Essential of Carbohydrate Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Essential of Carbohydrate Chemistry Essential of Carbohydrate Chemistry Wood Chemistry Carbohydrates • Photosynthesis is probably the most fundamental of all life processes and provides a means of converting “inorganic carbon”, in the form of carbon dioxide, into carbohydrates and then into other organic compounds. • The early photosynthetic bacteria first appeared about 3,000 million years ago, and were joined much later by blue-green algae (2,000 million years ago) and the first vascular land plants (400 million years ago). Carbohydrates • Together these organisms now produce approximately 14 × 1010 tones of organic matter every year according to the process shown in hυ CO + H O Carbohydrates + O 2 2 Photosynthetic 2 organism Carbohydrates • Definitions – The name carbohydrate was originally derived from the general formula Cx(H2O)y formally to hydrates of carbon, but this type of sample definition does not cover the broad class of carbohydrates. • The sugars in a plant usually function as a source of energy while polysaccharides, such as starch, fulfill the need for the storage of reserve food or they contribute mechanical strength to the plant cell. Carbohydrates A variety of carbohydrates are included as essential building elements in natural compounds performing vital functions in living organisms. Carbohydrates may be classified into following three large groups Monosaccharide Oligosaccharides Polysaccharides • Monosaccharide is the simple sugars. • Oligosaccharides – Oligosaccharide consist of several monosaccharide residues joined together by glycosidic linkages, namely di-, tri-, tetra-saccharide…. The name oligosaccharide is usually restricted to the group of carbohydrates in which the number of monosaccharide units less than 10. • Polysaccharides – Polysaccharides are complex molecules composed of a large number of monosaccharide unit joined together by glycosidic linkages. Some Terms Used in Carbohydrate Chemistry • Aglycone – The nonsugar part of a glycoside; usually an alcohol, phenol or amine. • Aldoses – Monosaccharide contain aldehyde function. • Aldopentose – A five-carbon sugar with an aldehyde or cyclic hemiacetal functional group. • Aldohexose – A six-carbon sugar with an aldehyde group or cyclic hemiacetal group. Some Terms Used in Carbohydrate Chemistry • Ketoses – Monosaccharide contain keto function. • Furanose – Five-membered cyclic sugar from furan. • Pyranose – Six-membered cyclic sugar from pyran. • Septanose Glycosans – Seven-membered cyclic sugar. Anhydro sugars are from sugars by the elimination of water from a pair of • Glycosans hydroxyl groups. Glycosan are strictly – Intramolecular glycoside intramolecular gycosides. Some Terms Used in Carbohydrate Chemistry α- or β-Glucoside Acetal derived from the cyclic hemiacetal from α- or β-glucoside glucose. α- or β-Glycoside General term for the acetal derivative of any suger. Anomers Sugar isomers differing only in the configuration of the hemiacetal carbon atom; they are designated asαor β. anomers,異位異構 物,異位碳原子上立體 Epimers 構造的差異所形成的 α 和 β型異構物 Sugars that differ only in the configuration at 1 carbon . 表異構物 (epimers) Mutarotation Change in optical rotation as a fresh solution stands. Configuration of Monosaccharide Isomers Compounds which have the same molecular formula but differ in some way in the arrangement of atoms. Type of Isomers Structural isomers Stereoisomer Structural isomers Isomers in which the bonding arrangement of atoms differ; they include chain isomers, position isomers, and functional group isomers Chain isomers (Sketal isomers) Butane Isobutane Position isomers 1-Propanol 2-Propanol Functional group isomers Propionic acid Methyl acetate Stereoisomer Isomers in which the bounding of the atoms in the same but the spatial arrangements of the atoms differ; they include geometric isomers and optical isomers, etc. Geometric isomers cis-2-butene trans-s-butane Optical isomers Enantiomers vs. Diastereoisomers Diastereomers If