Vehicle-To-Grid (V2G) Power Flow Regulations and Building Codes Review by the AVTA

Total Page:16

File Type:pdf, Size:1020Kb

Vehicle-To-Grid (V2G) Power Flow Regulations and Building Codes Review by the AVTA INL/EXT-12-26853 Vehicle-to-Grid (V2G) Power Flow Regulations and Building Codes Review by the AVTA Adrene Briones James Francfort Paul Heitmann Michael Schey Steven Schey John Smart September 2012 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INL/EXT-12-26853 Vehicle-to-Grid (V2G) Power Flow Adrene Brionesa James Francfortb Paul Heitmanna Michael Scheya Steven Scheya John Smartb September 2012 Idaho National Laboratory Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 a ECOtality North America b Idaho National Laboratory EXECUTIVE SUMMARY The current availability of plug-in electric vehicles (PEVs), and their projected penetration of the private transportation market in the coming years, introduces the possibility of feeding the energy stored in vehicle batteries back to the electrical grid. This energy storage potential supports the objective of possibly providing additional financial incentives and opportunities for the PEV owner and by supporting emissions reduction by facilitating renewable energy integration and electric grid stability. The Idaho National Laboratory (INL) and ECOtality North America (ECOtality) conducted a study of governmental regulations and building code requirements impacting the introduction and use of vehicles with vehicle-to-grid (V2G) capability which could influence future activities to: Develop a common set of regulations, standards, and building codes that would apply in broad geographic areas that would allow for widespread use of V2G vehicles Identify regulations, standards, and building codes requiring modification to allow for a single, national regulatory framework. This project was divided into the following three phases: Phase 1 – Potential V2G Operating Modes and Functionality Phase 2 – Existing Codes, Regulations, and Business Models Phase 3 – Requirements for a Common Set of Regulations, Standards, and Codes All three phases are summarized in this report. Phase 1 provides the background for V2G systems so that a full understanding of the issues can be obtained. There are three basic system components involved that define the environment for recharging a vehicle or discharging energy from the vehicle to the electrical grid: (1) the location where the vehicle connects with the electrical grid, (2) the electric vehicle supply equipment to which the vehicle connects, and (3) the electric vehicle (or more specifically the battery management system) that manages the energy storage system state of charge. Various PEV configurations and charger levels will impact V2G potential. Different segments of the market (e.g., utilities, fleets, or general consumer) will be motivated by different incentives, including grid reliability, monetary payments, and emissions reductions. To realize the benefits that motivate customers, the industry first must address impacts (i.e., energy storage system life and warranty) and operational issues (i.e., ease of use, software programming, and automation). Phase 2 includes an assessment of the existing codes and standards in several metropolitan areas as they relate to V2G to identify commonalities or conflicts. Local utility and codes experts were surveyed in Phoenix, Orlando, Boston, Detroit, Raleigh, Maui, San Diego, Dallas, Seattle, Portland, New York, and Washington D.C. The local contacts were queried on topics such as regulatory barriers (identifying the designated authority having jurisdiction and the version of the National Electric Code that is adopted locally), the electric utility ii environment (whether the local electric utility electric service rules address V2G, electric vehicles, and renewable energy), implementation barriers (permitting and testing issues), and market barriers (incentives such as feed-in-tariff programs or time-of-use rates). A summary of findings is presented in Table E1. With the structure of local government control and the number of electric utilities reaching over 3,000 in the United States, there are variations to the way that resources are connected to the grid. Although codes and standards specific to V2G have yet to be developed, it is assumed that the same variation will be encountered on a local level and present