theinitialandlifecyclecostsoflow -volume productio naremuchhigherthanthoseforhigh -volumeproduction.Asshowninthe summarytableabove,break -evengasolinepricesatleastdouble,andinitialretailcosts increasebytenthousanddollarsormore: Batterycalendar(‘shelf”)lifeandsalvagevalue.Theshelflife,orcalendarlife, turnsouttobeacriticalparameter,becauseinmanycasesthebatteryreachestheendof itscalendarlifebeforeitreachestheendofitscyclelife.Ifthecalendarlifelimitis relaxed,sothatthecyclelifeisthedeterminingfactor,thebreak -evengasolineprices aresubstantiallyreducedinallofthehigherrangecases(cf.base -caseresults). Thecalendarlifeisupbeforethecyclelifeinthehigherrangecasesbecauseof thegreatertimebetweencycles,duetothelongerdrivingdistancebetweencycles.In thecaseofLi/ion,therelaxationofcalendarlifegreatlyreducesthebreak -evenprice, becauseoftheveryhighprojectedcyclelife(whichnowbecomesthedeterminative parameter).Thus,ifLi/ionba tteriescanbedesignedtolastatleastthelifeofthemotor vehicle,withthecostandperformancecharacteristicsassumedhere,thenEVsthatuse themwillhavealifecyclecostcompetitivewiththatofgasolineICEVs. Inthetext,wemention,butare notconvincedof,argumentsthatNiMHbatteries salvagedfrommotor -vehiclesmighthavearelativelyhighvalueinstationary applications.(Wedoubtthis,becauseinouranalysis,thebatteryisscrappedwhenit haslost40%ofitscapacity,andislosin gremainingcapacityquickly.)Ifinfactthe NiMHbatteryhasasalvagevalueof,say,$100/kWh.thenthebreak -evengasoline pricedeclinesbyabout$0.10/gallon. Vehiclelifetime.RelativelysmallchangesintheassumedlifetimeVMTofthe EV(exclu siveofthelifetimeofthebattery,drivetrain,andfuelcell,whicharetreated separately)canbeimportanttothelifecyclecost.Inthebasecase,theEVhasa10% longerVMTlifetimethandoestheICEV.Ifthisadvantageiseliminated,sothatthe li fetimeoftheICEVisthesameasthelifetimeoftheICEV,thebreak -evenpriceinmost casesincreasesby5-10%.However,inafewcases,theshorterlifetimeactually

165 decreasesthebreak -evengasolineprice,mostlikelybecauseinsomecasesshortening thevehiclelifeforestallsarelativelycostlybatteryreplacement 44 .Conversely,afurther increaseinthelifeoftheEV,to20%longerthanthatoftheICEV,generallydecreases thebreak -evenprice.Inafewcases,however,thelongerliferesultsinahigherbreak - evenprice,becausethevehicleownermustmakeanadditionalbatterypurchase. Drivetrainefficiencyandpower. ParametersthateffecttheenergyuseoftheEV haveasignificanteffectontheretailcostandbreak -evengasolineprice,becausethe energyusedeterminestheamountofbatteryneededtosupplyagivenrange. Inouranalysis,wehavetorque/rpmefficiencymapsforfivedifferent motor/controllersets.Thedifferencesinthesemapsresultinsignificantdifferencesin theovera llenergyconsumptionofthevehicle,asshownbelow.Thesedifferencesin energyconsumptiontranslatedirectlyintosignificantdifferencesinthecostofthe battery,andhencetheretailcostofthevehicleandthelifecyclebreak -evengasoline price(FordTaurus,FUDS,NiMHGen4):

Motor/controllersets ETX -I ETX -II HughesG50 TB -1Eaton GEMEV 100 190 100 190 100 190 100 190 100 190 Retailcost 27,058 33,465 25,837 30,449 26,063 30,906 27,111 33,885 25,452 29,699 Break -evenprice 2.39 4.12 1.95 3.14 2.03 3.28 2.42 4.27 1.82 2.91 mi/kWh 2.47 2.02 3.05 2.65 3.02 2.60 2.34 1.87 3.28 2.86

Thebase -casemotor/controllerset,theGEMEV,isthemostefficient,and producesthelowestinitialandlifecyclecosts.(Recallthatweassumethatthe cost/kgis thesameforallacinductionmotors.)WiththeGEMEVsetratherthantheleast efficientset(theTB -1Eaton),theEVismuchmoreefficient,costsseveralthousand dollarsless,andhasamuchlowerbreak -evengasolineprice. Inourbasecase,theEVhasthesameperformanceastheICEV.Ifonerelaxesthe performancerequirementabit,sothattheEVhas90%ofthemaximumpowerofthe ICEV,thenthebatteryanddrivetraincanhavealowermaximumpower.Thereduction inthemaximumpowerallowsthebatterytobedesignedforahigherspecificenergy, whichultimatelyreducestheweightandcostofthebattery.Thisreduction,combined withthereductioninthecostofthepowertrain,resultsinasignificantdecreaseinthe initialandli fecyclecost: Airconditioningandheating. Theminoruseofairconditioningassumedinour basecaseturnsouttohavearelativelysmalleffectonvehicleefficiencyandlifecycle cost:itreducesvehicleefficiencybyabout4%,increasesbatteryweightbyabout3%, andincreasesthebreak -evengasolinepricebyabout$0.10/gallon.

44 Becausethesalvagevalueofausedbatteryisrelativelylow,itismorecosteffectiveforthelastbattery todieaboutwhenthevehiclediesthantohavetosalvagearelativelygoodbatteryfromascrapped vehicle.Iftheincreaseinvehi clelifeforcesalast -minutebatteryreplacement,thelifecyclecostwill increase,becausethatexpensiveadditionalbatterywillbeusedforonlyafewthousandmilesbeforeitis salvaged,whenthevehiclefinallydies,atarelativelylowvalue.

166 Asshowninthe“Lifecyclecostsummary”tables,ourassumptionsregardingEV heating(e.g.,theEVisoperated20%ofthetimein45 oFambienttemperature),resultin anon -trivialcostpermileforpropanefuelforheating.Indeed,inourbasecase,the cost -per-mileofheatingfuelisaboutthesameasthetirereplacementcostpermile,or theregistrationcostpermile.Andinverycoldconditions -- say,35%ofthetimein30 o weather -- thecostofheatingfuelisthesameasthecostofelectricitytopowerthe vehicle! Thecostofheatingabatteryincoldweatheristrivial -- itaddsonlyapennyor twotothebreak -evengasolineprice. Electricityprice.In thebasecase,weassumearelativelylowpriceofelectricity, $0.06/kWh.Atthenationalaverageresidentialpriceofabout$0.08/kWh(EIA,1999), thebreak -evenpriceincreasesbyabout$0.16/gal,andat$0.10/kWh,thebreak -even priceincreasesbyabo ut$0.34/gal,fortheFordTaurus.Ontheotherhand,ifthe damagecostofpollutantemissions(basedon$/kgdamagevaluesestimatedin Delucchi[1998b]isincluded,thebreak -evenpricedecreasesby$0.24/gallon.

CONCLUSIONS

Asweexpected,battery manufacturingcosts,andtheparametersthataffect batterylifecyclecost,suchasthebatterycalendarlifeandcyclelife(whichinourmodel isrelatedtodrivingandrechargingpatterns),arethemostimportantparametersinthe costanalysis.Thehig hcostofthebatteryincreasestheinitialcostofthevehicle,and alsoincreasestheinsuranceandevenregistrationcosts. OuranalysissuggeststhatinorderforBPEVstobecost -competitivewith gasolineICEVs,batterieswillhavetobetterthanthe bestbatteriesanalyzedhere:they willhavetohavealowermanufacturingcost,andalongerlife,thentheLi/ionand NiMHbatterieswemodeled.Webelievethatitismostimportanttoreducethe manufacturingcostto$100/kWhorless(thiswillresult inaretail- levelcostofunder $200/kWh 45 ),attainacyclelifeof1200ormoreandacalendarlifeof12yearsormore, andaimforaspecificenergyofaround100Wh/kg.Thesecostandlifetargetsarethe sameasthelong -termcostandlifegoalsofthe U.S.AdvancedBatteryConsortium (USABC),butourspecificenergytargetactuallyismuchlessthantheUSABClong - termgoalof200Wh/kgandcommercializationgoalof150Wh/kg.Becauseatthe momenttherearenoprospectsforachievingsuchhighenergy densitiesatlowcost,we thinkitisamistaketocontinuetofocuseffortsonattainingveryhighspecificenergyin ordertosupplyalongdrivingrange.Wethinkitisbettertoaimforamodestrangeof around100miles,andfocusthenonreducingth emanufacturingcostandimproving thecyclelifeofthebatterytechnologiesthatcanofferthisrange.Thedataand

45 Iftheratiooftheretailtothemanufacturingcostislessthanwehaveestimatedhere,thenthe competitivebatterymanufacturingcostisgreaterthan$100/kWh.Thisratioisanimportantuncertainty inouranalysis.

167 projectionsavailabletodaysuggestthatanEVwitha200+milerangewillhaveamuch higherlifecyclecostthanwillacomparablegasoli neICEV,atgasolinepricesexpected toprevailforatleasttwodecades,andthatitwillbedifficult,butnotnecessarily impossible,foranEVwitha100 -milerangetohavealifecyclecostclosetothatofa gasolineICEV.

168 REFERENCES

ACPropulsio n,“ACPropulsion’sReductiveCharger -- IntegratedChargingforthe ElectricVehicle,”availablefrom www.acpropulsion.com/products/Reductive_Charging.htm,ACPropulsion,San Dimas,California(1999).

ACPropulsion,“EVUserAlert:EVChargingStandards WillCostYouMoneyand ComplicateYourLife,”ACPropulsion,SanDimas,California,September2(1998).

ACGNews ,“EconomicEnvironmentalism,”TheAutomotiveConsultingGroup,Ann Arbor,Michigan,July,p3(1992).

AllisonGasTurbineDivision,Genera lMotorsCorporation,ResearchandDevelopmentof Proton -ExchangeMembrane(PEM)FuelCellSystemforTransportationApplications:Initial ConceptualDesignReport ,DOE/CH/10435 -01,preparedfortheU.S.Departmentof Energy,OfficeofTransportationTech nologies,Washington,D.C.,February(1994).

ACEEE(AmericanCouncilforanEnergyEfficientEconomy),DevelopmentofCost EstimatesforFuelEconomyTechnologies ,manufacturing -costestimatespreparedbyL.H. LindgrenforM.Ledbetter,ACEEE,Washingto n,D.C.(1990).

F.AnandM.Ross,“AModelofFuelEconomyandDrivingPatterns,” SAETechnical PaperSeries#930328,SocietyofAutomotiveEngineers,Warrendale,Pennsylvania, March(1993).

F.AnandM.Ross,AutomobileEnergyEfficiencyatPart -Loa d:TheOpportunityfor Improvement ,draftpaper,PhysicsDepartment,UniversityofMichigan,AnnArbor,June 4(1991).

J.G.Asbury,J.G.Seay,andW.J.Walsh,TheRoleofElectricVehiclesintheNation's EnergyFuture ,DE86 -003295,ArgonneNationalLa boratory,Illinois,November(1984).

Autoindustry1,apersonalcommunicationfromacostanalystwithamajorauto company,whospokeonconditionofanonymity,January(1992).

Autoindustry2,apersonalcommunicationfromacostanalystwithamajorauto company,whospokeonconditionofanonymity,January(1992).

AutomotiveHandbook ,thirdedition,RobertBoschGmbH,Stuttgart,Germany(1993).

G.D.BerryandS.M.Aceves,“OnboardStorageAlternativesforHydrogenVehicles,” Energy&Fuels 12:49 -55(1998).

169 A.M.BestCompany,Best’sAggregates&Averages,Property -Casualty, 1997edition,A.M. BestCompany,Oldwick,NewJersey(1997).

L.J.Blincoe,TheEconomicCostofMotorVehicleCrashes,1994 ,DOT -HS -808 -425,National HighwayTraf ficSafetyAdministration,U.S.DepartmentofTransportation, Washington,D.C.,July(1996).

G.Blomquist,“AUtilityMaximizationModelofDriverTrafficSafetyBehavior,” AccidentAnalysisandPrevention 18:371 -375(1986).

J.J.BroganandS.R.Ve nkateswaran,TheVehiclePropulsionR&Dprogram,U.S. DepartmentofEnergy ,OfficeofPropulsionSystems,U.S.DepartmentofEnergy, Washington,D.C.(1991).

J.W.Brunner,W.Hamilton,andO.Bevilacqua,EstimatedLife -CycleCostsforElectricand Co nventionalVans ,ElectricVehicleDevelopmentCorporation,Cupertino,California,for theU.S.DepartmentofEnergy,July15(1987a).

TheBookoftheStates ,1990 -91Edition,TheCounciloftheStateGovernments,Lexington, Kentucky(1990).

J.W.Brunne r,O.Bevilacqua,andW.Hamilton,ALife -CycleCostModelforElectricand ConventionalVans ,ElectricVehicleDevelopmentCorporation,Cupertino,California,for theU.S.DepartmentofEnergy,July17(1987b)

BureauoftheCensus,1992CensusofRetail Trade,SubjectSeries,MerchandiseLineSales, UnitedStates, RC92-S- 3RV,U.S.DepartmentofCommerce,Washington,D.C., September(1995).

BureauoftheCensus,1992CensusofServiceIndustries,GeographicAreaSeries,United States ,SC92 -A-52,U.S.DepartmentofCommerce,Washington,D.C.,December(1994).

BureauoftheCensus,1992CensusofServiceIndustries,SubjectSeries,SourcesofReceipts orRevenue ,SC92 -S-4,U.S.DepartmentofCommerce,Washington,D.C.,October (1996).

Bureauof theCensus,1992CensusofTransportation,TruckInventoryandUseSurvey, UnitedStates ,TC92 -T-52,U.S.DepartmentofCommerce,Washington,D.C.,May (1995).

BureauoftheCensus,1992CensusofWholesaleTrade,SubjectSeries,CommodityLineSale s, UnitedStates,WC92 -S-3,U.S.DepartmentofCommerce,Washington,D.C.,August (1995).

170 BureauoftheCensus,CombinedAnnualandRevisedMonthlyRetailTrade,January1984 ThroughDecember1993 ,BR/93 -RV,CurrentBusinessReports,U.S.Department of Commerce,Washington,D.C.,April(1994).

BureauoftheCensus, ServiceAnnualSurvey:1997,BS/97,U.S.Departmentof Commerce,Washington,D.C.,December(1998).AvailablefromtheU.S.Censusweb site,www.census.gov.

BureauoftheCensus, Se rviceAnnualSurvey:1992,BS/92,U.S.Departmentof Commerce,Washington,D.C.,April(1994).

BureauoftheCensus,StatisticalAbstractoftheUnitedStates1992 ,U.S.Departmentof Commerce,Washington,D.C.(1992).

BureauoftheCensus,Statisti calAbstractoftheUnitedStates1990 ,U.S.Departmentof Commerce,Washington,D.C.(1990).

BureauofLaborStatistics,CPIdataextractedfrom“selectiveaccess”datapageonBLS website,www.bls.gov/text_only/sahome_txt.htm,accessedFebruary(1999 ).

BureauofLaborStatistics,Averageannualexpendituresandcharacteristicsofall consumerunits,fromtheConsumerExpenditureSurvey,1984 -1997,dataextracted fromBLSwebsite,consumerexpendituresurveyhomepage, http://stats.bls.gov/csxhome.htm,accessedFebruary(1999).

BureauofLaborStatistics,CPIDetailedReport,January1991 ,U.S.DepartmentofLabor, Washington,D.C.,March(1991).

BureauofLaborStatistics,“EmployerCostsforEmployeeCompensation -- March 1998,” News,USDL:98 -285,U.S.DepartmentofLabor,Washington,D.C.,July9(1998).

BureauofLaborStatistics,EmploymentandEarnings,U.SDepartmentofLabor, Washington,D.C.,January(1993).

BureauofLaborStatistics,EmploymentandEarnings,U.SDepartmentofLabo r, Washington,D.C.,October(1992).

BureauofLaborStatistics,ConsumerExpenditureSurvey:IntegratedSurveyData,1984- 1986 ,Bulletin2333,U.S.DepartmentofLabor,Washington,D.C.,August(1989a).

A.F.Burke,InstituteofTransportationStudie s,UniversityofCalifornia,Davis,fax transmittalofbatterycyclelifedata,January3(2000).

171 A.F.Burke,AMethodfortheAnalysisofHighPowerBatteryDesigns ,UCD-ITS -RR -99 -6, InstituteofTransportationStudies,UniversityofCalifornia,Davis, February(1999).

A.F.Burke,InstituteofTransportationStudies,UniversityofCalifornia,Davis, personalcommunication,October(1998).

A.F.Burke,“CycleLifeConsiderationsforBatteriesinElectricandHybridVehicles,” SAETechnicalPaperSe ries #951951,SocietyofAutomotiveEngineers,Warrendale, Pennsylvania(1995).

A.F.Burke,“BatteriesandCapacitorsforColdWeatherOperationinElectricVehicles,” presentedattheS/EV94SustainableTransportationConference,Providence,Rhode Isla nd,October3-5(1994).

A.F.Burke,“OperationofElectricVehiclesinColdWeatherUsingSealedLead -Acid Batteries,”presentedatSustainableTransportationS/EV93Symposium,Boston, Massachusetts,October21 -23(1993).

CaliforniaAirResourcesBoar d(CARB),MobileSourceDivision,DraftDiscussionPaper fortheLow -EmissionVehicleandZero -EmissionVehicleWorkshoponMarch25,1994;Low - EmissionVehicleProgramCosts ,Mail -out#94 -11,ElMonte,California,March2(1994).

CaliforniaEnergyCommis sion,CalfuelsPlan,DevelopinganInfrastructurePlanfor AlternativeFuelVehicles ,DraftCommitteeReport,P500 -94 -002,Sacramento,California, September(1994).

J.Carcone,“CurrentStatusofSanyo'sLithium -ionBatteryDevelopment”,The EleventhInt ernationalSeminaronPrimaryandSecondaryBatteryTechnologyand Applications,BocaRaton,Florida,March(1994).

M.W.Cardullo,“TotalLife -CycleCostAnalysisofConventionalAlternativeFueled Vehicles,” ProceedingsoftheI993IntersocietyEnergyConversionEngineeringConference (SanDiego,CA)AmericanChemicalSociety,pp.2-75to2-80(1993).

ChryslerMotorsInc.,EngineeringStandards,1988ModelYearUniformPartsGrouping , November(1986).

J.Cohen,"FleetVansLeadtheWayforElectricVehicles," EPRIJournal ,July -August,22 - 29(1986).

D.Corrigan,privatecommunication,OvonicBatteryCorp.(1998).

172 R.M.CuencaandL.L.Gaines,EstimateofElectricVehicleProductionCost,Centerfor TransportationResearch,EnergySystemsDivision, ArgonneNationalLaboratory, Argonne,Illinois,June(1996).

S.D.Davis,TransportationEnergyDataBook ,edition13,ORNL -6941,OakRidge NationalLaboratory,OakRidge,Tennessee,September(1998).

S.C.Davis,OakRidgeNationalLaboratory,special compilationofdatafromthe computertapesoftheResidentialTransportationEnergyConsumptionSurveyof1988, May19(1992).

S.C.DavisandS.G.Strang,TransportationEnergyDataBook:Edition13 ,ORNL- 6743 (Edition13ofORNL -5198),OakRidgeNa tionalLaboratory,OakRidge,Tennessee, March(1993).

M.A.DeLuchi,HydrogenFuelCellVehicles, UCD-ITS -RR -92 -14,Instituteof TransportationStudies,UniversityofCalifornia,Davis,September(1992).

M.A.DeLuchi,EmissionsofGreenhouseGasesfr omtheUseofTransportationFuelsand Electricity,ANL/ESD/TM -22,ArgonneNationalLaboratory,Argonne,Illinois, November(1991).

M.A.Delucchi,LifecycleEnergyUse,Greenhouse -GasEmissions,andAirPollutionfromthe UseofTransportationFuelsan dElectricity,InstituteofTransportationStudies,University ofCalifornia,Davis,February(1999a).

M.A.Delucchi,TaxandFeePaymentsbyMotorVehicleUsersfortheUseofHighways,Fuels, andVehicles ,UCD-ITS -RR -96 -3(17),InstituteofTransporta tionStudies,Universityof California,Davis(1999b).

M.A.Delucchi,MotorVehicleGoodsandServicesPricedinthePrivateSector ,UCD-ITS - RR -96 -3(5),InstituteofTransportationStudies,UniversityofCalifornia,Davis(1999c).

M.A.Delucchi,LPG forSpaceHeatingandWaterHeating:AFuelcycleAnalysisofEmissions ofUrbanAirPollutantsandGreenhouse -Gases,preparedforthePropaneEducationand ResearchCouncil,Washington,D.C.(1999d).

M.A.Delucchi,PersonalNonmonetaryCostsofMotor -VehicleUse, UCD-ITS -RR -96 -3(4), InstituteofTransportationStudies,UniversityofCalifornia,Davis,September(1998 a).

M.A.Delucchi,TheAllocationoftheSocialCostofMotor -VehicleUsetoSixClassesofMotor Vehicles ,UCD-ITS -RR -96 -3(10),Inst ituteofTransportationStudies,Universityof California,Davis,December(1996).

173 M.A.Delucchi,SummaryoftheNonmonetaryExternalitiesofMotor -VehicleUse,UCD-ITS - RR -96 -3(9),InstituteofTransportationStudies,UniversityofCalifornia,Davis, Se ptember(1998b).

J.T.DieckmannandD.Mallory(ArthurD.Little),AirConditioningSystemsforElectric Vehicles,FinalReport,EPRITR -102657,ElectricPowerResearchInstitute,PaloAlto, California,September(1993).

J.DieckmannandD.Mallory,“ClimateControlforElectricVehicles,”SAETechnical PaperSeries#912050,SocietyofAutomotiveEngineers,Warrendale,Pennsylvania (1991).

DivisionofConsumerExpenditureSurveys,BureauofLaborStatistics,U.S. DepartmentofLabor,Washington,D.C.,detailedexpendituresfromtheConsumer ExpenditureSurvey,1984to1991,personalcommunication,February1(1993).

LS.DixonandS.Garber,California'sOzone -ReductionStrategyforLight -DutyVehicles , ISBN:0-8330 -2392 -6,RandInstituteforCivil Justice,SantaMonica,(1996).

Edmund’sPublications,www.edmunds.com/edweb,informationextractedMarch (1999).

B.D.Edwards,“BatteryElectricVehicles -- TheTransitionfromDemonstrationto Production,” 19thIntersocietyEnergyConversionEnginee ringConference,Vol.2,The AmericanNuclearSociety,NewYork,752 -760(1984).

J.M.Ellis,“ColdWeatherExperiencewithGMImpact,”presentedattheSustainable transportationConference,S/EV94,NortheastSustainableEnergyAssociation,October 3-5 (1994).

Electrosource,Inc.,AppendixDofHorizonBatteryManual,availableat www.electrosource.com/batt_mnl,January(2000).

Electrosource,Inc.,technicaldatasheetsfortheHorizonPb/acidbattery(1993).

EnergyandEnvironmentalAnalysis,Inc. ,AssessmentofCostsofBody -in -Whiteand InteriorComponentsforanElectricVehicle, preparedfortheCaliforniaAirResources Board,EnergyandEnvironmentalAnalysis,Inc.,Arlington,Virginia,March(1998).

EnergyandEnvironmentalAnalysis,Analysi softheFuelEconomyBoundaryfor2010and ComparisontoPrototypes ,preparedforMartinMariettaEnergySystems,OakRidge, Tennessee,November(1990).

174 EnergyInformationAdministration,AnnualEnergyOutlook2000 ,DOE/EIA -0383 (2000),U.S.Department ofEnergy,Washington,D.C.,December(1999).

EnergyInformationAdministration,AnnualEnergyOutlook1999 ,DOE/EIA -0383(99), U.S.DepartmentofEnergy,Washington,D.C.,December(1998).

EnergyInformationAdministration,HouseholdVehiclesEnerg yConsumption,1991 , DOE/EIA -0464(91),U.S.DepartmentofEnergy,Washington,D.C.,December(1993).

EnergyInformationAdministration,HouseholdVehiclesEnergyConsumption,1988 , DOE/EIA -0464(88),U.S.DepartmentofEnergy,Washington,D.C.,February(1990).

EnvironmentalProtectionAgency,OfficeofAirandRadiation,CleanAirAct Amendmentsof1990,DetailedSummaryofTitles ,Washington,D.C.,November30(1990).

L.Evans,“HumanBehaviorFeedbackandTrafficSafety,” HumanFactors 27:555 -576(1985).

FederalHighwayAdministration,CostofOwningandOperatingAutomobiles,Vans,and LightTrucks1991 ,FHWA -PL -92 -019,U.S.DepartmentofTransportation,Washington, D.C.,April(1992).

FederalHighwayAdministration,CostofOwningand OperatingAutomobilesandVans, 1984 ,U.S.DepartmentofTransportation,Washington,D.C.(1984).

FederalHighwayAdministration,HighwayStatistics1997, FHWA- PL -98 -020,U.S. DepartmentofTransportation,Washington,D.C.,November(1998).