a compound contains two chiral atoms, it may exist in four stereoisomeric forms. Since the configuration at each chiral carbon may be either R or S, there are four stereochemical possibilities: RR, SS, RS, and SR. The RR and SS stereoisomers are enantiomers. The RS and SR stereoisomers are also enantiomers. The RR stereoisomer is a diastereomer of both the RS and the SR stereoisomers. The SS stereoisomer is a diastereomer of both the RS and SR stereoisomers. Configuration of Aldoses For many system which “n” chiral carbon atoms, there are 2n stereoisomers, composed 2n-1 enatiomeric (mirror-image) pairs. An aldotetrose is a four-carbon sugar that has two chiral centers. There are 22 = 4 possible stereoisomers, or two D, L pairs of enatiomers called Erythrose and Threose. D, L System of Carbohydrate Configuration Nomenclature Compounds are assigned to the D-family or the L-family according to the projection of the –OH group at the lowest chiral carbon atom. If the –OH group projects to the right in a plane projection structure, the compound is in the D-family. If this –OH projects to the left, the substances is in the L- family. D-Glyceraldehyde L-Glyceraldehyde D-Erythrose D-Threose Fischer Projection Formulas for Acyclic Forms of D-aldoses Mutarotation On dissolution of sugars in water, the optical rotation of the solution changes continuously until an equilibrium is reached. This phenomenon, termed Mutarotation. Conformation of the Six-membered Ring Sysem Chair Boat Skew boat Half-chair 4C 1C 1 4 Monosubstituted molecules the substituent favors the equatorial position Stable chair conformation of β-D-glucopyranose and β-D-fructopyranose Strong hydrogen- bonding interactions More stable Conformation of the Five-membered Ring System Envelope conformation Twist conformation Pseudoequatorial carbon-hydrogen bonds Monosaccharide Most of the monosaccharides occur as glycosides and as units in oligosaccharide and polysaccharide and only comparatively few of them are present free in plants. D-Glucose is the most abundant monosaccharide in nature. It occurs in a free state in many plants, especially in fruits and can be prepared from cellulose and starch by acidic or enzymic hydrolysis. D-Glucose α-D-Glucose Haworth perspective formulas Fischer-Tollens projection α: -CH2OH and -OH at the same side Monosaccharide galactose: 半乳糖 D-Mannose and D-galactose, which are aldohexoses, are important components in D-mannose D-galactose hemicellulose. The most comment aldopentose, abundant members of the hemicellulose, are D-xylose and L-arabinose. D-xylose L-arabinose D-Ribose is a constituent of nucleosides. D-ribose Monosaccharide No tetroses or triose have been detected free in plants, but D-erythrose D-erythrose 4-phosphate 4-phosphate is an important intermediate in many transformation, and D-glyceraldehyde and D-glyceraldehyde dihydroxyacetone are essential components in cellular metabolism. dihydroxyacetone Monosaccharide Deoxysugar L-rhmnose (6-deoxy-L-mannose) occurs as a constituent in gum polysaccharides and traces of it are present in hemicellulose L-rhmnose (xylan) D-Fructose, which represents the only abundant ketose in plants, is present both free and in a combined state. Compositae and Gramineae families store polymers of D-fructose such as insulin, as serve material rather than starch. Monosaccharide Derivatives In principal, the sugar derivation are formed by: Reaction of the free carbonyl or the anomeric hydroxyl at C-1. Reaction of the hydroxyl groups at other positions. Glycosides Sugars react as hemiacetals with hydroxyl compounds, such as alcohols and phenols forming glycosides. The glycosides are easily hydrolyzed by aqueous acids to free sugars but they are fairly stable toward alkali. Acetals aldehyde Cyclic acetal Acetal formation Ethers Etherification is often used in the determination of structure and types of linkages between sugars in oligo and polysaccharides. Ethers are very stable against both acids and bases. Carbohydrates can be converted into ethers by treatment with an