implementation challenges to companies in the industry. Phase 3 provides recommendations relating to a set of regulations, standards, and codes that would allow for widespread use of V2G operations. In an ideal world, codes and standards would be the same in every target implementation region for V2G. In actuality, there are many nuances that will cause challenges for customers and vendors. Moving forward, authorities having jurisdiction and electric utilities should be encouraged to share best practices and information with other agencies in order to work toward common practices and quick adoption of nationally approved standards. The vehicles and electric vehicle supply equipment will be mostly standardized through the Society of Automotive Engineers proceedings and regulatory areas that the automotive manufacturers must follow. It is recommended that local authorities having jurisdiction and electric utilities follow the National Institute of Standards and Technology, Institute of Electrical and Electronics Engineers, and Society of Automotive Engineers proceedings and participate in standards development when feasible to understand and follow the guidelines that will support V2G technology. Also, authorities having jurisdiction and electric utilities should take care in preparing any customer- facing programs and language as more and more connected resources are moving from commercial entities to everyday consumers. The INL is the lead United States Department of Energy (DOE) laboratory for the light-duty vehicle portion of the Advanced Vehicle Testing Activity (AVTA). ECOtality supports DOE, INL and the National Energy Technology Laboratory in the benchmarking of advanced technology vehicles, energy storage systems, PEV charging infrastructures. These new technologies are mostly the products of DOE research funding and the AVTA singularly provides field use feedback to researchers, technology developers and target setters. The primary objective of the AVTA is to reduce the United States light-duty vehicle sector’s dependence on foreign oil while increasing the overall energy security of the United States. For more information about the AVTA and benchmarking results, see: http://avt.inl.gov iii Table E1. Regional conditions related to codes and standards. Utility Authority Net Having Online V2G EV-Only Solar/ 1DG Metering Feed In TOU Region Jurisdiction NEC IBC IRC Permit Utility Policy Rate PV Policy Policy Policy Tariffs Rate Phoenix City of 2008 2006 2006 Yes SRP/APS No/ No/ Yes/ No/ Yes/ No/No Yes/ Phoenix No No Yes Yes Yes Yes Orlando Florida 2008 2006 2006 Yes Progress No No Yes Yes Yes Yes Yes Building Energy Commission Boston Board of 2011 2009 2009 Yes NSTAR No No No Yes Yes No Yes Building Regulations and Standards Detroit State of 2008 2009 2009 Yes DTE No Yes Yes Yes Yes No Yes Michigan Energy Raleigh City of Raleigh 2011 2009 2009 No Progress No No Yes Yes Yes No Yes Inspections Energy Department Maui Hawaii County 2008 2009 Yes MECO No Yes Yes No Yes Yes Yes Council San Diego California 2008 2009 2009 No SDG&E No Yes Yes Yes Yes Yes Yes Building Standards Commission Dallas City of Dallas 2011 2006 2006 Yes Oncor/TX No No No Yes Yes No Yes U Energy Seattle State Building 2008 2009 2009 No SCL No No Yes No Yes No No Code Council Washing­ Construction 2005 2006 2006 Yes Pepco No No No Yes Yes No Yes ton, D.C. Codes Coordinating Board Portland Residential 2011 2009 2009 Yes PGE No No Yes Yes Yes Yes Yes Structures Board New York Division of 2011 2006 2006 No ConEd No No Yes Yes Yes Yes Yes Code Enforcement and Administration 1Distributed generation is electricity that is generated from small energy sources, typically renewable energy resources, and generally is used near its generation site, thereby reducing lost energy through transmission. APS = Arizona Public Service IRC = International Residential Code PV = photovoltaic ConEd = Con Edison MECO = Maui Electric Company SCL = Seattle City Light DG = distributed generation NEC = National Electric Code SDG&E = San Diego Gas and Electric DTE = Detroit Edison Pepco = IBC = International Building Code SRP = Salt River Project EV = electric vehicle PGE = Portland General Electric TOU = time of use IBC = International Building Code iv CONTENTS EXECUTIVE SUMMARY .........................................................................................................................