FederalHighwayAdministration,HighwayTaxesandFees:HowtheyAreCollectedand Distributed1995 FHWA- PL -95 -036,U.S.DepartmentofTransportation,Washington,D. C.(1995).

FederalReserveStatisticalRelease,dataextractedfromwebsites (www.federalreserve.gov/releases/g20/hist/fc_hist_tc.html; www.federalreserve.gov/releases/g19/hist/cc_hist_tc.html; www.federalreserve.gov/releases/g19/hist/cc_hist_a.html; www.federalreserve.gov/releases/g13),February(1999).Dataalsoarepublishedinthe FederalReserve Bulletin,andintheAnnualStatisticalDigest publishedbytheFederal Reserve.

FederalReserveBulletin ,Vol.77,No.4,BoardofGovernorsoftheFederalReserve System,Washington,D.C.,April(1992).

F.Fields,MITMaterialsLaboratory,Massachus ettsInstituteofTechnology,Cambridge, Massachusetts,personalcommunication,February(1992).

175 FordMotorCompany,ModularElectricVehicleProgram(MEVP),PhaseITechnicalReport, DOEContractNo.DE -AC07- 90ID13019,preparedfortheU.S.Department ofEnergy, March(1991).

FordMotorCompany,SingleShaftElectricPropulsionSystemTechnologyDevelopment Program -ETX -II,FinalReport ,ContractDE- AC07- 85NV10418,preparedfortheU.S. DepartmentofEnergy,October(1990).

FordMotorCompanyand GeneralElectricCompany,Single -ShaftElectricPropulsion SystemTechnologyDevelopmentProgram -- ETX -II,PhaseIITechnicalReport ,DOEContract ACX07 -85NV10418,preparedfortheU.S.DepartmentofEnergy,April(1989).

FordMotorCompanyandGeneralElectricCompany,ETX -1:First -GenerationSingle - ShaftElectricPowerPropulsionSystemProgram,Vol.I,FinalReport ,DOE/NV/10308 -H1, preparedfortheU.S.DepartmentofEnergy,February(1987).

Y.Fujii,“BatteryProductionandCostIssues:NickelMeta lHydride,”inUltra -Clean Vehicles:TechnologyAdvances,RelativeMarketability,andPolicyImplications, UCD-ITS -RR - 99 -19,InstituteofTransportationStudies,UniversityofCalifornia,Davis,December (1999).

N.Fujioka,“Nickel-MetalHydrideBatteri esforPureElectricVehicle,”presentedat 15thElectricVehicleSymposiumandExhibition,Brussels,Belgium,September30 - October3(1998).

T.F.FwaandB.W.Ang,“EstimatingAutomobileFuelConsumptioninUrbanTraffic,” paper#920040,presentedattheTransportationResearchBoard71stAnnualMeeting, Washington,D.C.,January12 -16(1992).

T.Gage,ACPropulsion,SanDimas,California,faxtransmittalofcostestimates, January12(2000a).

T.Gage,ACPropulsion,SanDimas,California,personal communication,January25 (2000b).

L.GainesandR.Cuenca,Lithium -IonBatteryCosts ,draftreport,Centerfor TransportationResearch,ArgonneNationalLaboratory,Illinois,November24(1999).

H.Garabedian,VermontAgencyofNaturalResources,data transmittalbye-mail, January31(2000).

H.Garabedian,“UserExperiencewithEVs:OperatingEVsinanAreawithCold Climate,HillyTerrain,andRuralSettlementPatterns,”in Ultra -CleanVehicles:

176 TechnologyAdvances,RelativeMarketability,andPoli cyImplications, UCD-ITS -RR -99 -19, InstituteofTransportationStudies,UniversityofCalifornia,Davis,December(1999).

H.GarabedianandA.Heafitz,“ImprovedPerformanceofaNickelMetalHydride PoweredEVOperatinginVermont,”presentedat15thEl ectricVehicleSymposiumand Exhibition,Brussels,Belgium,September30 -October3(1998).

M.GarveyandA.Studzinski,“PowertrainComponentEfficiencyTesting,” Automotive Engineering ,pp.9-10,March(1993).

GeneralMotorsCorporation,TruckDivision, “ElectricG-Van”(n.d.).

M.Ghering,C.Teuling,andJ.S.Cramer,“ASampleSurveyofCarScrappage,” ProceedingsofSeminarCheldatthePTRCTransportandPlanningSummerAnnualMeeting (UniversityofSussex,England,September11 -15),VolumeP318, PTRCEducationand ResearchServicesLtd.,205 -217(1989).

T.D.Gillespie,FundamentalsofVehicleDynamics ,SocietyofAutomotiveEngineers, Warrendale,Pennsylvania(1992).

GlacierBay,EnvironmentalControlSystemforElectricandHybridVehicles(E CS) ,Final reporttoCalstart/DARPA,Oakland,California,April10(1998a).Availablefrom http://www.glacierbay.com/Darphtm.htm

GlacierBay,Inc.PrivateconversationwithKevinAlstan,GlacierBay,Inc.,SanMateo, California(1998b).

R.Gladstone,M. R.Harvey,andJ.Lesczhik,WeightandConsumerPriceComponentsofthe 1980GeneralMotorsChevroletCitationandthe1981ChryslerReliant,Volume:1, DOTHS -806295,U.S.DepartmentofTransportation,NationalHighwayTrafficSafety Administ ration,Washington,D.C.,April(1982).

Gonzalez,SouthernCaliforniaEdison,personalcommunication(1994).

U.S.GovernmentAccountingOffice,AlternativeFuels,IncreasingFederalProcurementof Alternative -FueledVehicles ,GAO/RCED -91 -169,Washingto n,D.C.,May(1991).

GreenCarMedia,PricingforSuccess:UsingAutoIndustryModelstoReviewElectricVehicle CostingandPricing, FinalReport,EPRI -TR -1070944682,ElectricPowerResearch Institute,PaloAlto,California,October(1996).

A.E.Gri s,EvaluationofPotentialHybridElectricVehicleApplications,Volume1,PATH ResearchReportUCB-ITS -PRR -91 -4,ProgramonAdvancedTechnologyforthe

177 Highway,InstituteofTransportationStudies,UniversityofCalifornia,Berkeley(1994).

W.Hamilton,ElectricandHybridVehicles,TechnicalBackgroundReportfortheDOEFlexible andAlternativeFuelsStudy ,fortheU.S.DepartmentofEnergy,OfficeofPlanning, Policy,andAnalysis,May(1988).

W.Hamilton,ImpactofFutureUseofElectricCarsinthe LosAngelesRegion ,EPA -460/3 - 74 -020,preparedfortheU.S.EPA,October(1974).

K.HardyandR.S.Kirk,“AdvancedTerrestrialVehicleElectricPropulsionSystems Assessment,” Proceedingsofthe20thIntersocietyEnergyConversionEngineeringConference , SocietyofAutomotiveEngineers,Warrendale,Pennsylvania,1.705 -1.711(1985).

H.M.Haskew,et.al.,“TheExecutionofaCooperativeIndustry/GovernmentExhaust EmissionTestProgram”,SAETechnicalPaper94C016,SocietyofAutomotive Engineers,Warre ndale,Pennsylvania(1994).DataavailableonCDROM“FTPRevision ProgramEmissionsDatabase,”CooperativeProgramBetweenEPA,CARB,AWMA, AIAM,January1995,EDSCorporation.

P.S.HuandJ.Young,NationwidePersonalTransportationSurvey,1990NPTSDatabook, VolumeI,FHWA- PL -94 -010A,OfficeofHighwayInformationandManagement, FederalHighwayAdministration,U.S.DepartmentofTransportation,Washington,D. C.,November(1993).

K.K.HumphriesandD.R.Brown,Life -CycleCostComparisonsofAdv ancedStorage BatteriesandFuelCellsforUtility,Stand -Alone,andElectricVehicleApplications ,PNL -7203, PacificNorthwestLaboratory,Richland,Washington,January(1990).

E.Jelinksi,“ColdWeatherOperatingExperiencewithanElectricVehicle,”presentedat theNorthEastSustainableEnergyAssociation(NESEA)SustainableTransportation Symposium,NewYork,September16 -18(1996).

F.R.Kalhammer,BatteriesforElectricandHybridVehicles:RecentDevelopment Progress ,CaliforniaAirResourcesBo ard,Sacramento,California,November(1999).

F.R.Kalhammer,A.Kozawa,C.B.Moyer,andB.B.Owens,PerformanceandAvailability ofBatteriesforElectricVehicles:AReportoftheBatteryTechnicalAdvisoryPanel ,prepared fortheCaliforniaAirResourcesBoard,ElMonte,California,December11(1995).

KeepingCurrent (SouthernCaliforniaEdisonCompany,ElectricTransportation Department,Rosemead,California),Volume2,Number3,“UtilitySurveysDetermine CostsforGettingHomesEV -Ready,”p.5,December(1993).

178 W.Kelledes,"DSEPacElectricVanFirstVehicleTestResults,"Proceedingsofthe9th InternationalElectricVehicleSymposium, EVS88 -040,KerwillPublications,Mississauga, Canada(1988).

G.Key,ConsumptionBranch,NationalIncomeandWealthDivision,Bureauof EconomicAnalysis,U.S.DepartmentofCommerce,Washington,D.C.,personal communication,taxdataandtaxworksheetsderivedfromunpublisheddatafromthe U.S.BureauoftheCensus,February13(1997).

G.Key,NationalIncomeandWealthDivision,BureauofEconomicAnalysis,U.S. DepartmentofCommerce,Washington,D.C.,personalcommunication,August30 (1994).

B.Knight,“Insight:AMotor -AssistHybrid,”in Ultra -CleanVehicles:Technology Advances,RelativeMarketa bility,andPolicyImplications, UCD-ITS -RR -99 -19,Instituteof TransportationStudies,UniversityofCalifornia,Davis,December(1999).

J.Koupal,AirConditioningActivityEffectsinMOBILE6 ,ReportM6.ACE.001,Assessment andModelingDivision,Office ofMobileSources,U.S.EnvironmentalProtection Agency,January26(1998).

K.S.KuraniandD.Sperling,"RiseandFallofDieselCars:AConsumerChoice Analysis," TransportationResearchRecord 1175:23 -32(1989).

M.LedbetterandM.Ross,“ASup plyCurveofConservedEnergyforAutomobiles,” Proceedingsofthe25thIntersocietyEnergyConversionEngineeringConference ,Vol.4,ed.P. A.Nelson,W.W.Schertz,andR.H.Till,AmericanInstituteofChemicalEngineers, NewYork,426 -431(1990).

L.E.Lesster,“SessionReport:ElectricPropulsionSystems,” AdvancedComponentsfor ElectricandHybridElectricVehicles (WorkshopProceedings,October27 -28,1993, Gaithersburg,Maryland),NISTSpecialPublication860,NationalInstituteofStandards and Technology,U.S.DepartmentofCommerce,Washington,D.C.,pp.164 -169(1993).

L.E.Lesster,F.A.Lindberg,R.M.Young,andW.B.Hall,“AnInductionMotorPower TrainsforEVs -- TheRightPowerattheRightPrice,” AdvancedComponentsforElectri c andHybridElectricVehicles (WorkshopProceedings,October27 -28,1993,Gaithersburg, Maryland),NISTSpecialPublication860,NationalInstituteofStandardsand Technology,U.S.DepartmentofCommerce,Washington,D.C.,pp.170 -173(1993).

L.H.Lindgren,RathandStrongInc.,Lexington,Massachusetts,personal communication,June(1991).

179 T.E.Lipman,AReviewofElectricVehicleCostStudies:Assumptions,Methodologies,and Results ,UCD-ITS -RR -99 -8,InstituteofTransportationStudies,Universit yofCalifornia, Davis,May(1999a).

T.E.Lipman,TheCostofManufacturingElectricVehicleBatteries, UCD-ITS -RR -99 -5, InstituteofTransportationStudies,UniversityofCalifornia,Davis,February(1999b).

T.E.Lipman,personalcommunication,Ins tituteofTransportationStudies,University ofCalifornia,Davis,March19(1999c).

T.E.Lipman,TheCostofManufacturingElectricVehicleDrivetrains, UCD-ITS -RR -99 -7, InstituteofTransportationStudies,UniversityofCalifornia,Davis,May(1999d).

F.K.LutgensandE.J.Tarbuck,TheAtmosphere ,PrenticeHall,NewJersey(1995).

H.L.MacLeanandL.B.Lave,“EnvironmentalImplicationsofAlternative -Fueled Automobiles:AirQualityandGreenhouse -GasTradeoffs,” EnvironmentalScienceand Technolo gy 34(2):225 -231(2000).

C.MaderyandJ. -L.Liska,“SaftNickel-MetalHydride(Ni -Mh)BatteryinProduction,” presentedat15thElectricVehicleSymposiumandExhibition,Brussels,Belgium, September30 -October3(1998).

C.F.ManskiandE.Goldin,“AnEconometricAnalysisofAutomobileScrappage,” TransportationScience 4:365 -375(1983).

E.P.Marfisietal.,TheImpactofElectricPassengerAutomobilesonUtilitySystemLoads 1985 -2000 ,EPRIEA -623,ElectricPowerResearchInstitute,PaloAlto,California,July (1979).

1991MarketDataBook ,AutomotiveNews,CrainPublications,Detroit,Michigan(1991).

L.Marowitz,UninsuredMotorists:TheirRateandCosttoInsuredMotorists ,CAL -DMV - RSS -91 -131,CaliforniaDepartmentofMotorVehicles,Sacram ento,California, December(1991).

W.W.Marr,W.J.Walsh,andP.C.Symons,User’sGuidetoDIANEVersion2.1:A MicrocomputerSoftwarePackageforModelingBatteryPerformanceinElectricVehicle Applications,ANL/ESD -8,EnergySystemsDivision,Arg onneNationalLaboratory, Argonne,Illinois,June(1990).

C.Mendler,“EquationsforEstimatingandOptimizingtheFuelEconomyofFuture Automobiles,”SAETechnicalPaperSeries#932877,SocietyofAutomotiveEngineers, Warrendale,Pennsylvania(1993).

180 T.R.Miller,J.Viner,S.Rossman,N.Pindus,W.Gellert,J.Douglass,A.Dillingham,and G.Blomquist,TheCostsofHighwayCrashes ,FHWA -RD -91 -055,OfficeofSafetyand TrafficOperationsR&D,FederalHighwayAdministration,U.S.Departmentof Transp ortation,October(1991).

T.Miyamoto,“Lithium -IonBatteriesforEV&HEVApplications,”inUltra -Clean Vehicles:TechnologyAdvances,RelativeMarketability,andPolicyImplications, UCD-ITS -RR - 99 -19,InstituteofTransportationStudies,Universityof California,Davis,December (1999).

A.MorcheoineandG.Chaumain,“EnergyEfficiency,EmissionsandCosts -- WhatAre theAdvantagesofElectricVehicles?,” TheUrbanElectricVehicleConference,Stockholm, Sweden,May25 -27(1992).

B.More,Institute ofTransportationStudies,UniversityofCalifornia,Davis,personal communication,January(1999).

R.W.Morris,“MotorVehicles,ModelYear1998,” SurveyofCurrentBusiness 78: (November):6-11(1998).

MotorVehicleManufacturer'sAssociation,MVMA MotorVehiclesFactsandFigures'93 , Detroit,Michigan(1993).

MotorVehicleManufacturer'sAssociation,MVMAMotorVehiclesFactsandFigures'90 , Detroit,Michigan(1990).

J.D.Murrell,K.H.Hellman,andR.M.Heavenrich,Light -DutyAutomotiveTech nology andFuelEconomyTrendsThrough1993 ,EPA/AA/TDG/93 -01,OfficeofMobileSources, U.S.EnvironmentalProtectionAgency,AnnArbor,Michigan,May(1993).

P.A.NelsonandT.D.Kaun,“ModelingofLithium/SulfideBatteriesforElectricand HybridVehicles,” Proceedingsofthe26thIntersocietyEnergyConversionEngineering Conference ,Vol.3,AmericanNuclearSociety,LaGrange,Illinois,423 -428(1991).

NewFuels&VehicleReport, “EV -OwnershipObstacleRemoved:$295Conductive ChargerOffered”,Volume19,Number29,p.9,December18(1998).

NewFuels&VehicleReport, “TechnologicalAdvancesinRechargingExpectedtoReduce Costs”,Volume20,Number25,p.1,December9(1999).

OfficeofManagementandBudget,StandardIndustrialClassification Manual1987 , ExecutiveOfficeofthePresident,Washington,D.C.(1987).

181 OfficeofTechnologyAssessment(OTA),U.S.Congress,AdvancedAutomotive Technology,VisionsofaSuper -EfficientFamilyCar, OTA- ETI -638,U.S.Government PrintingOffice,Washi ngton,D.C.,September(1995).

OfficeofTechnologyAssessment(OTA),U.S.Congress,ImprovingAutomobileFuel Economy:NewStandards,NewApproaches, OTA-E- 504,U.S.GovernmentPrintingOffice, Washington,D.C.,October(1991).

J.Oros,“EVCharging Infrastructure,”inUltra -CleanVehicles:TechnologyAdvances, RelativeMarketability,andPolicyImplications, UCD-ITS -RR -99 -19,Instituteof TransportationStudies,UniversityofCalifornia,Davis,December(1999a).

J.Oros,President,ElectricVehic leInfrastructure,Inc.,Auburn,California,personal communication,December22(1999b).

S.Ovshinsky,P.Gifford,S.Venkatesan,M.Fetcenko,D.Corrigan,andS.Dhar, “AdvancementsinOvonicNickelMetalHydrideBatteriesforPortableEV Applications,”presentedattheTenthInternationalSeminaronPrimaryandSecondary BatteryTechnologyandApplication,DeerfieldBeach,Florida,March(1993).

S.R.Ovshinsky,S.K.Dhar,S.Venkatesan,M.A.Fetcenko,P.R.Gifford,andD.A. Corrigan,“Performance AdvancesinOvonicNickel-MetalHydrideBatteriesfor ElectricVehicles,”presentedatthe11thInternationalElectricVehicleSymposium , Florence,Italy,September(1992).

Y.Fujii,PanasonicEVEnergyCompany,Ltd.,“BatteryProductionandCostIssues: NickelMetalHydride,”in Ultra -CleanVehicles:TechnologyAdvances,Relative Marketability,andPolicyImplications, UCD-ITS -RR -99 -19,InstituteofTransportation Studies,UniversityofCalifornia,Davis,December(1999).

P.Patil,G.L.Henriksen,D. R.Vissers,C.andChristianson,“Shipping,Use,and Disposal/RecycleConsiderationsforSodium/BetaBatteriesinEVApplications,”in Proceedings:DOE/EPRIBeta(SodiumSulfur)BatteryWorkshopVIII ),EPRIGS -7163, ElectricPowerResearchInstitute,Palo Alto,California,38 -1to38 -24(1991).

P.G.PatilandJ.Huff,“FuelCell/BatteryHybridPowerSourceforVehicles,” Proceedingsofthe22ndIntersocietyEnergyConversionEngineeringConference ,paper #879083,AmericanInstituteofAeronauticsandAst ronautics,NewYork,993 -998(1987).

K.J.Patton,R.G.Nitschke,andJ.B.Heywood,“DevelopmentandEvaluationofa FrictionModelforSpark -IgnitionEngines,”SAETechnicalPaperSeries#890836, SocietyofAutomotiveEngineers,Warrendale,Pennsylvan ia(1989).

182 M.Redsell,G.G.Lucas,andN.U.Ashford,Comparisonofon -RoadFuelConsumptionfor DieselandPetrolCars ,ContractorReport79,TransportandRoadResearchLaboratory, Berkshire,England(1988).

D.D.Rivers,“AdvancedPlasticLithium -Io nHEVBatteryTechnology,”inUltra -Clean Vehicles:TechnologyAdvances,RelativeMarketability,andPolicyImplications, UCD-ITS -RR - 99 -19,InstituteofTransportationStudies,UniversityofCalifornia,Davis,December (1999).

M.Ross,PhysicsDepartment,UniversityofMichigan,AnnArbor,Michigan,personal communicationviae-mail,February23(1999).

M.Ross,“FuelEfficiencyandthePhysicsofAutomobiles,” ContemporaryPhysics 38: 381 -394(1997).

M.Ross,“Purchases,byAMIGASector,intheManu factureofAdvancedVehicles (TechnicalCharacterization),”draft,UniversityofMichigan,May16(1994a).

M.Ross,“AutomobileFuelConsumptionandEmissions:EffectsofVehicleandDriving Characteristics,” AnnualReviewofEnergy 19:75 -112(1994b).

RunzheimerInternational,Survey&AnalysisofBusinessCarPolicies&Costs1991 -1992, Northbrook,Illinois(1992).

RunzheimerInternational,TheRunzheimerGuidetoFleetManagement ,Northbrook, Illinois(1989).

D.Santini,CenterforTransportationRe search,ArgonneNationalLaboratory,Argonne Illinois,e-maildatatransmission,September(1998).

R.M.Schaefer,"FederalCleanAirActAmendmentsof1990,"presentedat FuelCellsfor Transportation, TOPTECworkshopsponsoredbytheSocietyofAutomo tiveEngineers, Arlington,Virginia,November4-5(1991).

SierraResearch,Inc.,andCharlesRivesAssociates,TheCost -EffectivenessofFurther RegulatingMobileSourceEmissions ,ReportNo.SR94 -02 -04,Sacramento,California, February28(1994).

S.Sim onetandG.J.S.Wilde,“Risk:Perception,AcceptanceandHomeostasis,” Applied Psychology -anInternationalReview -PsychologieAppliquee -Revue 46:235 -252(1997).

SolarEnergyResearchInstitute,ANewProsperity:BuildingaSustainableEnergyFuture , Br ickHousePublishing,Andover,Massachusetts(1981).

183 G.Steele,paperpresentedatthe7thInternationalElectricVehicleSymposium(1984).

SurveyofCurrentBusiness 71,No.7,BureauofEconomicAnalysis,U.S.Departmentof Commerce,Washington,D.C.(1991).

D.Taylor,SouthernCaliforniaEdison,e-mailcommunication,December10(1999).

M.ThomasandM.Ross,“DevelopmentofSecond -by -SecondFuelUseandEmissions ModelsBasedonanearly1990sCompositeCar,”SocietyofAutomotiveEngineers Techn icalPaperSeries#971010,SocietyofAutomotiveEngineers,Warrendale, Pennsylvania(1997).

T.Turrentine,D.Sperling,andK.Kurani,MarketPotentialofElectricandNaturalGas Vehicles ,DraftFinalReportforYearOne,InstituteofTransportationStu dies,University ofCalifornia,Davis,December(1991).

T.S.TurrentineandK.Kurani,ConsumerBenefitsofEVsandPlug -inHEVs,EPRIFinal ReportTR -110780,ElectricPowerResearchInstitute,PaloAlto,California,June(1998).

U.S.DepartmentofEnergy,OfficeofTransportationTechnologies,Encouragingthe PurchaseandUseofElectricMotorVehicles,preparedinresponsetoSection615(b)ofthe EnergypolicyActof1992(PublicLaw102 -486),U.S.DepartmentofEnergy, Washington,D.C.,May(1 995).

U.S.DepartmentofEnergy,OfficeofPolicy,Planning,andAnalysis,AssessmentofCosts andBenefitsofFlexibleandAlternativeFuelUseintheU.S.TransportationSector,Technical ReportFour:VehicleandFuelDistributionRequirements ,DOE/E P-0095P,Washington,D. C.,August(1990).

A.D.Vyas,H.K.Ng,D.J.Santini,andJ.L.Anderson,ElectricandHybridElectric Vehicles:ATechnologyAssessmentBasedonaTwo -StageDelphiStudy, ANL/ESD -36, CenterforTransportationResearch,ArgonneNationalLaboratory,Argonne,Illinois, December(1997).

A.Vyasetal.,“AnAssessmentofElectricVehicleLifeCycleCoststoConsumers,”SAE TechnicalPaperSeries #982182,SocietyofAutomotiveEngineers,Warrendale, Pennsylvania(1998).

M.P.Walsh, CarLines,1991:TheYearinReview,InternationalRegulatoryDevelopments, Volume9,Number1,Arlington,Virginia,January(1992).

E.A.Weber,AutomobileScrappageasanEconomicallyMotivatedEvent ,Ph.D.Dissertation, MichiganStateUniversity(19 81).

184 J.P.Womack,D.T.Jones,andP.Roos,TheMachinethatChangedtheWorld ,Rawson Associates,NewYork(1990).

W.WuandM.Ross,“Spark -IgnitionEngineFuelConsumption,”SAETechnicalPaper Series#1999 -01 -0554,SocietyofAutomotiveEngineers,Warrendale,Pennsylvania (1999).

K.YamaneandS.Furuhama,“AStudyontheEffectoftheTotalWeightofFueland FuelTankontheDrivingPerformanceofCars,” InternationalJournalofHydrogenEnergy 23:825 -831(1998).