alkyl halide in the presence of base (Williamson ether synthesis) Ag2O CH3I Cellulose Etherification Cellulose etherification: by treating alkali cellulose with Alkyl or aryl halides (or sulfate) Alkene oxides Unsaturated compounds activated by electron-attracting group - - Cell-OH + OH Cell-O + H2O - - Cell-O + R-Cl Cell-OR + Cl Anhydro sugars • Anhydro sugars are formed from sugars by the elimination of water from a pair of hydroxyl groups • Glucosans are strictly intramolecular glycosides. Its anhydro linkage is readily by action of acids, sometimes also by bases. Anhydro sugars Epoxides Ethers are derived only from alcoholic hydroxyls and the hydroxyl group in the anomeric center does not participate. Epoxides are formed when the sugar molecule contains both a good leaving group and a suitable located ionized hydroxyl group. (SN2 reaction). Anhydro sugars The ring size of epoxides can vary from three- to six- membered rings. Oxiranes (three membered derivatives) intermediates are probably formed during alkaline hydrolysis of polysaccharides such as cellulose and starch. Formation of methyl 3,4-anhydro-β-D-galactopyranosides Esters Hydroxyl groups of sugars can form esters both with organic and inorganic acids. The phosphate esters, such as D-glucose 6- phosphate, are important natural products and key intermediates in the biosynthesis and bioconversion of various carbohydrates. Esters 1: D-glucose 1-phosphate 2: 2-O-acetyl-β-D-xylopyranosides 3: 3-O-acetyl-β-D-xylopyranosides 4: β-D-galactopyranose 4-sulfate 5:
Recommended publications
  • Utilization of Cellulose Oligosaccharides by Cellvibrio Gilvus MARION L
    JOURNAL OF BACTERIOLOGY, Jan., 1965 Vol. 89, No. 1 Copyright © 1965 American Society for Microbiology Printed in U.S.A. Utilization of Cellulose Oligosaccharides by Cellvibrio gilvus MARION L. SCHAFER' AND KENDALL W. KING Department of Biochemistry and Nutrition, Virginia Polytechnic Institute, Blacksburg, Virginia Received for publication 19 August 1964 ABSTRACT SCHAFER, MARION L. (Virginia Polytechnic Institute, Blacksburg), AND KENDALL W. KING. Utilization of cellulose oligosaccharides by Cellvibrio gilvus. J. Bacteriol. 89: 113-116. 1965.-The hypothesis that oligosaccharides of the cellulose polymer series can be absorbed by cellulolytic bacteria, prior to hydrolysis to the level of glucose or cello- biose, has been tested. Resting-cell suspensions of Cellvibrio gilvus removed oligosac- charides of one to six monomer units from solution at a rate providing the cells with 37 X 106 to 42 X 106 molecules of glucose per cell per minute. There was no concurrent extracellular hydrolysis of the oligosaccharides. The fact that the rate of up- take was constant indicates that an active absorption system is involved. Filtrates from washed-cell suspensions before or after exposure to the oligosaccharides were in- capable of hydrolyzing the sugars. In media where the carbohydrate concentration was growth-limiting, the larger members of the oligosaccharide series supported greater final cell densities than the smaller sugars, but there were no recognizable differences in the growth rates during the logarithmic-growth phase. Recent reviews of microbial utilization of phosphorylase (Ayers, 1958; Sih and McBee, cellulose as an energy and carbon source have 1955; Hulcher and King, 1958a, b). considered primarily the extracellular events In the present report, the ability of C.
    [Show full text]
  • FOOD ANALYSIS: Carbohydrate Analysis