Recommended publications
  • RESIDENTIAL CHARGING STATION INSTALLATION HANDBOOK for Single-Family Homeowners and Renters
    RESIDENTIAL CHARGING STATION INSTALLATION HANDBOOK for Single-Family Homeowners and Renters Version 4.0 ©2011 Advanced Energy 1 RESIDENTIAL CHARGING STATION INSTALLATION HANDBOOK for Single-Family Homeowners and Renters Version 4.0 This handbook was made possible through the support of Duke Energy, the North Carolina Electric Membership Corporation, Dominion Energy and Plug-in NC. 2 Residential Charging Station Installation Handbook for Single-Family Homeowners and Renters CHARGING LEVELS DRIVING THE FUTURE OF TRANSPORTATION Advanced Energy is working to assist utilities, charging station vendors, municipalities and all stakeholders in understanding, planning for and Plug-in NC implementing electric transportation initiatives. As your trusted resource for advancing electric transportation, we can assist you in creating a strong foundation for successful change through: y Consulting and Planning y Technical Evaluation y Education and Outreach Our day-to-day means of transportation is changing, and the more communities and consumers know about Plug-in Electric Vehicles (PEVs), the more prepared they will be to embrace them. This handbook has been developed to assist in assessing your options for vehicle charging at a multifamily home. For more than 10 years, Advanced Energy has been collaborating with stakeholders across the United States on PEV technologies and initiatives. We share our expertise with you to simplify the integration of electric transportation into your community. Advanced Energy works with North Caroilna Stakeholders to
    [Show full text]
  • Microgrid and Blockchain: Bringing Sustainable Electricity to Myanmar
    University of Pennsylvania ScholarlyCommons Joseph Wharton Scholars Wharton Undergraduate Research 2018 Microgrid and Blockchain: Bringing Sustainable Electricity to Myanmar Haneol Jeong University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/joseph_wharton_scholars Part of the Business Commons Recommended Citation Jeong, H. (2018). "Microgrid and Blockchain: Bringing Sustainable Electricity to Myanmar," Joseph Wharton Scholars. Available at https://repository.upenn.edu/joseph_wharton_scholars/56 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/joseph_wharton_scholars/56 For more information, please contact [email protected]. Microgrid and Blockchain: Bringing Sustainable Electricity to Myanmar Abstract Myanmar’s limited electricity infrastructure presents an opportunity to privately develop microgrids that are separate from the existing centralized grid system. The technological breakthroughs in microgrid and blockchain systems enable private investors to develop blockchain-based microgrid systems that allow prosumers- consumers who also produce energy with household solar panels- to freely trade energy within the microgrid community. A blockchain-based microgrid system that incentivizes all parties to optimally produce and consume electricity according to the aggregate supply and demand is proposed to minimize the need for storage and ensure efficient allocation of energy. Examples of the combination of blockchain and renewable energy already exist, such as SolarCoin, the first solar energy-based digital currency. A pilot project for a blockchain-based microgrid system is underway in Brooklyn Microgrid (BMG). These pilot projects are collecting data and adjusting their models to build a scalable blockchain-based microgrid model. More pilot projects are needed in Myanmar in order to identify the specific egionalr challenges and variables required for building an optimal, socially inclusive model.
    [Show full text]
  • Microgrid Market Analysis: Alaskan Expertise, Global Demand
    Microgrid Market Analysis: Alaskan Expertise, Global Demand A study for the Alaska Center for Microgrid Technology Commercialization Prepared by the University of Alaska Center for Economic Development 2 3 Contents Introduction .................................................................................................................................................. 4 Market Trends ............................................................................................................................................... 5 Major Microgrid Segments ....................................................................................................................... 5 Global demand of microgrids ................................................................................................................... 5 Where does Alaska fit into the picture? Which segments are relevant? ................................................. 7 Remote/Wind-Diesel Microgrids .......................................................................................................... 8 Military Microgrid ................................................................................................................................. 8 Microgrid Resources with Examples in Alaska .............................................................................................. 8 Wind .......................................................................................................................................................... 8 Kotzebue ............................................................................................................................................
    [Show full text]
  • Replacing Property Taxes on Utility Generation with Revenues from a Carbon-Based Tax: a Minnesota Tax Shift Opportunity I
    Memo: To: Michael Noble, ME3 From: John Bailey, David Morris, ILSR (Tel: 612-379-3815) Date: 11/15/98 Re: Replacing Property Taxes on Utility Generation With Revenues from a Carbon-Based Tax: A Minnesota Tax Shift Opportunity I. Introduction Electric utilities in Minnesota pay four types of taxes: income tax, franchise fee (or gross receipts tax), sales tax, property tax.1 The total amount paid in each category is shown in Table 1. In 1995, the total came to $375 million. Table 1. Electric Utility Tax Paid in Minnesota in 1995 Property Tax MN Sales Tax MN Income Tax Franchise Fee Total NSP $152,078,365 $65,076,000 $31,709,000 $25,505,000 $274,368,365 Minnesota Power $34,706,493 $5,963,664 $3,843,817 $700,000 $45,213,974 Otter Tail $7,152,715 $4,197,450 $1,370,067 $233,643 $12,953,875 Interstate $3,670,381 $1,935,124 $573,770 $569,969 $6,749,244 Anoka Elec. Coop $3,179,055 $4,658,862 $0 $534,379 $8,372,296 Dakota Elec. Assoc. $4,742,500 $4,487,719 $0 $144,025 $9,374,244 Cooperative Power $7,095,000 $0 $0 $0 $7,095,000 United Power Assoc. $10,827,954 $0 $5,000 $0 $10,832,954 Total $223,452,463 $86,318,819 $37,501,654 $27,687,016 $374,959,952 Source: Minnesota Department of Public Service, 1996 Energy Policy and Conservation Report, December 1996 Recently, Minnesota has re-examined the utility tax structure in light of the restructuring of electricity occurring throughout the country.