185 TABLE 1.MANUFACTURINGCOSTO FTHEBASELINE ICEV S

Finished Materialused Materialcost Labortime Over - weight(lbs) (lbs) ($/lb) a (hrs.) head% UPG Subsystem Escort Taurus Escort Taurus Escort Taurus Escort Taurus 11A -11B Bodyinwhite 575 826 660 926 0.40 0.40 5.42 10.84 25 0 12A - Hardware 23 33 23 33 0.60 0.42 0.33 0.59 100 EGA 12F -13, Electrical 19 23 19 23 0.78 0.78 0.40 0.52 100 79 components 14,20 Molding& 15 30 15 33 1.10 1.10 0.25 0.37 150 ornaments 15,17,21 Trim&insulation 126 207 130 210 1.00 1.00 1.93 4.03 150 16 Seats 76 107 80 110 1.10 1.10 1.05 1.73 150 18 Glass 59 81 59 81 1.10 1.10 1.04 1.37 200 19 Convenienceitems b 15 21 15 21 1.30 1.00 0.38 0.55 100 22 Paint&coatings 7 10 7 10 0.50 0.50 0.06 0.07 200 TotalBody 915 1,338 1,008 1,447 n.e. n.e. 10.86 20.07 n.e. 30A Baseengine 225 444 230 464 0.60 0.60 2.41 13.11 250 30B Otherengine 60 140 65 158 0.40 0.40 0.87 2.20 150 components c 30T Engineassembly n.a. n.a. n.a. n.a. n.a. n.a. 4.00 6.00 250 Totalengine 285 584 295 622 n.e. n.e. 7.28 21.31 n.e. 36C Clutch&controls 33 7 36 8 0.40 0.40 0.29 0.05 150 36E,G Transmission 50 134 53 140 0.40 0.40 0.48 4.30 150 30T Transmission n.a. n.a. n.a. n.a. n.a. n.a. 2.87 3.47 250 assembly Totaltransmission 83 141 89 148 n.e. n.e. 3.64 7.82 n.e.

Tablecontinuedonnextpage.

186 TABLE 1,CONTINUED .

Finished Materialused Materialcost Labortime Over - weight(lbs) (lbs) ($/lb) a (hrs.) head% UPG Subsystem Escort Taurus Escort Taurus Escort Taurus Escort Taurus

30C Engineelectrical 31 38 31 38 0.75 0.75 0.41 0.53 100 30C10 Engineemission& 19 30 20 32 3.00 3.00 0.38 0.70 100 elect.controls 31 Finaldrive 89 110 90 115 0.40 0.40 0.78 1.52 150 32 Frame 106 99 110 110 0.32 0.32 0.84 1.30 150 33 Suspension 96 153 90 160 1.40 1.40 0.77 2.00 150 34 Steering 29 60 31 65 0.40 0.40 0.30 1.17 150 35,35D Brakes 103 154 110 160 0.55 0.55 0.90 3.20 150 36A,36C Wheelstirestools 172 181 190 190 0.50 0.55 4.59 6.40 200 36E Exhaustsystem 46 33 50 35 0.50 0.60 0.49 1.40 100 360 Catalyticc onverter 25 30 27 33 3.00 3.00 0.30 0.60 250 36F Fueltank&fuel 31 24 33 27 0.30 0.30 0.28 0.50 150 lines 36GH Fenders&bumpers 74 90 76 93 0.90 0.90 0.87 1.80 150 36K Chassiselectrical 9 10 10 10 0.30 0.30 0.50 1.60 100 exc.battery d 36K01 Batter yd 30 31 30 31 0.30 0.30 0.05 0.16 100 37A,C, Paint,cleaners, 5 8 5 8 4.00 4.00 0.29 2.00 150 D sealants,etc. e 37Bpart Oilandgrease e 6 7 6 7 0.80 0.80 0.03 0.60 150 37Bpart Fuel e 60 100 60 100 0.00 0.00 0.00 0.00 150 80A,B Airconditioning c 0 0 0 0 0.60 0.60 0.00 0.00 150 80H,J Heatingsystem c 10 15 11 16 0.40 0.40 0.07 0.15 150 80K,M, Otherclimate 4 5 4 22 0.60 0.60 0.03 0.05 150 C control c 85 Accessories 2 4 2 4 1.10 1.10 0.06 0.10 150 equipment Totalchassis 947 1182 986 1240 n.e. n.e . 11.96 25.88 n.e. 29T Vehicleassembly n.a. n.a. n.a. n.a. n.a. n.a. 30.00 35.00 250 TOTALVEHICLE 2,230 3,245 2,378 3,457 n.e. n.e. 63.74 110.08 n.e.

FromLindgren(ACEEE,1990),exceptasnoted.TheEscortisa1989,1.9L,fuelinjected,4-speed front -wheeldrivevehicle.TheTaurusisa1989,3.0L,fuel -injected,4-speedautomaticfuel -

187 injectedfront -wheeldrive.n.a.=notapplicable;n.e.=notestimated.TheseareLindgren’s originalestimates,anddonotreflectanyoftheupdatesoradjustmentswediscussinthetext. aIntheoriginal1989$. bLindgren(ACEEE,1990)callsthis“safetyequipment”. cLindgren’s(ACEEE,1990)hadonelineforgroups30Band80,called“enginecomponentsand accessories”.Weseparatedhiscombinedgroupint oseparatelinesfor30B(otherengine components),80A,B(airconditioning),80H,J(heatingsystem),and80K,M(otherclimate control.Weassignedzerocostandweightto80A,B,becausethevehiclesinLindgren’s analysisdidnothaveairconditioning,andsothereforethetotalbetween30B,80H,J,and 80K,M.Theamountassignedto80K,M(otherclimatecontrol)isincludedinthebaselineEV configuration.However,inthebaselineEVconfigurationthelinesforairconditioning (80A,B)andheating(80H,J) arezeroed,becausethecompleteEVheatingandcoolingsystem isestimatedasaseparateadd -on(seethetextfordetails). dLindgren(ACEEE,1990)hadoneline,group36K,forthechassisbatteryandelectricalsystem. Weusedourjudgmenttosplitthi sintothebatteryandtheelectricalsystem. eLindgren(ACEEE,1990)hadoneline,group37,forallfluids.Weusedourjudgmenttosplit thisintothethreepartsshown.Weassignzerocosttofuelhereintheanalysisof manufacturingcostandweight becauseweaccountseparatelyforthecostoffuelasa runningcostpermile.

188 TABLE 2.THECOSTOFMEETINGE MISSIONSTANDARDS

A.PROJECTEDCOSTOFMEE TING CALIFORNIAEMISSIONS TANDARDS

CosttogofromFederalTier1to: TLEV LEV ULEV Cal iforniaAirResourcesBoard(1994) $34.61MC $84.96MC $165.54MC $56.13RPE $112.10RPE $203.49RPE SierraResearch(1994) $346RPE $906RPE $1331RPE Automakers(SierraResearch,1994) $599RPE $1479RPE $2230RPE

Theprojectionsareoftheaverage increaseinretailpriceequivalent(RPE)ofmanufacturing cost(MC),pervehicle,togobeyondtheTier -1CleanAirActStandards,tomeetthe indicatedCaliforniastandards.Thestandardsareshownbelow.

B.EMISSIONSTANDARDSFO RLIGHT -DUTYMOTORVEH ICLES .

Federal Federal Federal CARB CARB CARB CAAA CAAA TLEV LEV ULEV 1993 Tier1 Tier2(if standards 1994MY needed) 1994MY 1997MY 1997MY HC 0.41 0.25 0.125 0.125 0.075 0.040 CO 3.40 3.40 1.70 3.40 3.40 1.70 NO x 1.00 0.40 0.20 0.40 0.20 0.20

Source:DavisandStrang(1993);SierraResearch(1994).

HC=hydrocarbons(Californiaregulatesnonmethaneorganicgases,nothydrocarbons);CO= carbonmonoxide;NO x=nitrogenoxid es;TLEV=transitionallow -emissionvehicle;LEV= low -emissionvehicle;ULEV=ultra -lowemissionvehicle;CAAA=CleanAirAct Amendmentsof1990;CARB=CaliforniaAirResourcesBoard;MY=modelyear.

189 TABLE 3.THEINCREMENTAL MSRP OFFUEL -ECONOMY IMPROVINGTECHNOLOGI ES FORTHE FORD TAURUS (1990$)

Estimateby: a Lindgren EEA ACEEE Technology 4-valve,DOHC,RCF,intakevalvecontrol 630 440 285 replaces2-valve,cam 5-speedauto.trans.w/l ock -up,elect.control, 648 134 219 replaces4-speedauto.trans.w/lock -up advancedfrictionreduction 24+ 33 83 compressionratiofrom9.3to9.7 n.e. n.e. n.e. aluminumengine ~75 c n.e. n.e. 4cylinderreplaces6cylinder ~(400) c n.e. n.e.

MSRP=manufacturer’ssuggestedretailprice;DOHC=direct -overhead-camengine.RCF= roller -camfollowers.n.e.=notestimated.EEA=EnergyandEnvironmentalAnalysis. ACEEE=AmericanCouncilforanEnergy -EfficientEconomy. aLindgrenisACEEE(1990);EEAisEnergyandEnvironmentalAnalysis(1990)ACEEEis LedbetterandRoss(1990).WehaveupdatedLedbetterandRoss(1990)andLindgren (ACEEE,1990)estimatesfrom1989$,andEEAestimatesfrom1988$,to1990$usingtheGNP implicitpricedeflator .LedbetterandRossestimatesarebasedonearlierestimatesbyEEA, andbytheestimatesprovidedbyLindgren.SomeEEAestimatesmaybebasedonLindgren's work. cOurestimatebasedondatainLindgren.

190 TABLE 4.ESTIMATESOFMANUFACT URING -COSTM ARKUPS

Sourceofestimate Typeofvehicle FC/MC MSRP/ MSRP/ FC MC Gladstoneetal.(1982) GMCitation 1.33 1.14 1.51 Gladstoneetal.(1982) PlymouthReliant 1.33 1.14 1.51 Lindgren(ACEEE,1990) FordEscort 2.24 1.20 2.69 Lindgren(ACEEE,1990) FordTaurus 1.92 1.22 2.34 Lindgren(ACEEE,1990) GMCaprice 1.71 1.22 2.10 Humphreys&Brown(1990) electriccars n.e. n.e. 1.50 U.S.DOE(1990) EVbatteries n.e. n.e. 1.50 Autoindustry1(1992) a (generic) n.e. n.e. 1.40 -1.67 Autoindustry2(1992) (generic) n.e. n.e. 1.8 F.Fields(1992) (generic) 1.5-2.0 1.15 -1.20 1.73 -2.40 Womacketal.(1991) b (generic) n.e. 1.15 n.e. Ross(1994a) average1987car 1.88/2.44 c 1.22 2.29/2.98 BureauoftheCensus(1994) d all,at alldealers n.e. 1.21 n.e. OTA(1995) (generic) e 1.25 n.e. CuencaandGaines(1996) f (generic) 1.53 1.31 2.00 Edmunds(1999) g various n.e. 1.10 -1.17 n.e.

FC=factorycost.MC=manufacturingcost.MSRP=ManufacturersSuggestedRetailPrice. n.e.=notestimated. aThefirstautoindustrysourcesaidthat79%oftheMSRPofacarwasvariable(materialsplus directandindirectlabor,butalsoincludingengineers,designers,andsomehigherlevel costs),and21%wasprofit(plantamortization,costofmoney,corporateanddivisioncosts, anddealercostsandprofit).Whenaskedtoestimatethebreakdownusingthedefinitionsof manufacturingcostandfactorycostusedhere,thesourceestimatedthatitwouldbeabout 69%/31%,butsaidthattherewassomeuncertaintyintheestimate,andindicatedthatarange of60%to72%wouldbereasonable. bWomacketal.(1990)writethat“mostanalystsestimatethat15%ofthebuyers'totalcostis incurredafterthefactorygate,whenthenewcaristurnedov ertotheassembler'sselling divisionbeforebeingsentontothedealer”(p.174).Thecostsincludemanufacturerand dealeradvertising,warrantywork,staff,overhead,andshipping.Ifshippingis2%ofthetotal cost,thendealermark -up,asdefinedhere,is0.98/0.85=1.15.

191 cForbothfigures,thefactorycostistheretailtransactionpricelessdeliveryandretailcosts.In thecaseofthe1.88figure,themanufacturingcostisthedeliveredcostofpartsfrom producersplants.Inthecaseofthe2.44figure,themanufacturingcostisthecostofmaterials pluslaborplusoverheadonlaborincludingtoolingandshorttermlabor.Thislatter manufacturingcostappearstocorrespondmorecloselywiththedefinitionthatweuse. dAccordingtotheCens us’ CombinedAnnualandRevisedMonthlyRetailTrade(1994),from1984 to1992thegrossmarginonretailsalesofmotorvehicles(SICs551,2,5,6,7,9)averaged17.0% ofthevalueofsales,or20.5%ofthecosttodealers.The“grossmargin”isequaltototalsales lessthecostofgoodssold.Salesarenetofrefundsandallowances,andincludeservices incidentaltothesaleofmerchandiseandexcisetaxespaidbymanufacturersandpassed alongtotheretailer,butexcluderetailsalesandexcisetaxes.Thecostofgoodssoldisequal tothevalueofinventoryatthebeginningoftheyearpluspurchasesofgoods(forresale) duringtheyearlessthevalueofinventoryattheendoftheyear.Purchasesincludesthecost valueofintercompanytransfersfrom thewholesaleleveltotheretaillevel. Iassumethatshippingcost,whichisabout2%oftheretailprice,isincludedinboththe totalsalesandthecostofgoodssold.Thus,thegrossmarginis17.0/0.98=17.4%ofthevalue ofsales -ex -shipping,or 21.0%ofthedealercost-ex -shipping. eOTA(1995)doesnotestimatethis,butdoesassumethatthemanufactureroverheadandprofit is40%ofwhatwecallthemanufacturingcost.This40%doesnotincludewhatwewouldcall thedivisioncost.Itwouldappear,though,thatOTA’s(1995)assumptionsarebroadly consistentwithLindgren’s(ACEEE,1990). fThecostofmanufacturingincludesmaterials,labor,andplantoverhead(utilities, maintenance,etc.).Here,theMSRP/FCratioaccountsforthecostofdistribution,andthecost ofadvertisinganddealersupport,andhencemaybebroaderthantheratioasdefinedby others.Weincludetheirwarrantycosts(5%ofMSRP)inthecorporateordivisioncosts. gWehaveaddedtothedealercost(thedifference betweentheMSRPandthefactoryinvoice) theso-called“dealerholdback,”typically2-3%.Thisisthepartofthedealer’sinventory - holdingcostcoveredbythemanufacturer.However,wehavenotaccountedforanyother dealerincentivesorrebates.

192 TABLE 5.MODELINGOFCUMULATIV E VMT ASAFUNCTIONOFYEA RSOFLIFE

Endofyear CumulativeVMT CumulativeVMT oflife predictedbyequationfor estimatedfromRTECS LVY a data b 1 11,561 12,780 2 25,534 26,415 3 38,742 38,692 4 51,227 50,889 5 63,02 8 62,099 6 74,183 72,711 7 84,728 83,769 8 94,696 93,931 9 104,117 103,545 10 113,023 112,712 11 121,442 121,432 12 129,399 129,823 13 136,921 137,884 14 144,031 145,144 15 150,752 151,604 16 157,105 158,064 17 163,110 163,801 18 168,787 169,217 19 174,152 174,331 20 179,224 179,160 21 184,018 183,719 22 188,550 188,024 23 192,834 192,181 24 196,883 196,338 25 200,711 200,495

VMT=vehiclemilestraveled.RTECSdataareforhouseholdpassengervehicles.

193 aSeetheequationgiveninthetext. bThedatashowninthe“RTECS”columnareourestimates;theyarenotpublishedanywhere inthisform.OakRidgeNationalLaboratory(Davis,1992)provideduswithdataonthe fractionoftotalvehiclesandtotalVMTineachvehicleageclass(n ew,1-yearold,2-yearsold, andsoon),forhouseholdvehicles,fromthecomputertapesthatcontaintherawdataofthe 1988RTECS.Weusedthesedata,anddatafromthepublishedRTECS(EIA,Household VehiclesEnergyConsumption,1988,1990),toestim atecumulativeVMTateachyear.

194 TABLE 6.THEAGGREGATED FUDS.

Seg - DurationTs Beginning Ending Seg - DurationTs Beginning Ending mentS (seconds) velocityVb velocityVe mentS (seconds) velocityVb velocityVe (mph) (mph) (mph) (mph) 1 20.0 0.0 0. 0 41 6.0 30.0 34.5 2 6.0 0.0 16.9 42 15.0 34.5 36.5 3 6.0 16.9 22.5 43 5.0 36.5 33.5 4 5.0 22.5 19.8 44 12.0 33.5 0.0 5 2.0 19.8 14.9 45 5.0 0.0 0.0 6 5.0 14.9 17.1 46 8.0 0.0 25.0 7 3.0 17.1 22.7 47 4.0 25.0 30.0 8 3.0 22.7 22.6 48 6.0 30.0 28.0 9 4.0 22.6 15.8 49 9.0 28.0 0.0 10 5.0 15.8 23.2 50 18.0 0.0 0.0 11 36.0 23.2 30.8 51 8.0 0.0 26.4 12 3.0 30.8 29.5 52 6.0 26.4 34.8 13 6.0 29.5 30.9 53 3.0 34.8 36.1 14 2.0 30.9 29.8 54 27.0 36.1 34.5 15 7.0 29.8 32.4 55 4.0 34.5 28.0 16 2.0 32.4 31 .7 56 10.0 28.0 0.0 17 10.0 31.7 0.0 57 5.0 0.0 0.0 18 38.0 0.0 0.0 58 11.0 0.0 17.7 19 6.0 0.0 19.8 59 8.0 17.7 24.9 20 4.0 19.8 26.4 60 15.0 24.9 24.4 21 3.0 26.4 24.7 61 8.0 24.4 0.0 22 6.0 24.7 26.5 62 16.0 0.0 0.0 23 5.0 26.5 17.2 63 4.0 0.0 13 .0 24 3.0 17.2 20.0 64 3.0 13.0 17.0 25 6.0 20.0 36.2 65 17.0 17.0 17.0 26 9.0 36.2 47.5 66 5.0 17.0 21.0 27 10.0 47.5 47.4 67 9.0 21.0 22.7 28 14.0 47.4 55.0 68 5.0 22.7 27.0 29 18.0 55.0 56.5 69 9.0 27.0 0.0 30 25.0 56.5 51.5 70 25.0 0.0 0.0 31 10.0 51.5 56.0 71 5.0 0.0 12.5 32 10.0 56.0 50.1 72 9.0 12.5 25.3 33 10.0 50.1 48.1 73 10.0 25.3 25.5 34 18.0 48.1 27.5 74 11.0 25.5 0.0 35 2.0 27.5 21.5 75 13.0 0.0 0.0 36 5.0 21.5 15.5 76 9.0 0.0 16.4 37 6.0 15.5 0.0 77 13.0 16.4 23.5 38 13.0 0.0 0.0 78 3.0 23.5 20.5 39 8.0 0.0 22.5 79 5.0 20.5 6.2 40 5.0 22.5 30.0 80 5.0 6.2 0.5

195 TABLE 6,CONTINUED .

Seg - DurationTs Beginning Ending Seg - DurationTs Beginning Ending mentS (seconds) velocityVb velocityVe mentS (seconds) velocityVb velocityVe (mph) (mph) (mph ) (mph) 81 8.0 0.5 19.6 121 14.0 14.0 25.0 82 10.0 19.6 28.6 122 17.0 25.0 26.4 83 5.0 28.6 27.5 123 9.0 26.4 14.0 84 7.0 27.5 14.9 124 5.0 14.0 0.0 85 4.0 14.9 3.0 125 15.0 0.0 0.0 86 4.0 3.0 0.0 126 6.0 0.0 18.6 87 6.0 0.0 17.5 127 3.0 18.6 23.5 88 11.0 17.5 28.9 128 2.0 23.5 22.5 89 18.0 28.9 28.5 129 8.0 22.5 0.0 90 8.0 28.5 34.3 130 9.0 0.0 0.0 91 26.0 34.3 27.0 131 3.0 0.0 3.5 92 5.0 27.0 19.2 132 3.0 3.5 12.0 93 21.0 19.2 29.1 133 6.0 12.0 13.1 94 7.0 29.1 24.5 134 6. 0 13.1 21.0 95 11.0 24.5 29.2 135 13.0 21.0 21.4 96 10.0 29.2 26.6 136 7.0 21.4 19.5 97 4.0 26.6 28.0 137 10.0 19.5 0.0 98 20.0 28.0 25.5 138 11.0 0.0 0.0 99 4.0 25.5 21.6 139 9.0 0.0 10.5 100 12.0 21.6 25.5 140 3.0 10.5 7.6 101 19.0 25.5 24.0 141 6.0 7.6 21.0 102 9.0 24.0 0.0 142 26.0 21.0 28.8 103 2.0 0.0 0.0 143 1.0 28.8 27.3 104 5.0 0.0 15.2 144 1.0 27.3 29.0 105 9.0 15.2 27.5 145 3.0 29.0 28.0 106 5.0 27.5 28.5 146 9.0 28.0 0.0 107 8.0 28.5 25.2 147 24.0 0.0 0.0 108 2.0 25.2 22.0 148 4.0 0.0 11.1 109 19.0 22.0 25.5 149 9.0 11.1 22.9 110 9.0 25.5 20.5 150 12.0 22.9 14.0 111 7.0 20.5 0.0 151 5.0 14.0 0.0 112 29.0 0.0 0.0 152 5.0 0.0 0.0 113 6.0 0.0 17.0 153 0.0 0.0 0.0 114 12.0 17.0 28.3 115 9.0 28.3 20.6 116 3.0 20.6 12.3 117 11.0 12.3 8.6 118 7.0 8.6 0.0 119 4.0 0.0 3.6 120 4.0 3.6 14.0

196 Source:wecondensedtheactualsecond -by -secondFUDSfrom1372segmentsofonesecond eachto153segmentsofconstantacceleration.

197 TABLE 7.FUELUSEATIDLE

Fuel Fuel Engine Idle Idlefueluse

system (liters) (rpm) a (ml/s) b (kJ[LHV]/ rev/l) c McGill(1985): 1982FordFairmont G C 2.30 700 0.80 0.96 1982ChevroletCitation G TBI 2.50 700 0.83 0.92 1982FordFutura G C 3.30 650 0.65 0.58 1983 PlymouthReliant G C 2.60 700 0.67 0.71 1982ToyotaCorolla G C 1.80 800 0.27 0.36 1983FordEscort G C 1.60 800 0.40 0.60 1983PontiacFirebird G C 2.80 625 0.79 0.87 1983ChevroletMonteCarlo G C 3.75 600 0.50 0.43 1982ChevroletChevette D I 1.80 800 0.16 0.21 1981ChevroletCaprice D I 5.70 500 0.63 0.43 1983ChevroletSilveradoPickup D I 6.20 450 0.51 0.35 1982Datsun210 G C 1.50 850 0.11 0.17 1982ChevroletCapriceWagon G C 5.00 500 0.49 0.38 1981Century G C 3.80 600 0. 55 0.47 1984ChevroletS-10Pickup G C 2.00 800 0.37 0.45 AverageofMcGill(1985)tests 3.11 672 0.52 0.53 FTPrevisiondatabase d 1993FordMustang G I 5.00 800 0.56 0.27 1993FordTaurus G I 3.00 700 0.53 0.49 1993FordEscort G I 1.90 700 0.38 0.55 Santini(1998) e RecentMYJapanesevehicles G? I ~2.0 ~800 ~0.51 ~0.61 Automotiveconsultant f modernautomobiles G I ------0.51

198 FromMcGill(1985),exceptasnoted.G=gasoline;D=dieselfuel;C=carburetor;TBI= throttle -bodyinjection;I=injector;rpm=revolutionsperminute;ml/s=millilitersper second;kJ/rev/l=103Joulesofgasolineperrevolutionperliterdisplacement;BTUs=British ThermalUnits;LHV=lowerheatingvalue. aOurassumptions,except inthecaseof1993Mustangand1993Escort,whichweremeasured. Weassumethatlargeenginesidlemoreslowlythandosmallengines.ThomasandRoss (1997)suggest600rpmfor8-cylinderengines,700rpmfor6-cylinder,and800rpmfor4- cylinderengin es. bThesevaluesareconsistentwiththe12estimatesrangingfrom0.27ml/secto1.05ml/sec citedbyFwaandAng(1992). cCalculatedusingtheformulainthetext. dTheFTPdatareportedgm/sec.Weconvertedtoml/secassuming2749grams/gallonfo r reformulatedgasoline.SeeAppendixA. eDataprovidedbySantini(1998)show2.0lbs/hratlowrpmforaToyota3.0Lengine,a Honda1.5Lengine,andaMitsubishi1.8Lengine.TheMitsubishi1.8LandtheToyota3.0L enginehadafuelflowrateof 0.3to0.45g/sec(2.4to3.6lbs/hr)atzerotorqueand700to900 rpm. fAccordingtoautoindustrysources,mostmodernenginesconsume1.0lb.perhourperliterof displacementat700rpm,or0.13g/sec/l,whichcorrespondsto0.51kJ[LHV]/rev/liter.Ross (1999)givesasimilarvalueof0.10g/sec/l.