    FOOD ANALYSIS: Carbohydrate Analysis B. Pam Ismail [email protected] FScN 146 612 625 0147 FOOD ANALYSIS: Carbohydrate Analysis The following is/are a carbohydrate(s): A. Pectin B. Cellulose C. Lignin D. A & B E. B & C F. A & C G. All of the above H. None of the above 1 FOOD ANALYSIS: Carbohydrate Analysis The following is/are a carbohydrate(s): A. Pectin B. Cellulose C. Lignin D. A & B E. B & C F. A & C G. All of the above H. None of the above FOOD ANALYSIS: Carbohydrate Analysis The method used to determine starch gelatinization could be used to determine starch retrogradation A. True B. False 2 FOOD ANALYSIS: Carbohydrate Analysis Importance of Carbohydrates Importance of Analyzing Carbohydrates FOOD ANALYSIS: Carbohydrate Analysis Carbohydrate Classification CH2OH CH2OH HO O O OH OH OH Monosaccharides O Di and oligosaccharides (2-10 units) OH OH Polysaccharides CH2OH HOH C O O 2 OH o Starch HO O HO CH2OH o Dietary fiber OH OH CH2OH CH2OH O O OH OH O O O OH OH CH2OH CH2OH CH2OH CH2 CH2OH CH2OH O O O O OH OH O O OH OH OH OH O O O O O O O OH OH OH OH OH OH 3 FOOD ANALYSIS: Carbohydrate Analysis General Sample Preparation Drying o Vacuum oven Fat extraction o Soxhlet FOOD ANALYSIS: Carbohydrate Analysis Total Carbohydrate Analysis H (research purposes) HO O Phenol-sulfuric acid method O What happens to glycosidic linkages under acidic conditions? strongly acidic conditions furans monosaccharides (heat) CH2OH CH2OH O O enolizations, OH OH OH dehydrating reactions H O HO O OH OH O 4 FOOD ANALYSIS: Carbohydrate Analysis Total Carbohydrate
    [Show full text]
  • Beta-Glucan Effects on Pasting Properties and Potential Health Benefits of Flours from Different Oat Lines Yanjun Liu Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Beta-glucan effects on pasting properties and potential health benefits of flours from different oat lines Yanjun Liu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Nutrition Commons Recommended Citation Liu, Yanjun, "Beta-glucan effects on pasting properties and potential health benefits of flours from different oat lines" (2010). Graduate Theses and Dissertations. 11303. https://lib.dr.iastate.edu/etd/11303 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Beta-glucan effects on pasting properties and potential health benefits of flours from different oat lines by Yanjun Liu A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Food Science and Technology Program of Study Committee: Pamela J. White, Major Professor Terri Boylston Theodore B. Bailey Iowa State University Ames, Iowa 2010 Copyright © Yanjun Liu, 2010. All rights reserved. ii TABLE OF CONTENTS CHAPTER 1 GENERAL INTRODUCTION 1 Introduction 1 Literature Review 3 Origin of Oats 3 Oat Grain 3 Health Benefits of Oats 6 Oat Milling and Processing
    [Show full text]
  • Food Intake and Symptoms in FGID: Short-Chain Carbohydrates
    Food intake and symptoms in FGID: Short-chain carbohydrates Susan J Shepherd1, Miranda CE Lomer2, Peter R Gibson3 1 La Trobe University, Department of Dietetics and Human Nutrition Bundoora, Victoria 3086, Australia 2 4.21 Franklin-Wilkins Building, Nutritional Sciences Division King's College London, 150 Stamford Street, London SE1 9NH, UK 3 Department of Gastroenterology, The Alfred Hospital and Monash University 55 Commercial Road, Melbourne Victoria 3004, Australia Short Title (Running Head): Food intake, symptoms in FGID: Short-chain carbohydrates Words: 4,449 Correspondence to: Dr Susan Shepherd Department of Dietetics and Human Nutrition, La Trobe University, Bundoora, Victoria 3086, Australia Telephone +61 3 9890 4911 Fax + 61 3 9890 4944 Email [email protected] or [email protected] 1 Abstract Carbohydrates occur across a range of foods regularly consumed including grains such as wheat and rye, vegetables, fruits and legumes. Short-chain carbohydrates with chains of up to ten sugars vary in their digestibility and subsequent absorption. Those that are poorly absorbed exert osmotic effects in the intestinal lumen increasing its water volume, and are rapidly fermented by bacteria with consequent gas production. These two effects alone may underlie most of the induction of gastrointestinal symptoms after they are ingested in moderate amounts via luminal distension in patients with visceral hypersensitivity. This has been the basis of the use of lactose-free diets in those with lactose malabsorption and of fructose-reduced diets for fructose malabsorption. However, application of such dietary approaches in patients with functional bowel disorders has been restricted to observational studies with uncertain efficacy.