    [Show full text]
  • Nuclear Power Reactors in California
    Nuclear Power Reactors in California As of mid-2012, California had one operating nuclear power plant, the Diablo Canyon Nuclear Power Plant near San Luis Obispo. Pacific Gas and Electric Company (PG&E) owns the Diablo Canyon Nuclear Power Plant, which consists of two units. Unit 1 is a 1,073 megawatt (MW) Pressurized Water Reactor (PWR) which began commercial operation in May 1985, while Unit 2 is a 1,087 MW PWR, which began commercial operation in March 1986. Diablo Canyon's operation license expires in 2024 and 2025 respectively. California currently hosts three commercial nuclear power facilities in various stages of decommissioning.1 Under all NRC operating licenses, once a nuclear plant ceases reactor operations, it must be decommissioned. Decommissioning is defined by federal regulation (10 CFR 50.2) as the safe removal of a facility from service along with the reduction of residual radioactivity to a level that permits termination of the NRC operating license. In preparation for a plant’s eventual decommissioning, all nuclear plant owners must maintain trust funds while the plants are in operation to ensure sufficient amounts will be available to decommission their facilities and manage the spent nuclear fuel.2 Spent fuel can either be reprocessed to recover usable uranium and plutonium, or it can be managed as a waste for long-term ultimate disposal. Since fuel re-processing is not commercially available in the United States, spent fuel is typically being held in temporary storage at reactor sites until a permanent long-term waste disposal option becomes available.3 In 1976, the state of California placed a moratorium on the construction and licensing of new nuclear fission reactors until the federal government implements a solution to radioactive waste disposal.
    [Show full text]
  • Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing
    energies Article Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing Dawid Chudy * and Adam Le´sniak Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego Str. 18/22, PL 90-924 Lodz, Poland; [email protected] * Correspondence: [email protected] Abstract: The continuous development of energy storage (ES) technologies and their wider utiliza- tion in modern power systems are becoming more and more visible. ES is used for a variety of applications ranging from price arbitrage, voltage and frequency regulation, reserves provision, black-starting and renewable energy sources (RESs), supporting load-generation balancing. The cost of ES technologies remains high; nevertheless, future decreases are expected. As the most profitable and technically effective solutions are continuously sought, this article presents the results of the analyses which through the created unit commitment and dispatch optimization model examines the use of ES as support for load-generation balancing. The performed simulations based on various scenarios show a possibility to reduce the number of starting-up centrally dispatched generating units (CDGUs) required to satisfy the electricity demand, which results in the facilitation of load-generation balancing for transmission system operators (TSOs). The barriers that should be encountered to improving the proposed use of ES were also identified. The presented solution may be suitable for further development of renewables and, in light of strict climate and energy policies, may lead to lower utilization of large-scale power generating units required to maintain proper operation of power systems. Citation: Chudy, D.; Le´sniak,A. Keywords: load-generation balancing; large-scale energy storage; power system services modeling; Advantages of Applying Large-Scale power system operation; power system optimization Energy Storage for Load-Generation Balancing.
    [Show full text]
  • Thermal Management of Lithium-Ion Batteries Using Supercapacitors
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School March 2021 Thermal Management of Lithium-ion Batteries Using Supercapacitors Sanskruta Dhotre University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Electrical and Computer Engineering Commons Scholar Commons Citation Dhotre, Sanskruta, "Thermal Management of Lithium-ion Batteries Using Supercapacitors" (2021). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/8759 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Thermal Management of Lithium-ion Batteries Using Supercapacitors by Sanskruta Dhotre A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Department of Electrical Engineering College of Engineering University of South Florida Major Professor: Arash Takshi, Ph.D. Ismail Uysal, Ph.D. Wilfrido Moreno, Ph.D. Date of Approval: March 10, 2021 Keywords: Thermal Runaway, Hybrid Battery-Supercapacitor Architecture, Battery Management Systems, Internal heat Generation Copyright © 2021, Sanskruta Dhotre Dedication I wish to dedicate this thesis to my late grandfather, Gurunath Dhotre, who has always inspired me to be the best version of myself, my parents, without whose continuous love and support my academic journey would not have been the same and my brother for encouraging me to soldier on forward no matter what the obstacle. Acknowledgments First and foremost, I would like to express my gratitude to my guide Dr.