199 TABLE 8.ESTIMATESOFYEAR -BY -YEARSCHEDULEDANDU NSCHEDULEDMAINTENAN CE COSTSFORTHREEVEHI CLETYPES ,BASEDON FHWA(1984)

A.ORIGINAL FHWA(1984) ESTIMATES (1984$)

Age Annual Cumul. Midsize Compact Subcompact (years) VMT VMT ($/yr.) ($/yr.) ($/yr.) sched. unsched. sched. unsched. sched. unsched. 1 14,500 14,500 65.25 11.60 34.80 10.15 27.55 8.70 2 13,700 28,200 108.23 47.95 109.60 45.21 73.98 39.73 3 12,500 40,700 111.25 363.75 92.50 217.50 111.25 318.75 4 11,400 52,100 108.30 305.52 82.08 225.72 55.86 324.90 5 10,300 62,400 65.92 897.13 50.47 509.85 64.89 683.92 6 9,700 72,100 231.83 733.32 168.78 613.04 187.21 1,035.96 7 9,200 81,300 66.24 1,101.24 34.96 1,460.96 56.12 1,288.92 8 8,700 90,000 108.75 515.91 108.75 561.15 53.94 518.52 9 8,200 98,200 110.70 239.44 81.18 122.18 107.42 198.44 10 7,800 106,000 144.30 14.82 82.68 10.14 135.72 9.36 11 7,300 113,300 24.09 10.95 35.04 6.57 51.10 5.84 12 6,700 120,000 24.12 11.39 34.84 6.70 17.42 6.03

Notes:

Themidsizevehicleweighslessthan3500lbs,thecompactlessthan3000lbs,andthe subcompactlessthan2500lbs.Theestimatesarebasedonpartspricesandlaborrates (26.33/hour)inBaltimore,Maryland,in1984.VMT=vehiclemilestraveled;cumul.= cumulative;sched.=scheduledmaintenance;unsched.=unscheduledmaintenance.These aretheoriginalFHWAestimates;noneoftheadjustmentsdiscussedinthetexthavebeen made.

200 B.FHWA(1984) TRANSFORMEDTO ENTIRE U.S.IN 1997.

Age Annual Cumul. Midsize Compact Subcompact (years) VMT VMT ($/yr.) ($/yr.) ($/yr.) sched. unsched. sched. unsched. sched. unsched. 1 14,500 14,500 75.82 13.48 40.44 11.79 32.01 10.11 2 13,700 28,200 125.76 55 .72 127.36 52.53 85.96 46.17 3 12,500 40,700 129.27 422.68 107.49 252.74 129.27 370.39 4 11,400 52,100 125.84 255.01 95.38 162.29 64.91 277.53 5 10,300 62,400 76.60 1,042.47 58.65 592.45 75.40 794.72 6 9,700 72,100 269.39 852.12 196.12 712.35 217.54 1, 203.79 7 9,200 81,300 76.97 1,279.64 40.62 1,697.64 65.21 1,497.73 8 8,700 90,000 126.37 599.49 126.37 652.06 62.68 602.52 9 8,200 98,200 128.63 278.23 94.33 141.97 124.82 230.59 10 7,800 106,000 167.68 17.22 96.07 11.78 157.71 10.88 11 7,300 113,300 27.99 12.72 40.72 7.63 59.38 6.79 12 6,700 120,000 28.03 13.24 40.48 7.79 20.24 7.01

Notes:seethetextforanexplanationofthetransformation.WeusetheFHWAseriesonly to turnourestimateofannualaveragem&rcosts,whichasexplainedinthe textisbasedon datafromtheCensus,intoayear-by -yearm&rschedule.

201 TABLE 9.U.S.AVERAGEANNUALEXPEN DITURESPERVEHICLE ,FROMCONSUMER EXPENDITURESURVEYS ,1984-1997

Year Maintenance&repair a Insurance Otherfeesb current 1997$c curr ent 1997$d current 1997$ 1984 253 359 184 427 71 n.e. 1985 249 346 196 414 75 n.e. 1986 246 334 210 391 81 n.e. 1987 257 339 231 398 80 n.e. 1988 267 339 254 408 89 n.e. 1989 281 344 288 434 94 n.e. 1990 295 350 282 398 95 n.e. 1991 307 352 307 403 116 n.e. 1992 322 358 331 405 147 n.e. 1993 326 355 357 414 158 n.e. 1994 358 381 363 406 183 n.e. 1995 344 358 375 402 205 n.e. 1996 339 346 367 379 232 n.e. 1997 341 341 378 378 251 n.e.

Dataoncurrentexpendituresandvehiclesperconsumer unitfromtheBureauofLabor Statisticswebsite(1999).n.e.=notestimated. aExpendituresonallmaintenance,repairs,andparts,includingbatteries,tires,transmission fluids,oilchanges,exhaustsystemrepairs,brakework,autorepairpolicies ,andmuchmore. bExpendituresonleasedandrentedvehicles(includingtrucks),inspectionfees,stateandlocal registrationfees,driver'slicensefees,parkingfees,towingcharges,andtolls. cWeadjustthe“m&r”current -$expendituresreportedin theexpendituresurveyto1997$by applyingpriceindicesfromtheCPIcategorythatmostcloselymatchesthe“m&r”category intheexpendituresurveys.TheCPIhasapricecategorycalled“motorvehiclemaintenance andrepairs,”andacategorycalled“motorvehiclepartsandequipment,”whichapparently formerlywascalled“otherprivatetransportationcommodities.”Theold“otherprivate transportationcommodities”includedtires,oil,coolant,andotherparts,products,and equipment;presumablythenew“motorvehiclepartsandequipment”includesthesame. ThesetwoCPIcategories-- motorvehiclemaintenanceandrepair,andmotorvehicleparts andequipment -- appeartocorrespondtothesingle"maintenanceandrepair”categoryinthe

202 CESs.Hence,the twoCPIindicesthatcoverthem&rcategoryoftheexpendituresurveys mustbecombinedintoasingleindex,byweightingeachCPI -indexcategorybyitsrelative importance.TherelativeimportanceofeachofthesetwocategoriesoftheCPIisdefinedas: expendituresineachcategorydividedbythesumofexpendituresinbothcategories. AccordingtotheCPI“relativeimportance”index,in1990consumersspent2.18timesas muchonmaintenanceandrepairs(asdefinedbytheCPI)ason"otherprivatetra nsportation commodities"(BLS, CPIDetailedReport ,1991).Hence,wemultiplythemaintenanceand repairCPIby0.685,andthemotorvehiclespartsandequipmentCPIby0.315,andsum,toget aweightedCPItoapplytothem&rcategorydefinedintheBLSconsumer -expenditure survey.(TheCPIindicesarefromtheBLSwebsite[1999].) dAdjustedto1997$usingtheCPIformotorvehicleinsurance(BLSwebsite,1999).

203 TABLE 10.ESTIMATEDANDASSUMED MAINTENANCEANDREP AIRCOSTSFOR ICEV S ANDBATTERY -POWERED EV S,ASAFUNCTIONOFVEH ICLE VMT(1997)

Ann.VMT Cum.VMT ICEV($/yr.) BPEV Same Unique Common All 14,500 14,500 34.16 7.48 45.04 65.69 13,700 28,200 69.42 15.20 91.54 133.50 12,500 40,700 211.13 46.24 278.41 406.02 11,400 52,100 183 .94 40.29 242.55 353.73 10,300 62,400 428.07 93.75 564.48 823.20 9,700 72,100 429.00 93.96 565.71 825.00 9,200 81,300 518.93 113.66 684.30 1,247.94 8,700 90,000 277.66 60.81 366.14 533.95 8,200 98,200 155.63 34.09 205.23 299.29 7,800 106,000 70.73 15 .49 93.27 136.01 7,300 113,300 15.57 3.41 20.54 29.95 6,700 120,000 15.78 3.46 20.81 30.35 6,200 126,200 38.25 8.38 50.44 73.56 5,800 132,000 22.95 5.03 30.27 44.14 5,500 137,500 57.38 12.57 75.66 110.34 5,200 142,700 229.51 50.27 302.65 441.37 5,00 0 147,700 47.82 10.47 63.05 91.95 5,000 152,700 13.39 2.93 17.65 25.75 5,000 157,700 38.25 8.38 50.44 73.56 5,000 162,700 38.25 8.38 50.44 73.56 5,000 167,700 229.51 50.27 302.65 441.37 5,000 172,700 76.50 16.76 100.88 147.12 5,000 177,700 28.69 6.28 37.83 55.17 5,000 182,700 13.39 2.93 17.65 25.75 5,000 187,700 38.25 8.38 50.44 73.56

204 Source:Seethetextforanexplanationofthemethodsanddatasourcesused.Ann.VMT= annualVMT;Cum.VMT=cumulativeVMT;“same=coststhatarethesamefortheICEV andEV;“Unique=costsuniquetotheICEV;Common=costscommontotheEVandICEV.

205 FIGURE 1.MODELINGOFENERGYFL OWSINTHEBATTERY

90%dischargeefficiency drivetrainload -10.0kWh

fromcharger 82%chargingefficiency +10kWh 8.2kWh "interiorcapacity"(EI)

90%dischargeefficiency regeneration +1.8kWh

Batteryenergyflows

Notes:

Quantitiesshownareillustrative,andnotnecessarilyindicativeofmode ledormeasured values.Wemodelchargingfromregenerativebrakingusingthe“discharge”ratherthan “charge”equationsofAppendixA.

206 APPENDIXA:MODELING BATTERYANDDRIVETRAIN PARAMETERS

MarkA.Delucchi MarshalMiller InstituteofTransportation Studies UniversityofCalifornia Davis,California

INTRODUCTION

Aspartofthecalculationofthelifecyclecost,theenergy -usemodelcalculates energyusesecond -by- secondoveraparticulardrivecycle.Thesecalculationsusea dynamicvehiclemodel andinputparametersforthevehicleplatform,drivetrain,and battery.Toproperlydetermineenergyusageandrangeofanelectricvehicle,the batteryefficiencyanddrivetrainefficiencymustbecalculatedforeachstepinthedrive cycle.Thisappendi xdescribesthebatteryanddrivetrainefficiencymodelsusedinthe spreadsheet.

BATTERYMODELS

Batteryefficiency Theefficiencyofthebattery,expressedastheratioofenergyoutgoingfromthe batteryterminals(tothedrivetrain)totheenergyinputfromthebatterycharger, comprisestwoterms:theefficiencyofcharging(puttingenergyinto)thebattery,and theefficiencyofdischarging(takingenergyoutof)thebattery.Thechargingefficiency dependsonthealgorithmusedtochargethebatt ery,andthedepthofdischargejust priortorecharging.Thedepthofdischargemattersbecausethefinal“toppingoff” chargeisrelativelyinefficient,onaccountoftheuseofover -voltage;hence,thelarger thetopping -offphaseinrelationtotheto talcharge,themoreinefficientthetotal charge.Chargingfromalowdepthofdischarge,then,willberelativelyinefficient. Thedischargeefficiencydependsonthetotalresistiveloss,whichdependson thebatteryresistanceandthecurrent,which inturndependontheopen -circuitvoltage andtherequiredpower.Theopencircuitvoltageandtheresistancecanbemodeledasa functionofthebatterydepthofdischarge,which,alongwiththerequiredpower,canbe calculatedforeachsegmentofthedrivecycle.Thus,inordertocalculatethedischarge efficiencyaccuratelyforeachsegmentofthedrivecycle,wemustcalculatethedepthof dischargeandthepowerateachsegment. Formally:

207 Chargingefficiency. TheDCchargeefficiencyismodeled simplybyathird - orderpolynomial:

2 3 BCH = AC + BC ⋅ DoD + CC ⋅ DoD + DC ⋅ DoD

where:

BCH=theefficiencyofbatterycharging DoD=thedepthofdischargewhenthebatteryisrecharged AC,BC,CC,andDCarebattery -specificconstants(s eethe Datasection).

Notethatthisexpression:

a)doesnotincludetheefficiencyofthebatterycharger(whichwediscussinthe maintext);and b)isvalidonlyforlow -powerchargingfromanexternalpowersourcewhenthe vehicleisidle.

WefitthisfunctiontoactualchargingdataforPb/acid,NiMHGen2,andLi -ion. ForLi -Al/Fe -S,andNiMHGen4,weuseourjudgment. Rechargingviaregenerativebraking,athighvoltageandcurrent,canbetreated assimplythereverseofdischarging,andhencemodeledaswemodelthedischarge efficiency,discussednext. Dischargeefficiency. Ingeneral,theenergylossduringbatterydischargecanbe analyzedastwoterms:thelossofenergypercharge(joulespercoulomb,orvoltage), andtheloss ofcharge(coulombs).Expressingtheseasthevoltaicefficiency(VE)and thecoloumbicefficiency(CE):

BDCH = VE ⋅CE

where:

BDCH=theefficiencyofbatterydischarge(ratioofenergyavailableatthe batt eryterminals,outgoing,toenergyavailable“in”thebattery) VE=thevoltaicefficiency(theefficiencyrelatedtothelossofenergypercharge) CE=thecoloumbicefficiency(theefficiencyrelatedtothelossofchargefromthe useful[work -producing ]circuit).

Thecoloumbicefficiencygenerallyisquitehigh,near1.0,unlessthebattery short -circuits,becausetheonlynormalsourceofchargeloss,unproductiveside reactions,isquiteminor.Weassumeavalueof0.99forallbatterytypes.Rivers (1999) reportsavalueofabout100%forplasticLi -ionvalues.

208 Thevoltaicefficiencyistheratiooftheactualvoltage,aftervoltaiclosses,tothe opencircuit(no -loss)voltage.Thevoltaiclossistheenergydissipatedininternal batteryresistance,andisgivenbytheproductI .Rloss.Hencethevoltaicefficiencyis:

V − I ⋅ R VE = OC VOC where:

VOC =theopencircuitvoltage(volts)(whichwewillestimateasfunctionof DoD) R=thebatteryresistance (ohms)whichwewillestimateasafunctionofDoD) I=thecurrent(amps)

GiventhatwewillestimateVOC andRasafunctiononlyoftheDoD,whichwe cancalculate,itremainsforustofindanexpressionforIintermsofestimable parameters.Wedothisbysolvingthefollowing2simultaneousequationsforI:

P = I ⋅V

V = VOC − I ⋅ R

where:

P=thepower(W)(seethediscussionbelow) V=theactualvoltage

SubstitutingP/IforV,weget:

P = VOC − I ⋅ R I 2 R ⋅ I −VOC ⋅ I + P = 0

whichcanbesolvedbythequadraticformula:

2 0.5 VOC − (VOC − 4RP) I = 2R

SubstitutingtheexpressionforIgivesusthefinalefficiencyexpressioninterms oftheestimatedparameters R(DoD),VOC,(DoD)andP:

209 2 0.5 VOC − (VOC − 4RP) VOC − BDCH = 2 ⋅CE VOC

2 0.5 ()VOC − 4RP = 0.5 + ⋅CE 2 ⋅VOC

0. 5    2  4RP   VOC ⋅ 1 −    V 2   = 0.5 + OC ⋅CE 2 ⋅VOC

0.5  4RP  1+  1−   V 2  = OC ⋅ CE 2

Wehaveonemoreexpressiontoderive.Note,first,thatthedischargecapacityof anyparticularbattery(theenergymeasuredoutgoingatthebatteryterminals),and hencethegravimetricenergydensity,dependsonthedischargerate.Now,aswe explaininthetext,whenwesizethe“interior”capacityofthebatterytoexactlysatisfy thedrivecycle,wemustdosoonthebasisoftheactualdischargeefficiencyofthe batteryoverthespecifieddrivecycle.However,the“Wh”inthegravimetricenergy density(Wh/kg)thatwederiveasafunctionofthepowerdensity,andthe“kWh”in theenergycostfigure($/kWh)thatweestimate,arebasedonaC/3discharge.Hence, gi venourestimateofthe“interior”capacityofthebatteryrequiredtoexactlysatisfied thedrivecycle,attheactualdischargeefficienciesofthedrivecycle,wemustcalculate, forthepurposeofusingtheWh/kgand$/kWhfigures,whatthedischargeca pacityof thebatterywouldbeattheC/3dischargerate.Wedothisbymultiplyingtheactual “interior”capacityofthebattery(thecapacityofthebattery“attheelectrodes”needed toexactlysatisfytheselecteddrivecycle)bytheC/3dischargeeffi ciency. TodeterminetheC/3dischargeefficiency,wesimplyspecifyBDCHequationfor theconditionsoftheC/3dischargetest:wecalculatethePcorrespondingtoC/3 discharge,andestimatethe“average”RandVOCovertheC/3discharge.Wewill assum ethattheaverageRandVOCoccurat50%DoD,asshowninthebatterytestdata reportedbelow.Thecell -levelPcorrespondingtoC/3isequaltotheAhcapacityofthe module(givenbelow),multipliedbythevoltageofthemodule(givenbelow),divided bythenumberofcellspermodule(givenbelow),dividedbythe3(thedefinitionof C/3).Butsincethemodulevoltageisequaltothecellvoltagemultipliedbythenumber ofcells,theexpressionreducestoAh .VCELL /3.Thuswehave:

210 0.5  4R P  + − C/3 C/3 1 1 2  VOC−C/3  BDCHC/3 = ⋅CE 2 0.5  4R Ah/3⋅V   C/3 C/3 1+ 1− 2  VOC−C/3  = ⋅CE 2 assuming:

VC/3 = VOC−C/3(acceptableapproximationforthispurpose)

RC/3 = R50DoD

VOC−C/3 = VOC−50DoD then:

0. 5  4R Ah /3 1+  1− 50DoD   V  BDCH ≈ OC−50DoD ⋅ CE C/3 2

where:

BDCH C/3 =theefficiencyofaC/3dischargeofthebattery RC/3 =theaverageresistanceovertheC/3discharge PC/3 =theaveragepowerovertheC/3discharge VOC-C/3 =theaverageopen -circuitvoltageover theC/3discharge Ah=theAmp -hourcapacityofthemodule(seebatterydatasection) R50DoD =theresistanceat50%DoD(seebatterydatasection;assumedtobethe averageresistanceovertheC/3discharge) V50DoD =theopen -circuitvoltageat50%DoD(seebatterydatasection;assumed tobetheaverageopen -circuitvoltageovertheC/3discharge)

Open -circuitvoltage. Theopen -circuitvoltageofabattery cell ismodeledbya 3rdorderpolynomialfunctionofthedepthofdischarge:

2 3 Voc = Av + Bv ⋅DoD + Cv ⋅ DoD + Dv ⋅DoD

211 where:

Voc =theopencircuitvoltageofthebattery DoD=thebatterydepthofdischarge theparametersAV,BV,CV,andDV areconstantsforagivenbatterytechnology (Pb/acid,NickelMetalHydride,andLithium Ion;see Datasectionbelow)

Thefunctionmodelsthedatatobetterthan0.5%(see Datasectionbelow).

Resistance. Theresistanceofabattery cell ismodeledbya6thorderpolynomial functionofthedepthofdischarge:

2 3 4 5 6 R = AR + BR ⋅DoD + CR ⋅DoD + DR ⋅DoD + ER ⋅DoD + FR ⋅ DoD + GR ⋅DoD

where:

R=thebatteryresistance theparametersAR,BR,CR,DR,ER,andFRareconstantsforagivenbattery technology(see Datasectionbelow)

Thefunctionmodelsthedatatobetterthan2.1%(see Datasectionbelow).

Po werofthecell. NotethatVOC,R,andPherearepercell.Now,wehavejust estimatedVOCandR,atthecelllevel,asafunctionofDoD.However,theenergy -use model,describedinthetext,producestotalpowerrequiredofthewholebattery.Toget thepowerpercell,wemustdividetherequiredpowerbythenumberofcellsinthe battery.Thenumberofcellsinthebatteryisobtainedbydividingthedesired maximumsystemvoltage,atsomereferenceDoD,bytheopen -circuitvoltagepercellat thereferenceDoD.Weassumehighersystemvoltageswiththebatteriesthathavea highercellvoltage:

Pb/acid NiMH Li -ion Li -Al/Fe -S DesiredsystemVatref.DoD 312 288 420 360 V/cellatref.DoD 2.0 1.2 3.5 3.0 #cells 156 240 120 120

NoteonDoD. Finally,notethatthesecond -by -secondDoDofthecellsovera particulardrivingcycledependsonthedepletionofthebatteryatthe start ofthecycle. Forthepurposeofcalculatingtheaveragesecond -by -secondDoDoverthedrivecycle, weassumethattheaverageDoDatthestartofatripishalfoftheaveragedepthof dischargetorecharging.

Batterydesigntrade -offs

212 Asdiscussedinthetext,thespecificenergyofthebatteryiscalculatedasa functionofthespecificpower,whichinturnis calculatedsimplyasthemaximum powerofthebatterydividedbyitsweight.TableA-1showsthespecificenergy (Wh/kg)estimatedasafunctionofthespecificpower(W/kg)forthefivebatteries, giventhebase -caseparametervaluespresentedinthemaintext. The“K”coefficientinthebattery -costequationdeterminesthe“spread”ofthe $/kgvaluesforagivenrangeofWh/kgbatterydesigns.Thesmallerthecoefficient,the widerthespreadof$/kgvaluesforagivenrangeofWh/kgbatterydesigns.Ta bleA-2 shows$/kgestimatedasafunctionofWh/kgforallbatterytypes.

BATTERYDATA

Thissectionsuppliesthedatausedforthebatteryandpowerelectronics.

Pb/acidbattery ThedataweretakenattheUniversityofCalifornia,DavisintheElectricVehicle PropulsionSystemslaboratoryusingtheHorizonPb/acidbattery.Theweightand capacityofmodulesusedinthesimulationare:

26.3kg/module 90Ah 6cells/module

Thevoltageconstantspercellare:

AV=2.1226 BV= -.21502 CV=.15367 DV= -.16803

AcomparisonbetweenthedataandthemodelasafunctionofDoDisshown below.

DoDDataDataminusmodel 02.12 -.002567 .12.105 .002566 .22.087 .002634 .32.067 -.0003555 .42.05 -.0003941 .52.03 -.002473 .62.01 -.002585 .71.99 .0002785 .81.965 .002126

213 .91.935 .003965 11.89 -.003196

Theresistanceconstantspercellare:

AR=.0006234 BR=4.8353E-04 CR= -.0098311 DR=.040234 ER= -.072424 FR=.060911 GR= -.018995

Acomparisonbetweenthedataandthemodelas afunctionofDoDisshown below.

DoDDataDataminusmodel 0.000625 1.596E-06 .1.0006 -7.027E-06 .2.00056 8.868E-06 .3.00052 2.495E-06 .4.0005 -1.067E-05 .5.000515 -1.786E-06 .6.00054 1.111E-05 .7.00056 1.585E-06 .8.00062 -1.311E-05 .9.00079 8.809E-06 1.001 -1.888E-06

Thechargingconstantspercellare:

AC=.356 BC=1.65 CC= -2.0625 DC=.9375

AcomparisonbetweenthedataandthemodelasafunctionofDoDisshown below.

DoDDataDataminusmodel .2.61 -.001

214 .4.75 .004 .6.8 .006 .8.84 .004 1.88 .001

Nickelmetal-hydride“Gen2”battery ThedataweretakenattheUniversityofCalifornia,DavisintheElectricVeh icle PropulsionSystemslaboratoryusingtheOvonicnickelmetalhydridebattery.The weightandcapacityofmodulesusedinthesimulationare:

17kg/module 88.9Ah 11cells/module

Thevoltageconstantspercellare:

AV=1.3711 BV= -.70027 CV=1.6023 DV= -1.2549

AcomparisonbetweenthedataandthemodelasafunctionofDoDisshown below.

DoDVOC Dataminusmodel 01.365-.006141 .0841.325.00212 .1971.295.009225 .3091.275.004284 .3941.267-.0002052 .5061.258-.006455 .591.248-.009986 .71.227-.008609 .7881.204.003813 .91.154.03013 11-.01818

215 Theresistanceconstantspercellare:

AR=.0010502 BR= -.0001869 CR= -.0012148 DR=.0069915 ER= -.015541 FR=.015821 GR= -.0058706

Acomparisonbetweenthedataand themodelasafunctionofDoDisshown below.

DoDResistanceDataminusmodel 0 .00105 -1.997E-07 .084 .00103 6.373E-07 .197 .001 -6.323E-07 .309 .00098 -5.1E-07 .394 .00097 6.506E-07 .506 .00096 2.136E-06 .59 .00095 -3.291E-06 .7 .00096 7.583E-07 .788 .00098 1.106E-06 .9 .00102 -8.56E-07 1 .00105 2.024E-07

Thechargingconstantsare:

AC=.3700 BC=.67381 CC= -.15179 DC= -.10417

AcomparisonbetweenthedataandthemodelasafunctionofDoDisshown below.

DoDDataDataminusmodel .2.50.002143 .4.60-.008571 .6.71.01286 .8.75-.008571 1.79.002143

216 Notethatchargingisveryinefficientatlowdepthsofdischarge.Thisaffectsthe energycost ofthebattery.

Nickelmetal-hydride“Gen4”battery WeassumethatthevoltageandresistanceconstantsforafutureGen4battery wouldbethesameasthosemeasuredandreportedabovefortheGen2battery. However,becausethechargingefficiencyofth eGen2batteryissolow,weassumethat thereisconsiderableimprovementinchargingefficiencybyGen4technology.