    [Show full text]
  • Carbohydrates: Occurrence, Structures and Chemistry
    Carbohydrates: Occurrence, Structures and Chemistry FRIEDER W. LICHTENTHALER, Clemens-Schopf-Institut€ fur€ Organische Chemie und Biochemie, Technische Universit€at Darmstadt, Darmstadt, Germany 1. Introduction..................... 1 6.3. Isomerization .................. 17 2. Monosaccharides ................. 2 6.4. Decomposition ................. 18 2.1. Structure and Configuration ...... 2 7. Reactions at the Carbonyl Group . 18 2.2. Ring Forms of Sugars: Cyclic 7.1. Glycosides .................... 18 Hemiacetals ................... 3 7.2. Thioacetals and Thioglycosides .... 19 2.3. Conformation of Pyranoses and 7.3. Glycosylamines, Hydrazones, and Furanoses..................... 4 Osazones ..................... 19 2.4. Structural Variations of 7.4. Chain Extension................ 20 Monosaccharides ............... 6 7.5. Chain Degradation. ........... 21 3. Oligosaccharides ................. 7 7.6. Reductions to Alditols ........... 21 3.1. Common Disaccharides .......... 7 7.7. Oxidation .................... 23 3.2. Cyclodextrins .................. 10 8. Reactions at the Hydroxyl Groups. 23 4. Polysaccharides ................. 11 8.1. Ethers ....................... 23 5. Nomenclature .................. 15 8.2. Esters of Inorganic Acids......... 24 6. General Reactions . ............ 16 8.3. Esters of Organic Acids .......... 25 6.1. Hydrolysis .................... 16 8.4. Acylated Glycosyl Halides ........ 25 6.2. Dehydration ................... 16 8.5. Acetals ....................... 26 1. Introduction replacement of one or more hydroxyl group (s) by a hydrogen atom, an amino group, a thiol Terrestrial biomass constitutes a multifaceted group, or similar heteroatomic groups. A simi- conglomeration of low and high molecular mass larly broad meaning applies to the word ‘sugar’, products, exemplified by sugars, hydroxy and which is often used as a synonym for amino acids, lipids, and biopolymers such as ‘monosaccharide’, but may also be applied to cellulose, hemicelluloses, chitin, starch, lignin simple compounds containing more than one and proteins.
    [Show full text]
  • AP Biology Summer Assignment Holy Spirit Prep 2019
    AP Biology Summer Assignment Holy Spirit Prep 2019 Textbook: “Principle of Life” 2nd edition, for the AP course 2018 Chapters 1-3 (pages 1-59) This summer assignment will cover the introduction to biology, chemistry of life, and essential macromolecules for life. The concepts covered in these chapters are either review from previous classes or relatively easy enough to allow you to work through them on your own. The more complex connections between these chapters will be discussed during the first two weeks of the school year. Biozone Workbook: “AP Biology 1” Student edition, 2nd edition 2017 and Biozone Workbook: “AP Biology 2” Student edition, 2nd edition 2017 Read each chapter in the text book, answer all the questions listed below, and complete the corresponding pages in the biozone workbooks covering those topics. The answers can be typed or handwritten for the questions below and written in the workbook for the biozone pages listed. Do not tear out the biozone workbook pages. I will check your answers directly from the workbook. This assignment will be due on Wednesday, Aug 21, 2019. We will have a test over the material during the second week of the school year. For questions, contact Mr. Harrison at [email protected] Chapter 1: Principles of Life Answer the following: 1. Organisms share many conserved biological, chemical, and structural characteristics. Briefly outline the 8 distinctive characteristics of life shared by all living organisms. 2. How do the shared characteristics on your list (in #1) provide evidence for evolution? 3. There are several competing hypotheses about the evolution of early life on Earth, but as life evolved, all cells clearly had requirements for raw materials and energy transfers.