    [Show full text]
  • Electric Vehicle Charging Station for Toyota Level 2 EV Charging: 40A, 240V, 9.6Kw Output
    Product Bulletin for the Toyota Electric Vehicle 40A Charging Station 40 Amp Electric Vehicle Charging Station for Toyota Level 2 EV Charging: 40A, 240V, 9.6kW output Leviton introduces its next generation electric vehicle charging station -- designed with a durable thermoplastic enclosure. The Level 2 (240V) 40A charging station was designed exclusively for the Toyota RAV4 EV and is recommended by Toyota for optimizing the onboard charger on your vehicle. Designed, tested and assembled in the United States, the new charging station will charge the RAV4 EV in approximately 5 to 6 hours. The 40A charging station includes a 25-foot charging cable, which offers flexibility in the mounting location. Features and Benefits: n Compatible with all Electric Vehicle Supply Equipment (EVSE) Standards and Recommended Practices, including SAE J1772™, NEC 625, UL 2231, and UL 2594 n Built-in communication verifies proper connection with the vehicle before charging n Auto-Reclosure feature enables charging to restart following a minor power interruption, thereby reducing the chance of being stranded with an uncharged battery 40 Amp n Ideal for home charging or light commercial applications n Plug-In unit is capable of being converted to a “hard-wired” installation if required Prius Plug-in RAV4 EV n Plug-in unit ideal for indoor applications Charger Charge Time Charge Time n Watertight NEMA Type 4 enclosure for electronic housing n Wrap-around cord management for easy storage between uses Level 1 ~3 Hours Emergency Use Only n Ground monitor interrupter circuit for additional safety Level 2, 16A ~1.5 Hours Not Recommended n Charge connector lockout hole prevents unauthorized use Level 2, 30A ~1.5 Hours ~ 6.5 - 8 Hours n Industry exclusive 10-year warranty with Leviton-certified installation Level 2, 40A ~1.5 Hours ~ 5 - 6 Hours 1-(855)-5-PLUGIN n Leviton.com/Toyota n [email protected] Features Dimensions 5.19 Cable 3.01 0.21 Cat No.
    [Show full text]
  • Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
    Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore.
    [Show full text]
  • Transcript of August 4, 2020 Session 2 Commissioner Workshop on Plug
    DOCKETED Docket Number: 20-IEPR-02 Project Title: Transportation TN #: 235911 Transcript of August 4, 2020 Session 2 Commissioner Document Title: Workshop on Plug-in Electric Vehicle Charging Infrastructure Description: N/A Filer: Cody Goldthrite Organization: California Energy Commission Submitter Role: Commission Staff Submission Date: 12/10/2020 3:21:05 PM Docketed Date: 12/10/2020 CALIFORNIA ENERGY COMMISSION In the matter of: 2020 Integrated Energy ) Docket No. 20-IEPR–02 Policy Report Update ) (2020 IEPR Update) ) _________________________) COMMISSIONER WORKSHOP ON PLUG-IN ELECTRIC VEHICLES CHARGING INFRASTRUCTURE REMOTE VIA ZOOM SESSION 2: TUESDAY, AUGUST 4, 2020 2:30 P.M. Reported by: Martha Nelson 1 California Reporting, LLC (510) 313-0610 APPEARANCES COMMISSIONERS Patricia Monahan, 2020 IEPR Update Lead Commissioner CEC STAFF Heather Raitt, IEPR Program Manager Jonathan Bobadilla PUBLIC ADVISOR RoseMary Avalos MODERATOR Tim Olson, California Energy Commission PRESENTER Paul Francis, KIGT Noel Crisostomo, California Energy Commission Micah Wofford, California Energy Commission PUBLIC COMMENT Lisa McGhee, GreenPower Motor Company Stacey Reineccius, Powertree Services, Inc. Nicholas Johnson, Orange Charger Rajiv Shah, FreeWire Technologies 2 California Reporting, LLC (510) 313-0610 AGENDA Page Introduction 4 Opening Remarks 5 Commissioner Monahan Chair Hochschild Commissioner McAllister Commissioner Douglas Fostering Advanced Technology to Meet Future 8 Light-Duty Vehicle Needs Paul Francis, KIGT Charging Equipment Hardware and Software 29 Noel Crisostomo, CEC EVSE Deployment and Grid Evaluation (EDGE) Tool 44 Micah Wofford, CEC Other Charging Programs to Accelerate Electric 61 Vehicle Adoption Noel Crisostomo, CEC Public Comments 87 Closing Comments 95 Adjourn 96 1 3 California Reporting, LLC (510) 313-0610 1 P R O C E E D I N G S 2 2: 30 P.M.