Weassumethatthechargingconstantsare:

AC=.6000 BC=.5000 CC=-.1300 DC=-.0900

Theseresultinthefollowingchargi ngefficiencies,asafunctionofDoD:

DoDEfficiency 0.1 0.65 0.2 0.69 0.3 0.74 0.4 0.77 0.5 0.81 0.6 0.83 0.7 0.86 0.8 0.87 0.9 0.88 1.0 0.88

Li -Ionbattery ThedatausedcomesfromaSaftDsizecell(Carcone,1994).Thedataarescaled toproduce100Ahcells.TheDcellcontains3.76Ah.Theweightwasmultipliedby 100/3.76.Theresistancewasdividedby100/3.76.Theweightandcapacityofmodules usedinthesimulationare:

9.18kg/module 100Ah 3cell/module

The voltageconstantspercellare:

AV=3.9942 BV= -1.1917

217 CV=1.4965 DV= -.93183

AcomparisonbetweenthedataandthemodelasafunctionofDoDisshown below.

DoDVOC Dataminusmodel 04.005813 .163.82-.018 .333.75.01961 .493.65-.009912 .663.6.008389 .823.5-.009417 .983.39.003523

Theresistanceconstantspercellare:

AR=.004268 BR=-.015915 CR=.10247 DR=-.3285 ER=.53818 FR=.42989 GR=.13306

AcomparisonbetweenthedataandthemodelasafunctionofDoDisshown below.

DoD Resistance Dataminusmodel 0.004268 0 .16.003309 2.328E-10 .33.003241 2.328E-10 .49.003147 6.985E-10 .66.003234 2.561E-09 .82.003384 7.683E-09 .98.003572 1.863E-08

Thechargingconstant sare:

AC=.966 BC=.035714 CC= -.071428 DC=0

218 AcomparisonbetweenthedataandthemodelasafunctionofDoDisshown below.

DoDDataDataminusmodel .2.97-.0002857 .4.97.001143 .6.96-.001714 .8.95.001143 1.93-.0002857

Li -Al/Fe -Sbattery WewerenotabletotestaLi -Al/Fe -Sbattery.Weassumethatthevoltage, resistance,andchargingcoefficientsforthisbatterarethesameasthosefortheLi -ion battery.

VEHICLEDRIVETRAIN

Thevehicledrivetrainconsistsofthepowerelectronics,motor,andtransmission. Thesecomponentsaremodeledusingefficiencymaps.Themapsgivetheefficiencyasa functionof thecomponenttorqueandrotationalspeed.Thepowerelectronicsare designedtomatchthemotor.Theefficiencymapsusedinthespreadsheetareshown below.

Motor,inverter,andtransmissionefficiencymaps Themapsofefficiencyasafunctionofrpmandtorque,forfivemotorand controllersets,andonetransaxle,arepresentedattheendofthisreport.Dataforthe GEMEVmotor,controller,andtransaxlearefromFord(1991).DatafortheETX -1are fromFordandGE(1987),anddatafortheETX -IIarefromFordandGE(1989).Kelledes (1988)alsoshowsdatafortheTB -1. Notethatinseveralinstances,efficiencypointswereprovidedat0rpmand1000 rpm,butnotinbetween.Forthese,weinterpolatedatseveralpointsinbetween. Themodellooks uptheuser -specifiedmotorandcontroller,andreadsallofthe valuesintoanactivetableset.Foreachsegmentofthedrivecyclemodel,themodel looksuptheefficiencyintheactivetablecorrespondingtothetorquefractionandrpm ofthesegment. Themodelaveragesbetweenthefourefficiencypointsthatcorrespond tothetorque -rpmcellsthatboundtheactualtorquefractionandrpmofthesegment. (Asexplainedbelow,thetorquefractionisthefractionofthetorqueatmaximum power.) Because wedonothavetransmissionefficiencymapsforallofthefivemotor andcontrollersets,weusetheFordMEVtransaxleefficiencymapforallcases.The transaxlehasagearratioof12.18:1.

219 Adjustmentfordifferentmaximumpower. TheEVmotorssized withinour modeltosatisfytheuser -specifiedperformancetesthaveadifferent(usuallyhigher) maximumpowerthanthatofanyofthefivemotor -controllersetsforwhichwehave torque/rpmmapefficiencydata.Hence,weneedtoscaletheefficiencypoi ntsinthe mapsthatwehavetothelevelsthatwouldcorrespondtoamotorwiththemaximum powerrequiredinouranalysis.Weassumethatforanyparticulartypeofmotor,the efficiencyisafunctionnotoftheabsolutetorque,butofthetorqueasafr actionofthe torqueatmaximumpower.Thismeans,generally,thatthemorepowerfulthemotor, thelessefficientitisatanyabsolutetorquevalue,becauseasthemaximumpower increases,theabsolutetorquebecomesasmallerfractionoftorqueatthemaximum power(whichtypicallyisreachedbetween5000and7000rpm.) Thus,wereplacetheabsolutetorquevaluewiththetorqueasafractionofthe torqueatmaximumpower.Specifically,intheefficiencymaptables,wereplacethe torquevalues,shown asthecolumnheadings,withtheratioofthetorquetothetorque atthemaximumcalculatedpower,wherethemaximumpowerofcourseisjustthe maximumofthesetofproductsofrpmandmaximumtorqueatthatrpm.(The maximumtorqueateachrpmisshown inthemotormaptables).Then,inthesegment - by -segmentdrivecycleenergyanalysis,wecalculatethetorqueasafractionofthe torqueatthemaximumpoweroutputofthemotor,wherethetorqueatthemaximum poweriscalculatedwithrespecttotherp matthemaximumpowerpoint:

TQMS PMS / RPMS TQFS = = TQMmax PMmax / RPMmax−power

PMmax = PBmax ⋅EFFC@max ⋅ EFFM@ max

RPMmax−power → RPM@max[]TQM ⋅RPM

where:

TQF S =thetorque,asafractionofthetorqueatthemaximumpower,for segmentofthedrivecycleS -- thevalueusedto“lookup”efficiencyinthe torque /rpmefficiencymaps TQM S =theabsolutetorquefromthemotorduringsegmentS TQM max =thetorqueatthemaximumpoweroutputfromthemotor PM S =thepowerrequiredfromthemotorduringsegmentS(kW) RPM S =therevolutionsperminuteofthemotor duringsegmentS PM max =themaximumcontinuouspowerfromthemotor(kW) RPM max =therpmatthemaximumpowerfromthemotor(therpm correspondingtothemaximumofthetorque -rpmproductsforthe particularmotor;seethemotormapdata) PB max =th emaximumpoweroutputfromthebatter(kW;auserinputvariable, selectedtoprovidewhattheuserconsiderstobe“acceptable” performanceoveraspecifiedperformancetest)

220 EFFC @max =theefficiencyofthecontrolleratthemaximumpowerpoint (effici encyatRPM max andTQF=1.0,lookedupinthetorque - fraction/RPMefficiencymap) EFFM @max =theefficiencyofthemotoratthemaximumpowerpoint(efficiency atRPM max andTQF=1.0,lookedupinthetorque -fraction/RPM efficiencymap)

Foreachsegme nt,thecalculatedtorquefractionisusedtolookupthe componentefficiencyinthetorque -fraction/rpmefficiencytables.

Idleanddecelerationfuelconsumption TodeterminefuelconsumptioninanICEduringidleandvehicledeceleration, datafromdy namicvehicletestswereused.Thesetestsmeasuredemissionsfromthe vehiclesoveravarietyofdrivecyclesonasecondbysecondbasis(Haskewetal.,1994). Thesecondbyseconddatafor3vehicletypes -FordMustang,FordTaurus,andFord Escort -wereanalyzedtodeterminefuelconsumptionduringperiodsofengineidle andvehicledeceleration.All3vehiclesweremodelyear1993,andthevehiclesused gasolineasfuel.Theenginedisplacementsareshownbelow.

Vehicle EngineDisplacement(liters) Escort 1.9 Taurus 3.0 Mustang 5.0

ThedatafilescontainedthesecondbysecondemissionsofCO,CO 2,NO x,and HCfromthetailpipe.Todeterminethefuelusage,thegramsofcarbonpersecondwere calculatedforeachemissiongas:

gm(C)/sec(CO) =gm/sec(CO) ∞ gm(C)/gm(CO)

gm(C)/sec(CO 2)=gm/sec(CO 2) ∞ gm(C)/gm(CO 2)

gm(C)/sec(HC)=gm/sec(HC) ∞ gm(C)/gm(HC)

where:

gm(C)/gm(CO)=0.43 gm(C)/gm(CO 2)=0.27 gm(C)/gm(HC)=0.85

Finally,thefuelusagewascalculatedusing:

gm/sec (FUEL)=[gm(C)/sec(CO)+gm(C)/sec(CO 2)+gm(C)/sec(HC)]/gm(C)/gm(FUEL)

where:

221 gm(C)/gm(FUEL)=0.866.

Toassurethatthevehiclewasoperatinginidlemodeattimet,thefollowing conditionwasrequired:

v(t -1)=v(t)=v(t+1)=0

wheretimeintervalswere1secondlong. Toassurethatthevehiclewasoperatingindecelerationmodeattimet,the followingconditionwasrequired:

v(t -1)>v(t)>v(t+1).

TableA-3showsidleresultsforvariousdifferentrunsforthe3vehicles.For eachruntheaverageisgivenforrpm,gm/sec(FUEL),andthegm/(sec ∞ vol ∞ rev).The lastnumberisthegm/sec(FUEL)normalizedbytheenginevolumeandtheengine revolutionspersecond.Thefirst3digitsoftherundesignationindicatethevehicle type (201=Escort,202=Taurus,203=Mustang).Theotherlettersandnumbersindicate variousrunconditionsincludingthedrivecycle.Althoughtherpmandgm/(sec ∞ vol ∞ rev)werenotconstantforeachvehicle,thegm/sec(FUEL)wasfairlyconstantduring allidleportionsofthedrivecycles. TableA-4showsdecelerationresultsfortheFordTaurus.TheTaurusdatadid notincludeenginerpmvaluessoboththerpmandgm/(sec*vol*rev)areunavailable.

222 TABLE A-1.SPECIFICENERGY (W H/KG ) ASAFUN CTIONOFSPECIFICPO WER (W/KG )

W/kg Wh/kg Pb/acid NiMHGen2 Li/ion 46 Li/Fe -S NiMHGen4 75 46 94 194 238 141 100 44 92 188 232 138 150 41 88 176 222 133 200 38 85 167 212 129 250 35 81 158 203 124 300 33 79 150 195 120 350 31 76 143 187 116 400 30 73 136 180 112 450 28 71 130 173 109 500 27 69 125 167 106

EDTBC/3 * CalculatedusingtheequationEDTBC/3 =   documentedinthetext.  PDTB  1+ b ⋅ − 1  PDTBC/3 * 

46 Miyamoto(1999)reportsthataLi -ionbatterydesignedforhigh -poweroutputinahybridvehiclehasa powerdensityof800W/kgandanenergydensityofonly31Wh/kg,whichimpliesavalueforthe“b” parameterofmorethan0.30.Nonetheless,weassume0.30.

223 TABLE A-2.BATTERYCOSTPERKGA SAFUNCTIONOFTHE SPECIFICENERGY ($/KG )

Wh/kg Pb/acid NiMHGen2 Li/ion Li/Fe -S NiMHGen4 20 6.10 30.74 42.37 44.09 37.66 25 5.72 30.56 43.02 44.66 38.08 30 5.26 30.10 43.31 44.98 38.10 35 4.73 29.43 43.34 45.13 37.84 40 4.15 28.60 43.19 45.16 37.36 45 3.52 27.64 42.88 45.08 36.72 50 3.40 26.58 42.46 44.93 35.95 60 3.40 24.22 41.32 44.44 34.07 70 3.40 21.59 39.89 43.75 31.85 80 3.40 18.76 38.24 42.92 29.38 90 3.40 15.76 36.40 41.97 26.69 100 3.40 15.00 34.41 40.93 23.83 110 3.40 15.00 32.30 39.80 20.82 120 3.40 15.00 30.08 38.61 17.69 140 3.40 15.00 25.37 36.05 14.00 160 3.40 15.00 20.36 33.30 14.00 180 3.40 15.00 16.00 30.40 14.00 200 3.40 15.00 16.00 27.37 14.00 220 3.40 15.00 16.00 24.24 14.00

   EDTBC/3 − EDTBC/3 *  Calculatedusingtheequation max MCC , MCC * − ⋅ln ESTB   MIN []C/ 3   KBM  documentedinthetext.Theminimumallowablemanufacturingcosts(MCC MIN )are:

Productionvolume Pb/acid NiMHGen2 Li/ion Li/Fe-S NiMHGen4 low 5.00 30.00 65.00 78.00 30.00 medium 3.80 17.00 33.00 40.00 16.00 high 3.40 15.00 16.00 23.00 14.00

224 TABLE A-3.FUELUSAGEDURINGIDL ECONDITIONS .

Run rpm gm/sec(FUEL) gm/sec*vol*rev 203P1C3A 1116 0.42 0.0046 203P1C3H 748 0.40 0.0065 203P1C3R 1167 0.43 0.0046 203P2C3A 809 0.44 0.0065 203P2C3H 754 0.40 0.0064 203P2C3R 737 0.41 0.0067

202P1M3H NA 0.39 NA 202P1M3F NA 0.39 NA 202P1M3A NA 0.39 NA 202P1M3R NA 0.39 NA

201S1C3A 755 0.28 0.011 201S1C3F 410 0.28 0.022 201S1C3R 786 0.28 0.011 201P1C3A 687 0.28 0.013 201P1C3R 667 0.26 0.012

225 TABLE A-4.FUELUSAGEDURINGDEC ELERATIONCOND ITIONS .

Run rpm gm/sec(FUEL) gm/sec*vol*rev 202P1M3A NA 0.40 NA 202P1M3H NA 0.41 NA 202P1M3F NA 0.40 NA

NA=notavailable.

226 EFFICIENCYMAPSFORFIVEMOTORANDCONTRO LLERSETS

227 ETX -IGE ACINDUCTIONMOTOR

Torque (foot -lbs/radian) Max.atrpm rpm 0 10 20 30 40 50 60 70 ft-lb kW 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 64.4 0.0 100 0.078 0.110 0.147 0.177 0.182 0.167 0.158 0.156 64.4 0.9 250 0.175 0.236 0.302 0.350 0.357 0.333 0.319 0.316 64.4 2.3 500 0.300 0.382 0.464 0.518 0.527 0.500 0.484 0.480 64.4 4.6 750 0.389 0.481 0.565 0.617 0.625 0.600 0.584 0.581 64.4 6.9 1000 0.485 0.553 0.621 0.688 0.712 0.693 0.674 0.664 64.4 9.1 2000 0.603 0.683 0.746 0.786 0.794 0.777 0.778 0.787 64.9 18.4 3000 0.721 0.813 0.871 0.883 0.876 0.861 0.846 0.839 64.8 27.6 4000 0.785 0.859 0.899 0.897 0.882 0.873 0.872 0.839 61.3 34.8 5000 0.850 0.904 0.928 0.911 0.888 0.867 0.872 0.839 49.6 35.2 6000 0.901 0.921 0.922 0.905 0.89 4 0.867 0.872 0.839 37.9 32.3 7000 0.950 0.938 0.916 0.886 0.882 0.867 0.872 0.839 31.4 31.2 8000 0.968 0.942 0.917 0.907 0.882 0.867 0.872 0.839 25.0 28.4 9000 0.989 0.945 0.906 0.898 0.882 0.867 0.872 0.839 22.1 28.2

Note:datafor100 -750rpmarecalculated

ETX -I INVERTER

Torque (foot -lbs/radian) rpm 0 10 20 30 40 50 60 70 0 0.834 0.824 0.821 0.821 0.837 0.863 0.887 0.899 100 0.836 0.828 0.825 0.825 0.841 0.866 0.890 0.901 250 0.840 0.833 0.831 0.832 0.846 0.871 0.894 0.905 500 0.846 0.842 0.841 0.842 0.855 0.878 0.900 0.911 750 0.852 0.851 0.851 0.853 0.864 0.886 0.907 0.917 1000 0.858 0.860 0.861 0.863 0.873 0.893 0.913 0.923 2000 0.884 0.894 0.901 0.903 0.911 0.924 0.940 0.949 3000 0.911 0.929 0.941 0.944 0.948 0.955 0.962 0.965 4000 0.929 0.943 0.952 0.956 0.957 0.955 0.950 0.965 5000 0.946 0.956 0.962 0.967 0.966 0.957 0.950 0.965 6000 0. 937 0.955 0.964 0.953 0.937 0.957 0.950 0.965 7000 0.926 0.954 0.965 0.960 0.959 0.957 0.950 0.965 8000 0.925 0.951 0.952 0.939 0.959 0.957 0.950 0.965 9000 0.922 0.948 0.955 0.953 0.959 0.957 0.950 0.965

N ote:datafor100 -750rpmarecalculated

228 ETX -IIGEPERMANENTMAGNETMOTO R

Torque (foot -lbs/radian) Max.atrpm rpm 0 10 20 30 40 50 60 70 80 ft-lb kW 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 86.5 0.0 100 0.247 0.380 0.471 0.490 0.481 0.465 0.447 0.426 0.407 86.5 1.2 250 0.450 0.606 0.690 0.706 0.698 0.685 0.669 0.650 0.632 86.5 3.1 500 0.620 0.754 0.817 0.828 0.822 0.813 0.802 0.788 0.774 86.5 6.1 750 0.710 0.822 0.870 0.878 0.874 0. 867 0.858 0.848 0.837 86.5 9.2 1000 0.814 0.914 0.931 0.928 0.920 0.911 0.902 0.893 0.883 86.2 12.2 2000 0.804 0.918 0.943 0.948 0.947 0.944 0.940 0.935 0.930 86.1 24.4 3000 0.833 0.933 0.955 0.960 0.960 0.959 0.957 0.954 0.951 86.0 36.6 4000 0.879 0.951 0.967 0.972 0.971 0.968 0.966 0.963 0.959 85.8 48.7 5000 0.894 0.956 0.969 0.971 0.970 0.967 0.964 0.959 0.959 74.1 52.6 6000 0.848 0.938 0.959 0.964 0.963 0.961 0.957 0.957 0.957 63.5 54.1 7000 0.798 0.918 0.948 0.955 0.9 56 0.954 0.954 0.954 0.954 54.9 54.6 8000 0.754 0.900 0.938 0.947 0.949 0.949 0.949 0.949 0.949 47.9 54.4 9000 0.716 0.884 0.928 0.940 0.941 0.941 0.941 0.941 0.941 42.0 53.7 10000 0.685 0.869 0.919 0.932 0.932 0.932 0.932 0.932 0.932 37 .7 53.5 11000 0.658 0.856 0.911 0.925 0.925 0.925 0.925 0.925 0.925 33.2 51.9

Note:datafor100 -750rpmarecalculated

ETX -II INVERTER

Torque (foot -lbs/radian) rpm 0 10 20 30 40 50 60 70 80 90 0 0.329 0.466 0.564 0.603 0.620 0.630 0.633 0.636 0.633 0.474 100 0.361 0.494 0.587 0.624 0.641 0.650 0.653 0.656 0.653 0.474 250 0.409 0.535 0.623 0.657 0.672 0.680 0.683 0.685 0.683 0.474 500 0.489 0.604 0.681 0.710 0.723 0.730 0.733 0.734 0.732 0.474 750 0.569 0.673 0.740 0.763 0.775 0.780 0.782 0.783 0.782 0.474 1000 0.649 0.742 0.798 0.817 0.826 0.830 0.832 0.832 0.831 0.474 2000 0.780 0.844 0.880 0.892 0.898 0.901 0.902 0.903 0.903 0.474 3000 0.842 0.891 0. 918 0.927 0.932 0.935 0.938 0.940 0.941 0.605 4000 0.881 0.921 0.943 0.958 0.961 0.963 0.964 0.964 0.964 0.790 5000 0.900 0.939 0.958 0.964 0.967 0.968 0.968 0.968 0.968 0.974 6000 0.860 0.923 0.954 0.963 0.967 0.968 0.969 0.969 0.969 0.9 87 7000 0.842 0.913 0.951 0.962 0.967 0.969 0.969 0.969 0.969 1.000 8000 0.834 0.910 0.950 0.962 0.967 0.967 0.967 0.967 0.967 0.987 9000 0.832 0.909 0.950 0.963 0.968 0.968 0.968 0.968 0.968 0.974 10000 0.833 0.909 0.951 0.963 0.96 3 0.963 0.963 0.963 0.963 0.947 11000 0.835 0.911 0.952 0.964 0.964 0.964 0.964 0.964 0.964 0.921

Note:datafor100 -750rpmarecalculated

229 HUGHES G50ACINDUCTIONMOTOR

Torque (foot -lbs/radian) Max.atrpm rpm 0.0 8.8 17.7 26.5 35.3 44.1 52.9 61.8 70.6 79.4 88.2 97.1 ft-lb kW 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 99.3 0.0 100 0.290 0.440 0.430 0.410 0.370 0.340 0.300 0.260 0.250 0.250 0.240 0.240 99.3 1.4 300 0.550 0.700 0.700 0.680 0.640 0.600 0.560 0.520 0.500 0.490 0.490 0.490 99.3 4.2 600 0.820 0.900 0.880 0.850 0.820 0.810 0.790 0.720 0.710 0.700 0.700 0.700 99.3 8.5 1200 0.820 0.900 0.900 0.890 0.870 0.840 0.830 0.810 0.800 0.790 0.790 0.790 99.3 16.9 1800 0.840 0.910 0.910 0.910 0.900 0.890 0.860 0.850 0.840 0.840 0.830 0.830 99.3 25.4 2400 0.840 0.910 0.920 0.920 0.910 0.900 0.900 0.890 0.870 0.860 0.850 0.850 99.3 33.8 3000 0.850 0.910 0.920 0.920 0.910 0.910 0.900 0.900 0.900 0.900 0. 890 0.880 99.3 42.3 3600 0.850 0.920 0.920 0.920 0.920 0.910 0.910 0.900 0.900 0.900 0.900 0.870 99.3 50.7 4200 0.850 0.920 0.920 0.920 0.920 0.910 0.910 0.900 0.900 0.900 0.880 0.860 88.2 52.6 4800 0.850 0.920 0.920 0.930 0.920 0.910 0.910 0.900 0.9 00 0.880 0.870 0.850 76.5 52.1 5400 0.850 0.920 0.920 0.920 0.920 0.910 0.900 0.880 0.880 0.870 0.860 0.840 64.7 49.6 6000 0.850 0.920 0.920 0.920 0.910 0.900 0.880 0.870 0.870 0.860 0.850 0.830 52.9 45.1 6600 0.850 0.920 0.920 0.910 0.900 0.880 0.87 0 0.860 0.860 0.850 0.840 0.820 41.9 39.3 7200 0.840 0.910 0.910 0.900 0.880 0.870 0.870 0.850 0.850 0.840 0.830 0.810 30.9 31.6

Note:datafor100 -300rpmarecalculated

HUGHES G50ACINVERTER

Torque (foot -lbs/rad ian) rpm 0.0 8.8 17.7 26.5 35.3 44.1 52.9 61.8 70.6 79.4 88.2 97.1 0 0.710 0.710 0.710 0.720 0.720 0.730 0.730 0.730 0.730 0.730 0.720 0.700 100 0.717 0.728 0.728 0.738 0.738 0.748 0.748 0.748 0.748 0.748 0.730 0.710 300 0.730 0. 765 0.765 0.775 0.775 0.785 0.785 0.785 0.785 0.785 0.750 0.730 600 0.750 0.820 0.820 0.830 0.830 0.840 0.840 0.840 0.840 0.840 0.780 0.760 1200 0.760 0.840 0.860 0.900 0.900 0.900 0.900 0.900 0.910 0.910 0.840 0.780 1800 0.800 0.900 0.910 0.91 0 0.920 0.920 0.920 0.920 0.920 0.930 0.930 0.800 2400 0.810 0.910 0.920 0.930 0.940 0.940 0.940 0.940 0.940 0.940 0.940 0.820 3000 0.820 0.930 0.940 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.840 3600 0.830 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.840 4200 0.830 0.950 0.960 0.960 0.960 0.950 0.950 0.950 0.950 0.950 0.950 0.950 4800 0.840 0.960 0.970 0.970 0.960 0.960 0.950 0.950 0.950 0.950 0.950 0.950 5400 0.840 0.960 0.970 0.970 0.960 0.960 0.960 0.950 0.940 0.940 0.940 0.940 6000 0.840 0.960 0.970 0.970 0.960 0.960 0.960 0.950 0.940 0.940 0.940 0.940 6600 0.850 0.970 0.970 0.970 0.960 0.960 0.960 0.940 0.930 0.930 0.930 0.930 7200 0.850 0.970 0.970 0.970 0.960 0.960 0.960 0.940 0.930 0.930 0.930 0.930

Note:datafor100 -300rpmarecalculated

230 TB -1EATONACINDUCTIONMOTOR

Torque (foot -lbs/radian) Max.atrpm rpm 0.0 10 20 30 40 50 60 ft-lb kW 0 0.000 0.000 0.000 0.000 0.000 0.00 0 0.000 52.5 0.0 100 0.139 0.184 0.256 0.278 0.268 0.273 0.273 52.5 0.7 250 0.288 0.360 0.462 0.490 0.478 0.485 0.485 52.5 1.9 500 0.447 0.530 0.632 0.658 0.647 0.653 0.653 52.5 3.7 750 0.548 0.628 0.721 0.742 0.733 0.738 0.738 52.5 5.6 1000 0.654 0.704 0.755 0.766 0.761 0.761 0.761 53.5 7.6 2000 0.767 0.827 0.887 0.898 0.889 0.894 0.894 54.5 15.5 3000 0.807 0.859 0.911 0.924 0.922 0.924 0.924 55.5 23.6 4000 0.824 0.875 0.925 0.933 0.936 0.942 0.942 57.5 32.7 5000 0.825 0.878 0.932 0.917 0.936 0.944 0.944 59.2 42.0 6000 0.830 0.884 0.937 0.936 0.936 0.944 0.944 58.0 49.4 7000 0.836 0.882 0.928 0.936 0.936 0.944 0.944 50.5 50.2 8000 0.843 0.883 0.923 0.936 0.936 0.944 0.944 43.3 49.2 9000 0.910 0.924 0.939 0.936 0.936 0.944 0.944 37.5 47.9 10000 0.935 0.933 0.932 0.936 0.936 0.944 0.944 33.5 47.6 11000 0.919 0.929 0.940 0.936 0.936 0.944 0.944 29.2 45.6 12000 0.903 0.924 0.945 0.936 0.936 0.944 0.944 25.0 42.6 Note:datafor100 -750rpmarecalculatedDatafor60ft -lbs/radassumedtobesameasfor50ft -lbs/rad

TB -1INVERTER

Torque (foot -lbs/radian) rpm 0.0 10 20 30 40 50 60 0 0.569 0.616 0.663 0.7 53 0.766 0.791 0.757 100 0.573 0.620 0.667 0.756 0.770 0.795 0.762 250 0.580 0.627 0.674 0.761 0.775 0.800 0.769 500 0.591 0.638 0.685 0.770 0.785 0.809 0.782 750 0.602 0.648 0.695 0.778 0.794 0.817 0.794 1000 0.613 0.659 0.706 0.786 0.803 0.826 0.806 2000 0.657 0.703 0.749 0.820 0.841 0.860 0.855 3000 0.699 0.743 0.787 0.857 0.882 0.895 0.893 4000 0.756 0.794 0.831 0.894 0.918 0.928 0.921 5000 0.832 0.857 0.882 0.921 0.957 0.9 57 0.928 6000 0.890 0.903 0.917 0.939 0.954 0.954 0.928 7000 0.867 0.891 0.915 0.945 0.954 0.949 0.928 8000 0.899 0.913 0.926 0.946 0.944 0.949 0.928 9000 0.895 0.910 0.925 0.947 0.944 0.949 0.928 10000 0.923 0. 929 0.935 0.952 0.944 0.949 0.928 11000 0.922 0.929 0.937 0.931 0.944 0.949 0.928 12000 0.915 0.926 0.937 0.923 0.944 0.949 0.928 Note:datafor100 -750rpmarecalculated

231 GEMEV75-HPACINDUCTIONMOTO R

Torque (foot -lbs/radian) Max.atrpm rpm 0 10 20 30 40 50 60 70 80 90 100 110 130 ft-lb kW 0 0.416 0.520 0.625 0.623 0.682 0.721 0.744 0.757 0.763 0.764 0.763 0.752 0.747 143.8 0.0 100 0.457 0.553 0.650 0.649 0.702 0.737 0.757 0.768 0.772 0.772 0.770 0.759 0.752 143.6 2.0 400 0.578 0.652 0.725 0.727 0.763 0.785 0.796 0.800 0.799 0.796 0.791 0.780 0.769 143.2 8.1 700 0.700 0.750 0.801 0.805 0.824 0.832 0.834 0.832 0.827 0.819 0.812 0.800 0.785 142.5 14.2 1000 0.821 0.849 0.876 0.883 0.885 0.88 0 0.873 0.864 0.854 0.843 0.833 0.821 0.801 142.0 20.2 2000 0.874 0.897 0.920 0.924 0.928 0.927 0.924 0.919 0.914 0.908 0.902 0.896 0.883 141.3 40.1 3000 0.895 0.916 0.937 0.941 0.945 0.945 0.943 0.940 0.937 0.933 0.928 0.924 0.914 131.4 56.0 4000 0.907 0.927 0.947 0.952 0.955 0.956 0.954 0.952 0.949 0.937 0.925 0.912 0.914 100.3 57.0 5000 0.916 0.936 0.956 0.942 0.948 0.950 0.949 0.947 0.943 0.940 0.925 0.912 0.914 83.4 59.2 6000 0.937 0.943 0.950 0.955 0.955 0.953 0.948 0.942 0.943 0.940 0.925 0.912 0.914 69.8 59.5 7000 0.946 0.951 0.956 0.958 0.953 0.949 0.941 0.942 0.943 0.940 0.925 0.912 0.914 59.7 59.3 8000 0.935 0.948 0.960 0.958 0.951 0.941 0.931 0.942 0.943 0.940 0.925 0.912 0.914 51.8 58.8 9000 0.948 0.955 0.961 0.955 0.944 0.933 0.931 0.94 2 0.943 0.940 0.925 0.912 0.914 45.5 58.1 10000 0.959 0.959 0.960 0.949 0.933 0.918 0.931 0.942 0.943 0.940 0.925 0.912 0.914 40.4 57.4 11000 0.943 0.962 0.981 0.971 0.962 0.918 0.931 0.942 0.943 0.940 0.925 0.912 0.914 36.1 56.4 12000 0.973 0.963 0.954 0.932 0.910 0.918 0.931 0.942 0.943 0.940 0.925 0.912 0.914 32.5 55.4 13000 0.978 0.963 0.949 0.920 0.910 0.918 0.931 0.942 0.943 0.940 0.925 0.912 0.914 29.3 54.1 Note:datafor100 -700rpmarecalculated;maxtorque100 -600datamyestimates.Datafor "outofbounds"torquevaluesestimated.

GEMEV75-HPINVERTER

Torque (foot -lbs/radian) rpm 0 10 20 30 40 50 60 70 80 90 100 110 130 0 0.698 0.670 0.641 0.594 0.598 0.602 0.607 0.613 0.619 0.626 0.634 0.639 0.656 100 0.706 0.686 0.664 0.623 0.628 0.632 0.637 0.643 0.648 0.654 0.662 0.666 0.681 400 0.731 0.732 0.733 0.711 0.718 0.723 0.727 0.731 0.735 0.740 0.744 0.747 0.756 700 0.755 0.779 0.802 0.798 0.808 0.813 0.817 0.820 0.823 0.825 0.827 0.827 0.832 10 00 0.780 0.825 0.871 0.886 0.898 0.904 0.907 0.909 0.910 0.910 0.909 0.908 0.907 2000 0.865 0.893 0.920 0.931 0.938 0.942 0.945 0.946 0.947 0.947 0.947 0.947 0.946 3000 0.898 0.920 0.942 0.953 0.959 0.962 0.964 0.965 0.965 0.966 0.966 0.966 0.966 4000 0.918 0.937 0.957 0.970 0.974 0.977 0.978 0.979 0.979 0.986 0.993 0.999 0.966 5000 0.931 0.950 0.969 0.984 0.986 0.987 0.987 0.988 0.988 0.988 0.993 0.999 0.966 6000 0.938 0.960 0.983 0.986 0.987 0.988 0.988 0.988 0.988 0.988 0.993 0.999 0.966 7000 0.954 0.969 0.985 0.987 0.988 0.988 0.989 0.988 0.988 0.988 0.993 0.999 0.966 8000 0.972 0.979 0.986 0.988 0.988 0.989 0.989 0.988 0.988 0.988 0.993 0.999 0.966 9000 0.974 0.980 0.986 0.988 0.988 0.989 0.989 0.988 0.988 0.988 0.993 0.999 0.966 10000 0.976 0.981 0.987 0.988 0.988 0.988 0.989 0.988 0.988 0.988 0.993 0.999 0.966 11000 0.974 0.982 0.991 0.991 0.991 0.988 0.989 0.988 0.988 0.988 0.993 0.999 0.966 12000 0.979 0.983 0.987 0.988 0.988 0.988 0.989 0.988 0.988 0.988 0.993 0.999 0.966 13000 0.980 0.984 0.987 0.987 0.988 0.988 0.989 0.988 0.988 0.988 0.993 0.999 0.966 Note:datafor100 -700rpmarecalculated;maxtorque100 -600datamyestimates.Datafor"outofbounds"torquevaluesestimated.

232 TABLESOFRES ULTS

PB/ACIDBATTERY FordTaurus Vehiclecharacteristics Costsummary Lifecyclecost Manufacturingcostandweight FordEscort Vehiclecharacteristics Costsummary Lifecyclecost Manufacturingcostandweight

NIMHGEN2BATTERY FordTaurus Vehiclecharacteristics Costsummary Lifecyclecost Manufacturingcostandweight FordEscort Vehiclecharacteristics Costsummary Lifecyclecost Manufacturingcostandweight

LI/IONBATTERY FordTaurus Vehiclecharacteristics Costsummary Lifecyclecost Manufacturin gcostandweight FordEscort Vehiclecharacteristics Costsummary Lifecyclecost Manufacturingcostandweight

NIMHGEN4BATTERY FordTaurus Vehiclecharacteristics Costsummary Lifecyclecost Manufacturingcostandweight

233 FordEscort Vehiclecharacteri stics Costsummary Lifecyclecost Manufacturingcostandweight

234 VEHICLECHARACTERISTI CS (F ORD TAURUS ,PB/ACID ,HIGHVOLUME,FUDS)

Item Gasoline BPEV BPEV BPEV BPEV BPEV BPEV -50 -65 -80 -95 -110 -125 Typeoftractionbattery n.a. Lead/acid Typeofmoto r n.a. GEMEVacinductionmotor Typeofmotorcontroller n.a. GEMEVinverter Maximumpowerdeliverableto 103 74 82 91 103 116 134 wheels(kW)a Accelerationfrom0to60mph,0% 9.3 9.31 9.31 9.32 9.31 9.30 9.28 grade(secs) Batterycyclel ifeto80%DoD n.a. 777 777 777 777 777 777 Batterysystemspecificenergy n.a. 33 35 36 37 38 39 (Wh/kg) Batterycontributiontoretailcost n.a. 294 259 235 217 202 190 ($/kWh) Volumeofbattery/fuel - 65 154 206 265 335 419 524 storage/fuel -cellsystem(L) Vehiclelife(km) 241,350 265,48 265,48 265,48 265,48 265,48 265,48 5 5 5 5 5 5 Weightofthecompletevehicle(kg) 1,416 1,463 1,635 1,835 2,069 2,354 2,710 Weightofbattery/fuel- storage/fuel - n.a. 360 475 610 770 965 1,214 cellsystem(kg) Coefficient ofdrag 0.30 0.24 0.24 0.24 0.24 0.24 0.24 Energyefficiency,mi/kWhfromthe n.a. 2.79 2.61 2.41 2.22 2.02 1.81 outlet Fueleconomy(gasoline -equivalent 19.9 102.2 95.5 88.4 81.3 73.9 66.2 mpg,HHV) b Fueleconomy(gasolineequivalent 11.8 2.3 2.5 2.7 2.9 3.2 3.6 liters/100km) Powertrainefficiencyratio c n.a. 7.97 7.37 6.77 6.19 5.61 5.01 n.a.=notapplicable. aMaximumpowassumesnoairconditioningorheatingoroptionalaccessories. bFueleconomyofBPEVsisbasedonelectricityfromtheou tlet. cTheratioofmi/BTU -from -batterytomi/BTU -gasoline.

235 COSTSUMMARY (F ORD TAURUS ,PB/ACID ,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 50 65 80 95 110 125 Fuelretailcost,excludingtaxes 0.90 2.20 2.20 2.20 2.20 2.20 2.20 ($/gasoline -equivalentgallon) Fullretailcostofvehicle,incl.taxes 20,085 23,363 24,553 25,918 27,510 29,422 31,814 ($) Batterycontributiontoretailcost($) n.a. 3,447 4,276 5,190 6,231 7,447 8,940 Levelizedmaintenancecost($/yr) 492 355 355 355 355 355 355 Totallifecyclecost(cents/mile) 38.71 44.77 45.55 46.39 49.37 53.11 57.92 Presentvalueoflifecyclecostvs. 45,892 10,516 11,495 12,556 16,305 21,018 27,072 gasoline($) a Breakevengasolineprice($/gal) n.a. 2.48 2.64 2.80 3.40 4.14 5. 09 n.a.=notapplicable. aForgasoline,thepresentvalueisshown.FortheEVs,thedifferencebetweenthepresentvalue fortheEVandthepresentvalueforgasolineisshown.

236 LIFECYCLECOSTSUMMAR Y (F ORD TAURUS ,PB/ACID ,HIGHVOLUME,FUDS)(U.S. CENTS /MILE )

Costitem Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 50 65 80 95 110 125 Independentlycalculatedcostof n.a. 0.00 0.00 0.00 0.00 0.00 0.00 fastrecharging Purchasedelectricity(including n.a. 2.15 2.30 2.49 2.70 2.97 3.32 batteryheating,ifany) Vehicle,excludingbattery a 17.55 16.38 16.73 17.15 17.67 18.33 19.19 Batteryandtrayandauxiliaries a n.a. 10.03 9.84 9.66 11.30 13.53 16.29 SpaceheatingfuelforEVs 0.00 0.53 0.53 0.53 0.53 0.52 0.52 Motorfuel,excludingexcisetaxes 4.52 0.00 0.00 0.00 0.00 0.00 0.00 andele ctricity Homebattery -rechargingstation n.a. 0.22 0.22 0.22 0.22 0.22 0.22 Insurance(calculatedasafunction 6.75 7.26 7.54 7.86 8.24 8.68 9.24 ofVMTandvehiclevalue) Maintenanceandrepair,excluding 4.88 3.72 3.72 3.72 3.72 3.72 3.72 oil,inspec tion,cleaning,towing Engineoil 0.17 0.00 0.00 0.00 0.00 0.00 0.00 Replacementtires(calculatedasa 0.50 0.46 0.60 0.62 0.76 0.79 0.94 functionofVMTandvehiclewt.) Parking,tolls,andfines(assumedto 1.05 1.05 1.05 1.05 1.05 1.05 1.05 bethes ameforallvehicles) Registrationfee(calculatedasa 0.50 0.54 0.61 0.68 0.77 0.87 1.00 functionofvehicleweight) Vehiclesafetyandemissions 0.60 0.21 0.21 0.21 0.21 0.21 0.21 inspectionfee Federal,state,and localfuel 1.90 1.90 1.90 1.90 1.90 1.90 1.90 (energy)excisetaxes Accessories(assumedtobethe 0.30 0.30 0.30 0.30 0.30 0.30 0.30 sameforallvehicles) Totallifecyclecost(cents/mile) 38.71 44.77 45.55 46.39 49.37 53.11 57.92 Thebreakevenprice ofgasoline, n.a. 2.48 2.64 2.80 3.40 4.14 5.09 includingtaxes n.a.=notapplicable aRetail -costequivalent.

237 MANUFACTURINGCOST & WEIGHT (F ORD TAURUS ,PB/ACID ,HIGHVOLUME,FUDS)

Manufacturingcosts($) Weight(lbs) Baselinevehiclecomp onents ICEV BPEV - BPEV - ICEV BPEV - BPEV - 65 110 65 110 Body,chassis,interior,electrical,steering,etc. 3,621 3,752 4,240 2,080 2,165 2,483 Powertrain,emissioncontrol,brakes,fluids a 2,468 3,432 4,523 1,141 448 643 Vehicleassembly(excl.battery,fu eltank) 1,715 1,458 1,458 n.a. n.a. n.a. Tractionbattery 0 1,960 3,622 0 972 1,987 Tractionbatteryauxiliaries 0 89 162 0 77 140 Finalassemblyofbatteryandfueltanks 0 74 74 n.a. n.a. n.a. Adjustmentstobaseline(v.1989)* Aircondition ing,EVheater,thermal 400 850 850 70 110 110 management(incl.assembly) Improvedemissioncontrolsystem 150 0 0 15 0 0 Newsafetyfeatures(exceptairbags) 100 100 100 40 40 40 Engineandtransmissionimprovements 200 0 0 (80) 0 0 Bodyweight -redu ctionmeasures 140 200 200 (250) (371) (371) Drag -reductionmeasures 20 50 50 0 0 0 Subtotalmanufacturingcosts 8,814 11,964 15,278 n.a n.a. n.a. Divisioncosts(engineers,testing,advertising) 4,162 4,608 5,078 n.a. n.a. n.a. Corporatecosts(execut ives,capital,research 2,166 2,256 2,351 n.a. n.a. n.a. anddevelopment) Corporatecostofmoney 222 276 333 n.a. n.a. n.a. Corporatetrueprofit(takenasfractionof 475 591 712 n.a. n.a. n.a. factoryinvoice) Factoryinvoice(pricetodealer) 15,840 19,691 23,737 n.a. n.a. n.a. Dealercosts 3,177 3,592 4,027 n.a. n.a. n.a. Manufacturers'suggestedretailprice(MSRP) 19,017 23,283 27,764 n.a. n.a. n.a. Shippingcost 483 551 805 n.a. n.a. n.a. Othercosts 0 0 0 n.a. n.a. n.a. Finalretailcostan dweight Consumercost=MSRP+shipping+tax($) b 20,085 24,548 29,426 n.a. n.a. n.a. Curbweight(nopayload,fullfuel)(lbs) n.a. n.a. n.a. 3,016 3,441 5,030 Actualin -useweight(lbs) n.a. n.a. n.a. 3,122 3,605 5,191 aThefueltankis40%full intheweightandenergy -useanalysis,emptyinthecostanalysis. bRetailpriceincludeslicencefeesandallmark -upsandtaxes.

238 VEHICLECHARACTERISTI CS (F ORD ESCORT ,PB/ACID ,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 50 65 80 95 110 125 Typeoftractionbattery n.a. Lead/acid Typeofmotor n.a. GEMEVacinductionmotor Typeofmotorcontroller n.a. GEMEVinverter Maximumpowerdeliverableto 67 54 59 66 74 84 95 wheels(kW)a Accelerationfrom0to60mph,0% 10.3 10.26 10.28 10.27 10.28 10.28 10.27 grade(secs) Batterycyclelifeto80%DoD n.a. 777 777 777 777 777 777 Batterysystemspecificenergy n.a. 34 36 37 38 39 40 (Wh/kg) Batterycontributiontoretailcost n.a. 288 253 231 213 200 188 ($/kWh) Vol umeofbattery/fuel - 52 124 167 213 269 335 415 storage/fuel -cellsystem(L) Vehiclelife(km) 241,350 265,485 265,485 265,485 265,485 265,485 265,485 Weightofthecompletevehicle(kg) 1,007 1,160 1,298 1,454 1,639 1,856 2,121 Weightofbattery/fuel- st orage/fuel - n.a. 290 383 491 616 766 949 cellsystem(kg) Coefficientofdrag 0.30 0.24 0.24 0.24 0.24 0.24 0.24 Energyefficiency,mi/kWhfromthe n.a. 3.35 3.13 2.92 2.70 2.48 2.25 outlet Fueleconomy(gasoline -equivalent 26.9 122.6 114.6 10 7.1 98.8 90.7 82.2 mpg,HHV) b Fueleconomy(gasolineequivalent 8.7 1.9 2.1 2.2 2.4 2.6 2.9 liters/100km) Powertrainefficiencyratio c n.a. 7.04 6.50 6.03 5.53 5.06 4.57 n.a.=notapplicable. aMaximumpowassumesnoairconditioningorheatingoroptionalacc essories. bFueleconomyofBPEVsisbasedonelectricityfromtheoutlet. cTheratioofmi/BTU -from -batterytomi/BTU -gasoline.

239 COSTSUMMARY (F ORD ESCORT ,PB/ACID ,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 50 65 80 95 110 125 Fuelretailcost,excludingtaxes 0.90 2.20 2.20 2.20 2.20 2.20 2.20 ($/gasoline -equivalentgallon) Fullretailcostofvehicle,incl.taxes 14,909 18,869 19,784 20,796 21,991 23,384 25,084 ($) Batterycontributiontoretailcost($) n.a. 2,808 3,482 4,22 4 5,052 6,003 7,128 Levelizedmaintenancecost($/yr) 483 348 348 348 348 348 348 Totallifecyclecost(cents/mile) 30.90 37.81 38.31 38.98 41.19 44.12 47.66 Presentvalueoflifecyclecostvs. 36,632 11,009 11,632 12,482 15,267 18,955 23, 411 gasoline($) a Breakevengasolineprice($/gal) n.a. 3.14 3.27 3.45 4.05 4.84 5.79 n.a.=notapplicable. aForgasoline,thepresentvalueisshown.FortheEVs,thedifferencebetweenthepresentvalue fortheEVandthepresentvalueforgasolineisshown.

240 LIFECYCLECOSTSUMMAR Y (F ORD ESCORT ,PB/ACID ,HIGHVOLUME,FUDS)(U.S. CENTS /MILE )

Costitem Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 50 65 80 95 110 125 Independentlycalculatedcostof n.a. 0.00 0.00 0.00 0.00 0.00 0.00 fastrecharging Purchasedelectric ity(including n.a. 1.79 1.92 2.05 2.22 2.42 2.67 batteryheating,ifany) Vehicle,excludingbattery a 13.03 13.29 13.53 13.79 14.15 14.59 15.15 Batteryandtrayandauxiliaries a n.a. 8.19 8.03 7.88 9.18 10.94 13.02 SpaceheatingfuelforEVs 0.00 0.54 0.54 0.53 0.53 0.53 0.53 Motorfuel,excludingexcisetaxes 3.34 0.00 0.00 0.00 0.00 0.00 0.00 andelectricity Homebattery -rechargingstation n.a. 0.22 0.22 0.22 0.22 0.22 0.22 Insurance(calculatedasafunction 5.45 6.18 6.4 0 6.64 6.92 7.24 7.64 ofVMTandvehiclevalue) Maintenanceandrepair,excluding 4.80 3.66 3.66 3.66 3.66 3.66 3.66 oil,inspection,cleaning,towing Engineoil 0.13 0.00 0.00 0.00 0.00 0.00 0.00 Replacementtires(calculatedasa 0.42 0.51 0.52 0.64 0.66 0.79 0.92 functionofVMTandvehiclewt.) Parking,tolls,andfines(assumedto 1.05 1.05 1.05 1.05 1.05 1.05 1.05 bethesameforallvehicles) Registrationfee(calculatedasa 0.40 0.48 0.54 0.61 0.68 0.77 0.89 functionofvehicleweight) Vehiclesafetyandemissions 0.60 0.21 0.21 0.21 0.21 0.21 0.21 ins pectionfee Federal,state,andlocalfuel 1.40 1.40 1.40 1.40 1.40 1.40 1.40 (energy)excisetaxes Accessories(assumedtobethe 0.30 0.30 0.30 0.30 0.30 0.30 0.30 sameforallvehicles) Totallifecyclecost(cents/m ile) 30.90 37.81 38.31 38.98 41.19 44.12 47.66 Thebreakevenpriceofgasoline, n.a. 3.14 3.27 3.45 4.05 4.84 5.79 includingtaxes n.a.=notapplicable aRetail -costequivalent.

241 MANUFACTURINGCOST & WEIGHT (F ORD ESCORT ,PB/ACID ,HIGHVOLUME,FUDS )

Manufacturingcosts($) Weight(lbs) Baselinevehiclecomponents ICEV BPEV - BPEV - ICEV BPEV - BPEV - 65 110 65 110 Body,chassis,interior,electrical,steering,etc. 2,434 2,584 2,891 1,542 1,662 1,907 Powertrain,emissioncontrol,brakes,fluids a 1,154 2,645 3,393 709 333 472 Vehicleassembly(excl.battery,fueltank) 1,470 1,250 1,250 n.a. n.a. n.a. Tractionbattery 0 1,544 2,804 0 789 1,580 Tractionbatteryauxiliaries 0 69 125 0 60 108 Finalassemblyofbatteryandfueltanks 0 74 74 n.a. n.a. n.a. Adjustmentstobaseline(v.1989)* Airconditioning,EVheater,thermal 400 850 850 70 110 110 management(incl.assembly) Improvedemissioncontrolsystem 120 0 0 12 0 0 Newsafetyfeatures(exceptairbags) 80 80 80 32 32 32 Enginea ndtransmissionimprovements 160 0 0 (64) 0 0 Bodyweight -reductionmeasures 112 160 160 (200) (284) (284) Drag -reductionmeasures 16 40 40 0 0 0 Subtotalmanufacturingcosts 5,946 9,296 11,666 n.a n.a. n.a. Divisioncosts(engineers,testing,advertis ing) 3,416 3,994 4,402 n.a. n.a. n.a. Corporatecosts(executives,capital,research 2,184 2,322 2,419 n.a. n.a. n.a. anddevelopment) Corporatecostofmoney 169 229 271 n.a. n.a. n.a. Corporatetrueprofit(takenasfractionof 362 48 9 580 n.a. n.a. n.a. factoryinvoice) Factoryinvoice(pricetodealer) 12,079 16,309 19,346 n.a. n.a. n.a. Dealercosts 2,060 2,452 2,733 n.a. n.a. n.a. Manufacturers'suggestedretailprice(MSRP) 14,139 18,760 22,079 n.a. n.a. n.a. Shippingcost 336 432 628 n.a. n.a . n.a. Othercosts 0 0 0 n.a. n.a. n.a. Finalretailcostandweight Consumercost=MSRP+shipping+tax($) b 14,909 19,768 23,388 n.a. n.a. n.a. Curbweight(nopayload,fullfuel)(lbs) n.a. n.a. n.a. 2,101 2,700 3,926 Actualin -useweight(lbs) n.a. n.a. n.a. 2,219 2,858 4,093 aThefueltankis40%fullintheweightandenergy -useanalysis,emptyinthecostanalysis. bRetailpriceincludeslicencefeesandallmark -upsandtaxes.