    [Show full text]
  • Using AMR Data to Improve the Operation of the Electric Distribution System
    Using AMR Data to Improve the Operation of the Electric Distribution System Glenn Pritchard Consulting Engineer Exelon/PECO Copyright © 2007 OSIsoft, Inc. All rights reserved. Objectives This session will discuss and present techniques for using data collected by an Automatic Meter Reading System to improve the operation and management of an Electric Distribution System. Specifically, several applications of PI System will be presented, they include: l Dynamic Load Management Modeling l Transformer Load Analysis l Curtailment Program Applications 2 Copyright © 2007 OSIsoft, Inc. All rights reserved. Agenda l PECO Background l Applications u System Load Management & Modeling § Transformer & Cable Load Analysis u Curtailment Program Applications l Meter Data Management 3 Copyright © 2007 OSIsoft, Inc. All rights reserved. Exelon / PECO l Subsidiary of Exelon Corp (NYSE: EXC) l Serving southeastern Pa. for over 100 years l Electric and Gas Utility u 1.7M Electric Customers u 470K Gas Customers l 2,400 sq. mi. service territory 4 Copyright © 2007 OSIsoft, Inc. All rights reserved. Scope of AMR at PECO l Cellnet provides a managed­AMR service which includes network operations, meter reading and meter maintenance l PECO’s AMR installation project lasted from 1999 to 2003 l A Cellnet Fixed­RF Network solution was selected. u 99% of meters are read by the network u Others are drive­by and MV­90 dial­up l Services/Data Delivered: u All meters are read Daily (Gas & Electric) u Additional services include: Demand, ½ Hour Interval, TOU, SLS u Reactive Power where required u Tamper & Outage Flags (Last­Gasp, Power­Up Messages) u On­Demand meter reading requests 5 Copyright © 2007 OSIsoft, Inc.
    [Show full text]
  • Electric Vehicle Demonstration Projects In
    ELECTRIC VEHICLE DEMONSTRATION PROJECTS IN THE UNITED STATES Prepared For TEKES The Finnish Funding Agency for Technology and Innovation NWV Market Discovery, Inc. 20781 Evergreen Mills Road · Leesburg, VA 20175, USA Tel 1-703-777-1727 · Cell 1-703-909-0603 · URL: www.nwv.com CONTENTS 1. BACKGROUND & OBJECTIVES ________________________________________ 4 2. INTRODUCTION ____________________________________________________ 6 2.1. POLITICAL CONTEXT _________________________________________________ 6 2.2. ELECTRICAL CAR MANUFACTURERS ___________________________________ 7 2.3. MUNICIPALITIES _____________________________________________________ 7 2.4. INFRASTRUCTURE ___________________________________________________ 7 2.5. TECHNOLOGY & COMPONENT SUPPLIERS______________________________ 9 2.6. RETAIL, SALES & CONSUMER SERVICE _________________________________ 9 2.7. FUNDING ___________________________________________________________ 9 2.8. INTERNATIONAL COLLABORATION ___________________________________ 10 2.9. GLOBAL INITIATIVES ________________________________________________ 10 2.10. SOURCES __________________________________________________________ 12 3. DEMONSTRATION & TEST PROJECTS _________________________________ 13 3.1. THE EV PROJECT ___________________________________________________ 13 3.2. PROJECT PLUG - IN _________________________________________________ 18 3.3. USPS PILOT PROGRAM “CONVERT LLVs TO EVs”_______________________ 23 3.4. PORT OF LOS ANGELES ELECTRIC TRUCK DEMONSTRATION PROJECTS ___ 26 3.5. SDG&E CTP EV DEMONSTRATION
    [Show full text]