242 VEHICLECHARACTERISTI CS (F ORD TAURUS ,NIMHGEN 2,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 65 90 115 140 165 190 Typeoftractionbattery n.a. Nickelmetalhydride,generation2 Typeofmotor n.a. GEMEVacinductionmotor Typeofmotorcontroller n.a. GEMEVinverter Maximu mpowerdeliverableto 103 63 69 75 82 90 100 wheels(kW)a Accelerationfrom0to60mph,0% 9.3 9.34 9.32 9.29 9.30 9.29 9.29 grade(secs) Batterycyclelifeto80%DoD n.a. 666 666 666 666 666 666 Batterysystemspecificenergy n.a. 67 71 73 75 77 79 (Wh/kg) Batterycontributiontoretailcost n.a. 551 475 428 389 361 338 ($/kWh) Volumeofbattery/fuel - 65 77 105 137 175 218 269 storage/fuel -cellsystem(L) Vehiclelife(km) 241,350 265,485 265,485 265,485 265,485 265,485 265,485 Weightofthecompl etevehicle(kg) 1,416 1,246 1,361 1,489 1,638 1,809 2,011 Weightofbattery/fuel- storage/fuel - n.a. 208 288 380 479 597 734 cellsystem(kg) Coefficientofdrag 0.30 0.24 0.24 0.24 0.24 0.24 0.24 Energyefficiency,mi/kWhfromthe n.a. 2.48 2.39 2.28 2.15 2.02 1.87 outlet Fueleconomy(gasoline -equivalent 19.9 91.0 87.5 83.6 78.8 73.9 68.5 mpg,HHV) b Fueleconomy(gasolineequivalent 11.8 2.6 2.7 2.8 3.0 3.2 3.4 liters/100km) Powertrainefficiencyratio c n.a. 8.78 8.31 7.86 7.33 6.83 6.30 n.a.=no tapplicable. aMaximumpowassumesnoairconditioningorheatingoroptionalaccessories. bFueleconomyofBPEVsisbasedonelectricityfromtheoutlet. cTheratioofmi/BTU -from -batterytomi/BTU -gasoline.

243 COSTSUMMARY (F ORD TAURUS ,NIMHGEN 2,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 65 90 115 140 165 190 Fuelretailcost,excludingtaxes 0.90 2.20 2.20 2.20 2.20 2.20 2.20 ($/gasoline -equivalentgallon) Fullretailcostofvehicle,incl.taxes 20,085 25,984 28,034 30, 261 32,834 35,759 39,223 ($) Batterycontributiontoretailcost($) n.a. 7,651 9,675 11,809 14,063 16,603 19,488 Levelizedmaintenancecost($/yr) 492 355 355 355 355 355 355 Totallifecyclecost(cents/mile) 38.71 51.49 53.39 55.36 60.14 65.77 72.53 Pres entvalueoflifecyclecostvs. 45,892 18,982 21,369 23,858 29,878 36,974 45,484 gasoline($) a Breakevengasolineprice($/gal) n.a. 3.82 4.19 4.59 5.54 6.66 8.00 n.a.=notapplicable. aForgasoline,thepresentvalueisshown.FortheEVs,thediffer encebetweenthepresentvalue fortheEVandthepresentvalueforgasolineisshown.

244 LIFECYCLECOSTSUMMAR Y (F ORD TAURUS ,NIMHGEN 2,HIGHVOLUME,FUDS)(U.S. CENTS /MILE )

Costitem Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 65 90 115 140 165 190 Independ entlycalculatedcostof n.a. 0.00 0.00 0.00 0.00 0.00 0.00 fastrecharging Purchasedelectricity(including n.a. 2.42 2.51 2.63 2.79 2.97 3.21 batteryheating,ifany) Vehicle,excludingbattery a 17.55 15.20 15.30 15.46 15.83 16.28 16.91 Batteryandtr ayandauxiliaries a n.a. 17.16 18.32 19.44 22.90 27.15 32.02 SpaceheatingfuelforEVs 0.00 0.54 0.53 0.53 0.53 0.53 0.53 Motorfuel,excludingexcisetaxes 4.52 0.00 0.00 0.00 0.00 0.00 0.00 andelectricity Homebattery -rechargingstation n.a. 0.22 0. 22 0.22 0.22 0.22 0.22 Insurance(calculatedasafunction 6.75 7.88 8.36 8.88 9.47 10.15 10.96 ofVMTandvehiclevalue) Maintenanceandrepair,excluding 4.88 3.72 3.72 3.72 3.72 3.72 3.72 oil,inspection,cleaning,towing Engineoil 0.17 0.00 0.00 0. 00 0.00 0.00 0.00 Replacementtires(calculatedasa 0.50 0.44 0.45 0.47 0.60 0.62 0.76 functionofVMTandvehiclewt.) Parking,tolls,andfines(assumedto 1.05 1.05 1.05 1.05 1.05 1.05 1.05 bethesameforallvehicles) Registrationfee(calculated asa 0.50 0.46 0.50 0.55 0.61 0.67 0.75 functionofvehicleweight) Vehiclesafetyandemissions 0.60 0.21 0.21 0.21 0.21 0.21 0.21 inspectionfee Federal,state,andlocalfuel 1.90 1.90 1.90 1.90 1.90 1.90 1.90 (energy)excisetaxes Accessories(assum edtobethe 0.30 0.30 0.30 0.30 0.30 0.30 0.30 sameforallvehicles) Totallifecyclecost(cents/mile) 38.71 51.49 53.39 55.36 60.14 65.77 72.53 Thebreakevenpriceofgasoline, n.a. 3.82 4.19 4.59 5.54 6.66 8.00 includingtaxes n.a.=notapplic able aRetail -costequivalent.

245 MANUFACTURINGCOST & WEIGHT (F ORD TAURUS ,NIMHGEN 2,HIGHVOLUME,FUDS)

Manufacturingcosts($) Weight(lbs) Baselinevehiclecomponents ICEV BPEV - BPEV - ICEV BPEV - BPEV - 90 165 90 165 Body,chassis,interior,electric al,steering,etc. 3,621 3,566 3,872 2,080 2,044 2,243 Powertrain,emissioncontrol,brakes,fluids a 2,468 3,016 3,700 1,141 374 496 Vehicleassembly(excl.battery,fueltank) 1,715 1,458 1,458 n.a. n.a. n.a. Tractionbattery 0 5,132 9,589 0 579 1,211 Tractionbatteryauxiliaries 0 69 124 0 59 104 Finalassemblyofbatteryandfueltanks 0 74 74 n.a. n.a. n.a. Adjustmentstobaseline(v.1989)* Airconditioning,EVheater,thermal 400 850 850 70 110 110 management(incl.assembly) Improved emissioncontrolsystem 150 0 0 15 0 0 Newsafetyfeatures(exceptairbags) 100 100 100 40 40 40 Engineandtransmissionimprovements 200 0 0 (80) 0 0 Bodyweight -reductionmeasures 140 200 200 (250) (371) (371) Drag -reductionmeasures 20 50 50 0 0 0 Subtotalmanufacturingcosts 8,814 14,515 20,016 n.a n.a. n.a. Divisioncosts(engineers,testing,advertising) 4,162 4,969 5,749 n.a. n.a. n.a. Corporatecosts(executives,capital,research 2,166 2,329 2,487 n.a. n.a. n.a. anddevelopment) Corporate costofmoney 222 320 415 n.a. n.a. n.a. Corporatetrueprofit(takenasfractionof 475 684 884 n.a. n.a. n.a. factoryinvoice) Factoryinvoice(pricetodealer) 15,840 22,815 29,479 n.a. n.a. n.a. Dealercosts 3,177 3,928 4,645 n.a. n.a. n.a. Manufac turers'suggestedretailprice(MSRP) 19,017 26,743 34,124 n.a. n.a. n.a. Shippingcost 483 454 613 n.a. n.a. n.a. Othercosts 0 0 0 n.a. n.a. n.a. Finalretailcostandweight Consumercost=MSRP+shipping+tax($) b 20,085 28,013 35,780 n.a. n.a . n.a. Curbweight(nopayload,fullfuel)(lbs) n.a. n.a. n.a. 3,016 2,835 3,831 Actualin -useweight(lbs) n.a. n.a. n.a. 3,122 3,000 3,990 aThefueltankis40%fullintheweightandenergy -useanalysis,emptyinthecostanalysis. bRetailpricein cludeslicencefeesandallmark -upsandtaxes.

246 VEHICLECHARACTERISTI CS (F ORD ESCORT ,NIMHGEN 2,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 65 90 115 140 165 190 Typeoftractionbattery n.a. Nickelmetalhydride,generation2 Typeofmotor n.a. GEMEVacinductionmotor Typeofmotorcontroller n.a. GEMEVinverter Maximumpowerdeliverableto 67 46 50 55 60 66 72 wheels(kW)a Accelerationfrom0to60mph,0% 10.3 10.29 10.29 10.28 10.27 10.27 10.28 grade(secs) Batterycyclelifeto80%DoD n.a. 666 666 666 666 666 666 Batterysystemspecificenergy n.a. 68 73 75 77 79 81 (Wh/kg) Batterycontributiontoretailcost n.a. 542 465 418 384 357 335 ($/kWh) Volumeofbattery/fuel - 52 62 86 112 142 177 217 storage/fuel -cellsystem(L) Vehiclelife(km) 241,350 265,485 265,485 265,485 265,485 265,485 265,485 Weightofthecompletevehicle(kg) 1,007 988 1,082 1,185 1,303 1,437 1,595 Weightofbattery/fuel- storage/fuel - n.a. 170 234 306 387 479 586 cellsystem(kg) Co efficientofdrag 0.30 0.24 0.24 0.24 0.24 0.24 0.24 Energyefficiency,mi/kWhfromthe n.a. 2.98 2.86 2.74 2.60 2.45 2.28 outlet Fueleconomy(gasoline -equivalent 26.9 109.2 104.7 100.3 95.1 89.7 83.7 mpg,HHV) b Fueleconomy(gasolineequivalent 8.7 2.2 2.2 2.3 2.5 2.6 2.8 liters /100km) Powertrainefficiencyratio c n.a. 7.73 7.29 6.90 6.48 6.06 5.61 n.a.=notapplicable. aMaximumpowassumesnoairconditioningorheatingoroptionalaccessories. bFueleconomyofBPEVsisbasedonelectricityfromtheoutlet. cTheratioofmi/BTU -from -batterytomi/BTU -gasoline.

247 COSTSUMMARY (F ORD ESCORT ,NIMHGEN 2,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 65 90 115 140 165 190 Fuelretailcost,excludingtaxes 0.90 2.20 2.20 2.20 2.20 2.20 2.20 ($/gasoline -equivalent gallon) Fullretailcostofvehicle,incl.taxes 14,909 21,056 22,725 24,510 26,532 28,822 31,515 ($) Batterycontributiontoretailcost($) n.a. 6,263 7,907 9,629 11,488 13,508 15,815 Levelizedmaintenancecost($/yr ) 483 348 348 348 348 348 348 Totallifecyclecost(cents/mile) 30.90 43.31 44.87 46.55 50.30 54.87 60.12 Presentvalueoflifecyclecostvs. 36,632 17,929 19,893 22,016 26,738 32,494 39,110 gasoline($) a Breakevengasolineprice($/gal) n.a. 4.62 5.04 5.49 6.50 7.73 9.15 n.a.=notapplicable. aForgasoline,thepresentvalueisshown.FortheEVs,thedifferencebetweenthepresentvalue fortheEVandthepresentvalueforgasolineisshown.

248 LIFECYCLECOSTSUMMAR Y (F ORD ESCORT ,NIMHGEN 2,HIGHV OLUME,FUDS)(U.S. CENTS /MILE )

Costitem Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 65 90 115 140 165 190 Independentlycalculatedcostof n.a. 0.00 0.00 0.00 0.00 0.00 0.00 fastrecharging Purchasedelectricity(including n.a. 2.01 2.10 2.19 2.31 2.45 2.63 batteryheating,ifany) Vehicle,excludingbattery a 13.03 12.35 12.44 12.57 12.79 13.12 13.57 Batteryandtrayandauxiliaries a n.a. 14.08 15.02 15.91 18.78 22.18 26.10 SpaceheatingfuelforEVs 0.00 0.54 0.54 0.54 0.54 0.53 0.53 Motorfuel,excludi ngexcisetaxes 3.34 0.00 0.00 0.00 0.00 0.00 0.00 andelectricity Homebattery -rechargingstation n.a. 0.22 0.22 0.22 0.22 0.22 0.22 Insurance(calculatedasafunction 5.45 6.70 7.09 7.51 7.98 8.51 9.13 ofVMTandvehiclevalue) Maintenanceandrepair ,excluding 4.80 3.66 3.66 3.66 3.66 3.66 3.66 oil,inspection,cleaning,towing Engineoil 0.13 0.00 0.00 0.00 0.00 0.00 0.00 Replacementtires(calculatedasa 0.42 0.39 0.40 0.51 0.52 0.64 0.66 functionofVMTandvehiclewt.) Parking,tolls,andfin es(assumedto 1.05 1.05 1.05 1.05 1.05 1.05 1.05 bethesameforallvehicles) Registrationfee(calculatedasa 0.40 0.41 0.45 0.49 0.54 0.60 0.67 functionofvehicleweight) Vehiclesafetyandemissions 0.60 0.21 0.21 0.21 0.21 0.21 0.2 1 inspectionfee Federal,state,andlocalfuel 1.40 1.40 1.40 1.40 1.40 1.40 1.40 (energy)excisetaxes Accessories(assumedtobethe 0.30 0.30 0.30 0.30 0.30 0.30 0.30 sameforallvehicles) Totallifecyclecost(cents/mile) 30.90 43.31 44.87 46.55 50.30 54.87 60.1 2 Thebreakevenpriceofgasoline, n.a. 4.62 5.04 5.49 6.50 7.73 9.15 includingtaxes n.a.=notapplicable aRetail -costequivalent.

249 MANUFACTURINGCOST & WEIGHT (F ORD ESCORT ,NIMHGEN 2,HIGHVOLUME,FUDS)

Manufacturingcosts($) Weight(lbs) Baselinevehiclecomponents ICEV BPEV - BPEV - ICEV BPEV - BPEV - 90 165 90 165 Body,chassis,interior,electrical,steering,etc. 2,434 2,464 2,660 1,542 1,566 1,722 Powertrain,emissioncontrol,brakes,fluids a 1,154 2,352 2,830 709 278 367 Vehicleassem bly(excl.battery,fueltank) 1,470 1,250 1,250 n.a. n.a. n.a. Tractionbattery 0 4,066 7,541 0 472 974 Tractionbatteryauxiliaries 0 54 97 0 46 81 Finalassemblyofbatteryandfueltanks 0 74 74 n.a. n.a. n.a. Adjustmentstobaseline(v.1989)* Airconditioning,EVheater,thermal 400 850 850 70 110 110 management(incl.assembly) Improvedemissioncontrolsystem 120 0 0 12 0 0 Newsafetyfeatures(exceptairbags) 80 80 80 32 32 32 Engineandtransmissionimprovements 160 0 0 (64) 0 0 Bodyweight -reductionmeasures 112 160 160 (200) (284) (284) Drag -reductionmeasures 16 40 40 0 0 0 Subtotalmanufacturingcosts 5,946 11,389 15,581 n.a n.a. n.a. Divisioncosts(engineers,testing,advertising) 3,416 4,355 5,077 n.a. n.a. n.a. Corpora tecosts(executives,capital,research 2,184 2,408 2,580 n.a. n.a. n.a. anddevelopment) Corporatecostofmoney 169 266 341 n.a. n.a. n.a. Corporatetrueprofit(takenasfractionof 362 570 730 n.a. n.a. n.a. factoryinvoice) Factoryinvoice(pricet odealer) 12,079 18,987 24,320 n.a. n.a. n.a. Dealercosts 2,060 2,700 3,193 n.a. n.a. n.a. Manufacturers'suggestedretailprice(MSRP) 14,139 21,686 27,513 n.a. n.a. n.a. Shippingcost 336 355 480 n.a. n.a. n.a. Othercosts 0 0 0 n.a. n.a. n.a. Fina lretailcostandweight Consumercost=MSRP+shipping+tax($) b 14,909 22,703 28,833 n.a. n.a. n.a. Curbweight(nopayload,fullfuel)(lbs) n.a. n.a. n.a. 2,101 2,219 3,003 Actualin -useweight(lbs) n.a. n.a. n.a. 2,219 2,384 3,169 aThefueltankis40%fullintheweightandenergy -useanalysis,emptyinthecostanalysis. bRetailpriceincludeslicencefeesandallmark -upsandtaxes.

250 VEHICLECHARACTERISTI CS (F ORD TAURUS ,LI/ION ,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 100 140 180 220 260 300 Typeoftractionbattery n.a. Lithium/ion Typeofmotor n.a. GEMEVacinductionmotor Typeofmotorcontroller n.a. GEMEVinverter Maximumpowerdeliverableto 103 60 64 69 73 79 84 wheels(kW)a Acceleratio nfrom0to60mph,0% 9.3 9.32 9.32 9.29 9.30 9.29 9.30 grade(secs) Batterycyclelifeto80%DoD n.a. 1,110 1,110 1,110 1,110 1,110 1,110 Batterysystemspecificenergy n.a. 118 129 136 143 147 152 (Wh/kg) Batterycontributiontoretailcost n.a. 416 337 289 253 228 207 ($/kWh) Volumeofbattery/fuel - 65 93 125 158 196 235 281 storage/fuel -cellsystem(L) Vehiclelife(km) 241,350 265,485 265,485 265,485 265,485 265,485 265,485 Weightofthecompletevehicle(kg) 1,416 1,189 1,273 1,362 1,462 1,567 1,686 Weightofbattery/fuel- storage/fuel - n.a. 172 229 294 359 432 512 cellsystem(kg) Coefficientofdrag 0.30 0.24 0.24 0.24 0.24 0.24 0.24 Energyefficiency,mi/kWhfromthe n.a. 4.17 3.99 3.82 3.62 3.44 3.25 outlet Fueleconomy(gasoline -equivalen t 19.9 152.8 146.0 139.9 132.4 125.9 119.0 mpg,HHV) b Fueleconomy(gasolineequivalent 11.8 1.5 1.6 1.7 1.8 1.9 2.0 liters/100km) Powertrainefficiencyratio c n.a. 9.11 8.73 8.39 7.96 7.59 7.19 n.a.=notapplicable. aMaximumpowassumesnoaircon ditioningorheatingoroptionalaccessories. bFueleconomyofBPEVsisbasedonelectricityfromtheoutlet. cTheratioofmi/BTU -from -batterytomi/BTU -gasoline.

251 COSTSUMMARY (F ORD TAURUS ,LI/ION ,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 100 140 180 220 260 300 Fuelretailcost,excludingtaxes 0.90 2.20 2.20 2.20 2.20 2.20 2.20 ($/gasoline -equivalentgallon) Fullretailcostofvehicle,incl.taxes 20,085 26,135 27,678 29,174 30,791 32,448 34,268 ($) Batterycontributiont oretailcost($) n.a. 8,430 10,000 11,513 12,993 14,516 16,121 Levelizedmaintenancecost($/yr) 492 355 355 355 355 355 355 Totallifecyclecost(cents/mile) 38.71 43.55 46.22 48.70 51.34 54.06 57.16 Presentvalueoflifecyclecostvs. 45,892 8,974 12,339 15,463 18,791 22,210 26,115 gasoline($) a Breakevengasolineprice($/gal) n.a. 2.24 2.77 3.26 3.79 4.33 4.94 n.a.=notapplicable. aForgasoline,thepresentvalueisshown.FortheEVs,thedifferencebetweenthepresentvalue fortheEVandthepresentvalueforgasolineisshown.

252 LIFECYCLECOSTSUMMAR Y (F ORD TAURUS ,LI/ION ,HIGHVOLUME,FUDS)(U.S. CENTS /MILE )

Costitem Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 100 140 180 220 260 300 Independentlycalculatedcostof n.a. 0.0 0 0.00 0.00 0.00 0.00 0.00 fastrecharging Purchasedelectricity(including n.a. 1.44 1.51 1.57 1.66 1.74 1.85 batteryheating,ifany) Vehicle,excludingbattery a 17.55 14.68 14.72 14.76 14.93 15.11 15.36 Batteryandtrayandauxiliaries a n.a. 10.82 12.87 14.85 16.81 18.83 20.98 SpaceheatingfuelforEVs 0.00 0.54 0.53 0.53 0.53 0.53 0.53 Motorfuel,excludingexcisetaxes 4.52 0.00 0.00 0.00 0.00 0.00 0.00 andelectricity Homebattery -rechargingstation n.a. 0.22 0.22 0.22 0.22 0.22 0.22 Insurance(calculatedas afunction 6.75 7.91 8.27 8.62 9.00 9.38 9.81 ofVMTandvehiclevalue) Maintenanceandrepair,excluding 4.88 3.72 3.72 3.72 3.72 3.72 3.72 oil,inspection,cleaning,towing Engineoil 0.17 0.00 0.00 0.00 0.00 0.00 0.00 Replacementtires(calculatedas a 0.50 0.32 0.45 0.45 0.46 0.47 0.61 functionofVMTandvehiclewt.) Parking,tolls,andfines(assumedto 1.05 1.05 1.05 1.05 1.05 1.05 1.05 bethesameforallvehicles) Registrationfee(calculatedasa 0.50 0.44 0.47 0.5 1 0.54 0.58 0.63 functionofvehicleweight) Vehiclesafetyandemissions 0.60 0.21 0.21 0.21 0.21 0.21 0.21 inspectionfee Federal,state,andlocalfuel 1.90 1.90 1.90 1.90 1.90 1.90 1.90 (energy)excisetaxes Accessories(assumedtobethe 0.30 0.30 0.30 0.30 0.30 0.30 0.30 sameforallvehicles) Totallifecyclecost(cents/mile) 38.71 43.55 46.22 48.70 51.34 54.06 57.16 Thebreakevenpriceofgasoline, n.a. 2.24 2.77 3.26 3.79 4.33 4.94 includingtaxes n.a.=notapplicable aRetail -costequivalent.

253 MANUFACTURINGCOST & WEIGHT (F ORD TAURUS ,LI/ION ,HIGHVOLUME,FUDS)

Manufacturingcosts($) Weight(lbs) Baselinevehiclecomponents ICEV BPEV - BPEV - ICEV BPEV - BPEV - 140 260 140 260 Body,chassis,interior,electrical,steering,etc. 3,621 3,506 3,707 2,080 2,005 2,1 36 Powertrain,emissioncontrol,brakes,fluids a 2,468 2,883 3,331 1,141 351 430 Vehicleassembly(excl.battery,fueltank) 1,715 1,458 1,458 n.a. n.a. n.a. Tractionbattery 0 5,100 7,791 0 456 869 Tractionbatteryauxiliaries 0 58 94 0 50 79 Final assemblyofbatteryandfueltanks 0 74 74 n.a. n.a. n.a. Adjustmentstobaseline(v.1989)* Airconditioning,EVheater,thermal 400 850 850 70 110 110 management(incl.assembly) Improvedemissioncontrolsystem 150 0 0 15 0 0 Newsafetyfeatu res(exceptairbags) 100 100 100 40 40 40 Engineandtransmissionimprovements 200 0 0 (80) 0 0 Bodyweight -reductionmeasures 140 200 200 (250) (371) (371) Drag -reductionmeasures 20 50 50 0 0 0 Subtotalmanufacturingcosts 8,814 14,279 17,655 n.a n. a. n.a. Divisioncosts(engineers,testing,advertising) 4,162 4,936 5,414 n.a. n.a. n.a. Corporatecosts(executives,capital,research 2,166 2,323 2,419 n.a. n.a. n.a. anddevelopment) Corporatecostofmoney 222 316 374 n.a. n.a. n.a. Corporatetrue profit(takenasfractionof 475 677 800 n.a. n.a. n.a. factoryinvoice) Factoryinvoice(pricetodealer) 15,840 22,551 26,669 n.a. n.a. n.a. Dealercosts 3,177 3,900 4,343 n.a. n.a. n.a. Manufacturers'suggestedretailprice(MSRP) 19,017 26,451 31,0 12 n.a. n.a. n.a. Shippingcost 483 423 527 n.a. n.a. n.a. Othercosts 0 0 0 n.a. n.a. n.a. Finalretailcostandweight Consumercost=MSRP+shipping+tax($) b 20,085 27,679 32,485 n.a. n.a. n.a. Curbweight(nopayload,fullfuel)(lbs) n.a. n. a. n.a. 3,016 2,641 3,294 Actualin -useweight(lbs) n.a. n.a. n.a. 3,122 2,808 3,460 aThefueltankis40%fullintheweightandenergy -useanalysis,emptyinthecostanalysis. bRetailpriceincludeslicencefeesandallmark -upsandtaxes.

254 VEHICLE CHARACTERISTICS (F ORD ESCORT ,LI/ION ,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 100 140 180 220 260 300 Typeoftractionbattery n.a. Lithium/ion Typeofmotor n.a. GEMEVacinductionmotor Typeofmotorcontroller n.a. GEMEVinverter Maximumpowerdeliverableto 67 44 47 50 53 57 61 wheels(kW)a Accelerationfrom0to60mph,0% 10.3 10.29 10.28 10.27 10.28 10.27 10.28 grade(secs) Batterycyclelifeto80%DoD n.a. 1,110 1,110 1,110 1,110 1,110 1,110 Battery systemspecificenergy n.a. 124 134 142 148 153 157 (Wh/kg) Batterycontributiontoretailcost n.a. 394 321 274 241 217 198 ($/kWh) Volumeofbattery/fuel - 52 75 101 129 159 191 227 storage/fuel -cellsystem(L) Vehiclelife(km) 241,350 265,485 265,485 265,485 265,485 265,485 265,485 Weightofthecompletevehicle(kg) 1,007 942 1,009 1,082 1,160 1,244 1,338 Weightofbattery/fuel- storage/fuel - n.a. 138 185 236 289 347 411 cellsystem(kg) Coefficientofdrag 0.30 0.24 0.24 0.24 0.24 0.24 0.24 Energy efficiency,mi/kWhfromthe n.a. 4.95 4.77 4.55 4.34 4.14 3.92 outlet Fueleconomy(gasoline -equivalent 26.9 181.4 174.5 166.6 158.9 151.5 143.6 mpg,HHV) b Fueleconomy(gasolineequivalent 8.7 1.3 1.3 1.4 1.5 1.6 1.6 liters/100km) Powertrainefficienc yratio c n.a. 7.95 7.66 7.33 7.01 6.70 6.36 n.a.=notapplicable. aMaximumpowassumesnoairconditioningorheatingoroptionalaccessories. bFueleconomyofBPEVsisbasedonelectricityfromtheoutlet. cTheratioofmi/BTU -from -batterytomi/ BTU -gasoline.

255 COSTSUMMARY (F ORD ESCORT ,LI/ION ,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 100 140 180 220 260 300 Fuelretailcost,excludingtaxes 0.90 2.20 2.20 2.20 2.20 2.20 2.20 ($/gasoline -equivalentgallon) Fullretailcos tofvehicle,incl.taxes 14,909 21,110 22,280 23,462 24,677 25,948 27,335 ($) Batterycontributiontoretailcost($) n.a. 6,729 7,978 9,159 10,318 11,513 12,776 Levelizedmaintenancecost($/yr) 483 348 348 348 348 348 348 Totallifecyclecost(cents/ mile) 30.90 36.75 38.72 40.70 42.82 44.94 47.26 Presentvalueoflifecyclecostvs. 36,632 9,662 12,150 14,643 17,320 19,991 22,904 gasoline($) a Breakevengasolineprice($/gal) n.a. 2.85 3.38 3.92 4.49 5.06 5.68 n.a.=notapplicable. aForgasoline, thepresentvalueisshown.FortheEVs,thedifferencebetweenthepresentvalue fortheEVandthepresentvalueforgasolineisshown.

256 LIFECYCLECOSTSUMMAR Y (F ORD ESCORT ,LI/ION ,HIGHVOLUME,FUDS)(U.S. CENTS /MILE )

Costitem Gasoline BPEV - BPE V- BPEV - BPEV - BPEV - BPEV - 100 140 180 220 260 300 Independentlycalculatedcostof n.a. 0.00 0.00 0.00 0.00 0.00 0.00 fastrecharging Purchasedelectricity(including n.a. 1.21 1.26 1.32 1.38 1.45 1.53 batteryheating,ifany) Vehicle,excludingbattery a 13.03 12.00 11.99 12.03 12.13 12.25 12.41 Batteryandtrayandauxiliaries a n.a. 8.67 10.31 11.86 13.40 15.00 16.70 SpaceheatingfuelforEVs 0.00 0.54 0.54 0.54 0.54 0.54 0.53 Motorfuel,excludingexcisetaxes 3.34 0.00 0.00 0.00 0.00 0.00 0.00 andelectricity Homebattery -rechargingstation n.a. 0.22 0.22 0.22 0.22 0.22 0.22 Insurance(calculatedasafunction 5.45 6.71 6.98 7.26 7.54 7.84 8.16 ofVMTandvehiclevalue) Maintenanceandrepair,excluding 4.80 3.66 3.66 3.66 3.66 3.66 3.66 oil,inspection,cleaning,towing Engineoil 0.13 0.00 0.00 0.00 0.00 0.00 0.00 Replacementtires(calculatedasa 0.42 0.38 0.39 0.40 0.51 0.52 0.53 functionofVMTandvehiclewt.) Parking,tolls,andfines(assumedto 1.05 1.05 1.05 1. 05 1.05 1.05 1.05 bethesameforallvehicles) Registrationfee(calculatedasa 0.40 0.39 0.42 0.45 0.48 0.52 0.56 functionofvehicleweight) Vehiclesafetyandemissions 0.60 0.21 0.21 0.21 0.21 0.21 0.21 inspectionfee Federal,state,andlocalfuel 1.40 1.40 1.40 1.40 1.40 1.40 1.40 (energy)excisetaxes Accessories(assumedtobethe 0.30 0.30 0.30 0.30 0.30 0.30 0.30 sameforallvehicles) Totallifecyclecost(cents/mile) 30.90 36.75 38.72 40.70 42.82 44.94 47.26 Thebreakevenpriceofgasoline, n.a. 2.85 3.38 3.92 4.49 5.06 5.68 includingtaxes n.a.=notapplicable aRetail -costequivalent.

257 MANUFACTURINGCOST & WEIGHT (F ORD ESCORT ,I/ION,HIGHVOLUME,FUDS)

Manufacturingcosts($) Weight(lbs) Baselinevehiclecomponents ICEV BPEV - BPEV - ICEV BPEV - BPEV - 140 260 140 260 Body,chassis,interior,electrical,steering,etc. 2,434 2,423 2,554 1,542 1,533 1,637 Powertrain,emissioncontrol,brakes,fluids a 1,154 2,254 2,571 709 259 319 Vehicleassembly(excl.battery,fueltank) 1,470 1,250 1,250 n.a. n.a. n.a. Tractionbattery 0 3,914 5,958 0 367 701 Tractionbatteryauxiliaries 0 45 74 0 38 62 Finalassemblyofbatteryandfueltanks 0 74 74 n.a. n.a. n.a. Adjustmentstobaseline(v.1989)* Airconditioning,EVheater,thermal 400 850 850 70 110 110 management(incl.ass embly) Improvedemissioncontrolsystem 120 0 0 12 0 0 Newsafetyfeatures(exceptairbags) 80 80 80 32 32 32 Engineandtransmissionimprovements 160 0 0 (64) 0 0 Bodyweight -reductionmeasures 112 160 160 (200) (284) (284) Dr ag -reductionmeasures 16 40 40 0 0 0 Subtotalmanufacturingcosts 5,946 11,090 13,609 n.a n.a. n.a. Divisioncosts(engineers,testing,advertising) 3,416 4,303 4,737 n.a. n.a. n.a. Corporatecosts(executives,capital,research 2,184 2,395 2,499 n.a. n.a. n.a. anddevelopment) Corporatecostofmoney 169 261 306 n.a. n.a. n.a. Corporatetrueprofit(takenasfractionof 362 560 655 n.a. n.a. n.a. factoryinvoice) Factoryinvoice(pricetodealer) 12,079 18,660 21,835 n.a. n.a. n.a. Dealercosts 2,06 0 2,669 2,963 n.a. n.a. n.a. Manufacturers'suggestedretailprice(MSRP) 14,139 21,330 24,798 n.a. n.a. n.a. Shippingcost 336 329 412 n.a. n.a. n.a. Othercosts 0 0 0 n.a. n.a. n.a. Finalretailcostandweight Consumercost=MSRP+shipping+t ax($) b 14,909 22,309 25,967 n.a. n.a. n.a. Curbweight(nopayload,fullfuel)(lbs) n.a. n.a. n.a. 2,101 2,058 2,577 Actualin -useweight(lbs) n.a. n.a. n.a. 2,219 2,228 2,746 aThefueltankis40%fullintheweightandenergy -useanalysis,emptyin thecostanalysis. bRetailpriceincludeslicencefeesandallmark -upsandtaxes.

258 VEHICLECHARACTERISTI CS (F ORD TAURUS ,NIMHGEN 4,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 70 100 130 160 190 220 Typeoftractionbattery n.a. Nickelmetalhydride,generation4 Typeofmotor n.a. GEMEVacinductionmotor Typeofmotorcontroller n.a. GEMEVinverter Maximumpowerdeliverableto 103 59 63 67 72 77 83 wheels(kW)a Accelerationfrom0to60mph,0% 9.3 9.32 9.31 9.29 9.29 9.29 9.29 grade(secs) Batterycyclelifeto80%DoD n.a. 1,331 1,331 1,331 1,331 1,331 1,331 Batterysystemspecificenergy n.a. 95 103 106 111 114 116 (Wh/kg) Batterycontributiontoretailcost n.a. 413 336 290 256 231 212 ($/kWh) Volumeof battery/fuel - 65 53 74 96 121 148 178 storage/fuel -cellsystem(L) Vehiclelife(km) 241,350 265,485 265,485 265,485 265,485 265,485 265,485 Weightofthecompletevehicle(kg) 1,416 1,156 1,238 1,326 1,425 1,533 1,653 Weightofbattery/fuel- storage/fuel - n.a. 149 206 269 335 409 491 cellsystem(kg) Coefficientofdrag 0.30 0.24 0.24 0.24 0.24 0.24 0.24 Energyefficiency,mi/kWhfromthe n.a. 3.36 3.25 3.15 3.00 2.87 2.73 outlet Fueleconomy(gasoline -equivalent 19.9 123.0 119.1 115.2 109.9 105.0 99.9 mpg,HHV) b Fueleconomy(gasolineequivalent 11.8 1.9 2.0 2.0 2.1 2.2 2.4 liters/100km) Powertrainefficiencyratio c n.a. 9.25 8.87 8.52 8.09 7.69 7.29 n.a.=notapplicable. aMaximumpowassumesnoairconditioningorheatingoroptionalaccessorie s. bFueleconomyofBPEVsisbasedonelectricityfromtheoutlet. cTheratioofmi/BTU -from -batterytomi/BTU -gasoline.

259 COSTSUMMARY (F ORD TAURUS ,NIMHGEN 4,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 70 100 130 160 190 220 Fue lretailcost,excludingtaxes 0.90 2.20 2.20 2.20 2.20 2.20 2.20 ($/gasoline -equivalentgallon) Fullretailcostofvehicle,incl.taxes 20,085 24,208 25,487 26,771 28,184 29,692 31,348 ($) Batterycontributiontoretailcost($) n.a. 5,838 7,083 8,306 9,508 10,759 12,097 Levelizedmaintenancecost($/yr) 492 355 355 355 355 355 355 Totallifecyclecost(cents/mile) 38.70 40.88 41.50 42.84 44.82 46.93 49.38 Presentvalueoflifecyclecostvs. 45,881 5,625 6,404 8,093 10,586 13,247 16,331 gasoline($) a Breakevengasolineprice($/gal) n.a. 1.71 1.83 2.10 2.49 2.91 3.40 n.a.=notapplicable. aForgasoline,thepresentvalueisshown.FortheEVs,thedifferencebetweenthepresentvalue fortheEVandthepresentvalueforgasolineisshown.

260 LIFE CYCLECOSTSUMMARY (F ORD TAURUS ,NIMHGEN 4,HIGHVOLUME,FUDS)(U.S. CENTS /MILE )

Costitem Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 70 100 130 160 190 220

Independentlycalculatedcostof n.a. 0.00 0.00 0.00 0.00 0.00 0.00 fastrecharging Purchasedelectr icity(including n.a. 1.79 1.85 1.91 2.00 2.09 2.20 batteryheating,ifany) Vehicle,excludingbattery a 17.55 15.16 15.24 15.34 15.57 15.84 16.17 Batteryandtrayandauxiliaries a n.a. 7.79 7.82 8.66 9.94 11.28 12.73 SpaceheatingfuelforEVs 0.00 0.5 4 0.54 0.53 0.53 0.53 0.53 Motorfuel,excludingexcisetaxes 4.51 0.00 0.00 0.00 0.00 0.00 0.00 andelectricity Homebattery -rechargingstation n.a. 0.22 0.22 0.22 0.22 0.22 0.22 Insurance(calculatedasafunction 6.75 7.46 7.76 8.06 8.39 8.74 9.13 ofVMTandvehiclevalue) Maintenanceandrepair,excluding 4.88 3.72 3.72 3.72 3.72 3.72 3.72 oil,inspection,cleaning,towing Engineoil 0.17 0.00 0.00 0.00 0.00 0.00 0.00 Replacementtires(calculatedasa 0.50 0.31 0. 44 0.45 0.46 0.47 0.60 functionofVMTandvehiclewt.) Parking,tolls,andfines(assumedto 1.05 1.05 1.05 1.05 1.05 1.05 1.05 bethesameforallvehicles) Registrationfee(calculatedasa 0.50 0.43 0.46 0.49 0.53 0.57 0.61 functionofvehicleweight) Vehiclesafetyandemissions 0.60 0.21 0.21 0.21 0.21 0.21 0.21 inspectionfee Federal,state,andlocalfuel 1.90 1.90 1.90 1.90 1.90 1.90 1.90 (energy)excisetaxes Accessories(assumedtobethe 0.30 0.30 0.30 0.30 0.30 0.30 0.30 sameforallvehicles) Totallifecyclecost(cents /mile) 38.70 40.88 41.50 42.84 44.82 46.93 49.38 Thebreakevenpriceofgasoline, n.a. 1.71 1.83 2.10 2.49 2.91 3.40 includingtaxes n.a.=notapplicable aRetail -costequivalent.

261 262 MANUFACTURINGCOST & WEIGHT (F ORD TAURUS ,NIMHGEN 4,HIGHVOLUME,FUD S)

Manufacturingcosts($) Weight(lbs) Baselinevehiclecomponents ICEV BPEV - BPEV - ICEV BPEV - BPEV - 100 190 100 190 Body,chassis,interior,electrical,steering,etc. 3,621 3,482 3,684 2,080 1,990 2,121 Powertrain,emissioncontrol,brakes,fluids a 2,468 2,830 3,279 1,141 341 421 Vehicleassembly(excl.battery,fueltank) 1,715 1,458 1,458 n.a. n.a. n.a. Tractionbattery 0 3,624 5,911 0 406 822 Tractionbatteryauxiliaries 0 54 90 0 46 76 Finalassemblyofbatteryandfueltanks 0 74 74 n.a. n.a. n.a. Adjustmentstobaseline(v.1989)* Airconditioning,EVheater,thermal 400 850 850 70 110 110 management(incl.assembly) Improvedemissioncontrolsystem 150 0 0 15 0 0 Newsafetyfeatures(exceptairbags) 100 100 100 40 40 40 Engi neandtransmissionimprovements 200 0 0 (80) 0 0 Bodyweight -reductionmeasures 140 200 200 (250) (371) (371) Drag -reductionmeasures 20 50 50 0 0 0 Subtotalmanufacturingcosts 8,814 12,721 15,695 n.a n.a. n.a. Divisioncosts(engineers,testing,adv ertising) 4,162 4,715 5,137 n.a. n.a. n.a. Corporatecosts(executives,capital,research 2,166 2,278 2,363 n.a. n.a. n.a. anddevelopment) Corporatecostofmoney 222 289 340 n.a. n.a. n.a. Corporatetrueprofit(takenasfractionof 475 619 728 n.a. n.a. n.a. factoryinvoice) Factoryinvoice(pricetodealer) 15,840 20,648 24,252 n.a. n.a. n.a. Dealercosts 3,177 3,695 4,083 n.a. n.a. n.a. Manufacturers'suggestedretailprice(MSRP) 19,017 24,343 28,335 n.a. n.a. n.a. Shippingcost 483 410 515 n.a . n.a. n.a. Othercosts 0 0 0 n.a. n.a. n.a. Finalretailcostandweight Consumercost=MSRP+shipping+tax($) b 20,085 25,496 29,716 n.a. n.a. n.a. Curbweight(nopayload,fullfuel)(lbs) n.a. n.a. n.a. 3,016 2,563 3,219 Actualin -useweight (lbs) n.a. n.a. n.a. 3,122 2,731 3,382 aThefueltankis40%fullintheweightandenergy -useanalysis,emptyinthecostanalysis. bRetailpriceincludeslicencefeesandallmark -upsandtaxes.

263 VEHICLECHARACTERISTI CS (F ORD ESCORT ,NIMHGEN 4,HIGHV OLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 70 100 130 160 190 220 Typeoftractionbattery n.a. Nickelmetalhydride,generation4 Typeofmotor n.a. GEMEVacinductionmotor Typeofmotorcontroller n.a. GEMEVinverter Maximumpowerdeliverableto 67 43 46 49 52 56 60 wheels(kW)a Accelerationfrom0to60mph,0% 10.3 10.28 10.28 10.27 10.28 10.26 10.27 grade(secs) Batterycyclelifeto80%DoD n.a. 1,331 1,331 1,331 1,331 1,331 1,331 Batterysystemspecificenergy n.a. 98 106 110 115 117 119 (Wh/kg) Batterycontributiontoretailcost n.a. 395 321 277 246 224 205 ($/kWh) Volumeofbattery/fuel - 52 43 61 79 99 121 146 storage/fuel -cellsystem(L) Vehiclelife(km) 241,350 265,485 265,485 265,485 265,485 265,485 265 ,485 Weightofthecompletevehicle(kg) 1,007 916 984 1,056 1,134 1,220 1,317 Weightofbattery/fuel- storage/fuel - n.a. 121 167 218 271 332 397 cellsystem(kg) Coefficientofdrag 0.30 0.24 0.24 0.24 0.24 0.24 0.24 Energyefficiency,mi/kWhfromthe n.a. 4.01 3.87 3.74 3.59 3.45 3.28 outlet Fueleconomy(gasoline -equivalent 26.9 146.7 141.8 136.9 131.6 126.4 120.2 mpg,HHV) b Fueleconomy(gasolineequivalent 8.7 1.6 1.7 1.7 1.8 1.9 2.0 liters/100km) Powertrainefficiencyratio c n.a. 8.11 7.76 7.44 7.10 6.79 6.43 n.a.=notapplicable. aMaximumpowassumesnoairconditioningorheatingoroptionalaccessories. bFueleconomyofBPEVsisbasedonelectricityfromtheoutlet. cTheratioofmi/BTU -from -batterytomi/BTU -gasoline.

264 COSTSUMMARY (F ORD ESCORT ,NIMHGEN 4,HIGHVOLUME,FUDS)

Item Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 70 100 130 160 190 220 Fuelretailcost,excludingtaxes 0.90 2.20 2.20 2.20 2.20 2.20 2.20 ($/gasoline -equivalentgallon) Fullretailcostofvehicle,incl.taxes 14,909 19,610 20,623 21,650 22,744 23,904 25,216 ($) Batterycontributiontoretailcost($) n.a. 4,688 5,692 6,675 7,639 8,654 9,733 Levelizedmaintenancecost($/yr) 483 348 348 348 348 348 348 Totallifecyclecost(cents/mile) 30.90 34.67 35.07 36.16 37.72 39.47 41.35 Presentvalueoflifecyclecostvs. 36,632 7,042 7,553 8,929 10,884 13,096 15,460 gasoline($) a Breakevengasolineprice($/gal) n.a. 2.29 2.40 2.69 3.11 3.59 4.09 n.a.=notapplicable. aForgasoline,thepresentvalueisshown.For theEVs,thedifferencebetweenthepresentvalue fortheEVandthepresentvalueforgasolineisshown.

265 LIFECYCLECOSTSUMMAR Y (F ORD ESCORT ,NIMHGEN 4,HIGHVOLUME,FUDS)(U.S. CENTS /MILE )

Costitem Gasoline BPEV - BPEV - BPEV - BPEV - BPEV - BPEV - 70 100 130 160 190 220 Independentlycalculatedcostof n.a. 0.00 0.00 0.00 0.00 0.00 0.00 fastrecharging Purchasedelectricity(including n.a. 1.50 1.55 1.60 1.67 1.74 1.83 batteryheating,ifany) Vehicle,excludingbattery a 13.03 12.39 12.44 12.52 12.68 12.85 13.10 Batteryandtrayandauxiliaries a n.a. 6.28 6.31 6.99 8.03 9.12 10.30 SpaceheatingfuelforEVs 0.00 0.54 0.54 0.54 0.54 0.54 0.54 Motorfuel,excludingexcisetaxes 3.34 0.00 0.00 0.00 0.00 0.00 0.00 andelectricity Homebattery -rechargingstat ion n.a. 0.22 0.22 0.22 0.22 0.22 0.22 Insurance(calculatedasafunction 5.45 6.36 6.60 6.84 7.09 7.36 7.67 ofVMTandvehiclevalue) Maintenanceandrepair,excluding 4.80 3.66 3.66 3.66 3.66 3.66 3.66 oil,inspection,cleaning,towing Engineoil 0.1 3 0.00 0.00 0.00 0.00 0.00 0.00 Replacementtires(calculatedasa 0.42 0.38 0.39 0.39 0.40 0.52 0.53 functionofVMTandvehiclewt.) Parking,tolls,andfines(assumedto 1.05 1.05 1.05 1.05 1.05 1.05 1.05 bethesameforallvehicles) Registrationfe e(calculatedasa 0.40 0.38 0.41 0.44 0.47 0.51 0.55 functionofvehicleweight) Vehiclesafetyandemissions 0.60 0.21 0.21 0.21 0.21 0.21 0.21 inspectionfee Federal,state,andlocalfuel 1.40 1.40 1.40 1.40 1.40 1.40 1.40 (energy)excisetaxes Acce ssories(assumedtobethe 0.30 0.30 0.30 0.30 0.30 0.30 0.30 sameforallvehicles) Totallifecyclecost(cents/mile) 30.90 34.67 35.07 36.16 37.72 39.47 41.35 Thebreakevenpriceofgasoline, n.a. 2.29 2.40 2.69 3.11 3.59 4.09 includingtaxes n. a.=notapplicable aRetail -costequivalent.

266 MANUFACTURINGCOST & WEIGHT (F ORD ESCORT ,NIMHGEN 4,HIGHVOLUME,FUDS)

Manufacturingcosts($) Weight(lbs) Baselinevehiclecomponents ICEV BPEV - BPEV - ICEV BPEV - BPEV - 100 190 100 190 Body,chassis,in terior,electrical,steering,etc. 2,434 2,409 2,541 1,542 1,522 1,627 Powertrain,emissioncontrol,brakes,fluids a 1,154 2,219 2,539 709 253 313 Vehicleassembly(excl.battery,fueltank) 1,470 1,250 1,250 n.a. n.a. n.a. Tractionbattery 0 2,814 4,5 94 0 331 668 Tractionbatteryauxiliaries 0 42 71 0 36 60 Finalassemblyofbatteryandfueltanks 0 74 74 n.a. n.a. n.a. Adjustmentstobaseline(v.1989)* Airconditioning,EVheater,thermal 400 850 850 70 110 110 management(incl.assembly) Improvedemissioncontrolsystem 120 0 0 12 0 0 Newsafetyfeatures(exceptairbags) 80 80 80 32 32 32 Engineandtransmissionimprovements 160 0 0 (64) 0 0 Bodyweight -reductionmeasures 112 160 160 (200) (284) (284) Drag -reductionmeasures 16 40 40 0 0 0 Subtotalmanufacturingcosts 5,946 9,937 12,198 n.a n.a. n.a. Divisioncosts(engineers,testing,advertising) 3,416 4,104 4,494 n.a. n.a. n.a. Corporatecosts(executives,capital,research 2,184 2,348 2,441 n.a. n.a. n.a. anddevelopment) Corp oratecostofmoney 169 240 281 n.a. n.a. n.a. Corporatetrueprofit(takenasfractionof 362 515 601 n.a. n.a. n.a. factoryinvoice) Factoryinvoice(pricetodealer) 12,079 17,182 20,032 n.a. n.a. n.a. Dealercosts 2,060 2,532 2,796 n.a. n.a. n.a. Manufacturers'suggestedretailprice(MSRP) 14,139 19,715 22,829 n.a. n.a. n.a. Shippingcost 336 320 404 n.a. n.a. n.a. Othercosts 0 0 0 n.a. n.a. n.a. Finalretailcostandweight Consumercost=MSRP+shipping+tax($) b 14,909 20,636 23,930 n. a. n.a. n.a. Curbweight(nopayload,fullfuel)(lbs) n.a. n.a. n.a. 2,101 2,001 2,526 Actualin -useweight(lbs) n.a. n.a. n.a. 2,219 2,170 2,693 aThefueltankis40%fullintheweightandenergy -useanalysis,emptyinthecostanalysis. bRetailpr iceincludeslicencefeesandallmark -upsandtaxes.

267 268