    [Show full text]
  • Aerospace Medicine & Biology Space Medicine & Biology Aero 9
    Aerospace Medicine NASA SP-7011 (232) and Biology May 1982 IWNSA A Continuing Bibliography with Indexes (NASA-SP-701 1 (232) ) AT. CE MEDICINE AND N82-2898U BIOLOGY: A CONTINUING BIBLIOGRAPHY WITH INDEXES (SUPPLEMENT 232) (National Aeronautics and Space Administration) 137 p Unclas Hc <7.QQ CSCL Ofa£ 00/52 25483 National Aeronautics and Space Administration Aerospace Medicine & Biology space Medicine & Biology Aero 9 Medicine & Biology Aerospao dicine & Biology Aerospace M ne & Biology AerosjatoiMedici Biology Aerospace Medicine & gy Aerospace Medicine & Biolo 3rospace Medicine & Biology / pace Medicine & Biology Aeros Medicine & Biology Aerospace cine & Biology Aerospace Med & Biology Aerospace Medicine < ACCESSION NUMBER RANGES Accession numbers cited in this Supplement fall within the following ranges. STAR (N-10000 Series) N82-16040 - N82-18118 IAA (A-10000 Series) A82-18840 - A82-22250 This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by PRC Government Information Systems. NASA SP-7011(232) AEROSPACE MEDICINE AND BIOLOGY A CONTINUING BIBLIOGRAPHY WITH INDEXES (Supplement 232) A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information sys- tem and announced in April 1982 in Scientific and Technical Aerospace Reports (STAR) International Aerospace Abstracts (IA A). Scientific and Technical Information Branch 1982 National Aeronautics and Space Administration Washington, DC NASA SP-7011 and its supplements are available from the National Technical Information Service (NTIS). Questions on the availability of the predecessor publications, Aerospace Medicine and Biology (Volumes I - XI) should be directed to NTIS. This supplement is available as NTISUB/123/093 from the National Technical Information Service (NTIS), Springfield, Virginia 22161 at the price of $7.00 domestic; $14.00 foreign.
    [Show full text]
  • Food Carbohydrate Chemistry Food Carbohydrate Chemistry
    Food Carbohydrate Chemistry Food Food Carbohydrate Chemistry Carbohydrates are major components of foods. They account for more than 90 percent of the dry matter of fruits and vegetables and provide 70 to 80 percent Food Carbohydrate of human caloric intake worldwide so, from a quantitative perspective alone, they warrant the attention of food chemists. From the standpoint of food quality, carbohydrates are multifunctional. Sugars are the major source of sweetness, but in addition, carbohydrates provide flavor, color, and texture – desirable, Chemistry undesirable, and neutral – as well as having functional roles as thickeners, gelling agents, bodying agents, and stabilizers in foods. When it comes to nutrition, carbohydrates are often blamed for such health issues as obesity, diabetes, and dental caries. It should be realized that carbohydrates are, or should be, the principal source of energy in our diet and that good nutrition Ronald E. Wrolstad is based on the consumption of the appropriate carbohydrates, in the right amounts, and in balance with other nutrients. Food Carbohydrate Chemistry relates basic carbohydrate chemistry to the quality attributes and functional properties of foods. Structure and nomenclature Press of sugars and sugar derivatives are covered but limited to those compounds that exist naturally in foods or are used as food additives and food ingredients. Review and presentation of fundamental carbohydrate chemistry is minimal, with the assumption that readers have already taken general organic chemistry and general biochemistry. Chemical reactions focus on those that have an impact on food quality and occur under processing and storage conditions. How chemical and physical properties of sugars and polysaccharides affect the functional properties of foods is emphasized.
    [Show full text]
  • Day 1. Yao. Intro to Carbohydrates
    Introduction to Carbohydrates: Basic Concepts, Monosaccharides, Oligosaccharides, and Polysaccharides Dr. Yuan Yao Whistler Center for Carbohydrate Research October 1, 2019 2 History of Carbohydrate Uses & Knowledge 10,000 BCE Sugarcane processing in New Guinea 6000 BCE Sugarcane culture developed in India 6000 BCE Cellulose, as cotton, used by many cultures 4000 BCE Starch used as an adhesive in Egypt 1500 BCE Cotton cloth from India to Persia and China 1000 BCE Use of sucrose in candies, confections, and medicines in Egypt 100 CE Paper made for writing in China 700 CE Paper coated with starch paste to retain ink and provide strength Adapted from John Robyt, Essentials of Carbohydrate Chemistry 3 History of Carbohydrate Uses & Knowledge 1600 CE Sugar refineries developed in Europe 1700 CE Sugar beet developed in Europe for obtaining sucrose 1792 CE A sugar isolated from honey that was different from sucrose 1802 CE A sugar found in grapes that was also different from sucrose 1808 CE Malus developed plane polarized light and observed optical rotation by carbohydrates 1811 CE Acid-hydrolyzed starch produced a sweet crystalline sugar 1820 CE Acid-hydrolyzed cellulose also produced a sweet crystalline sugar 1821 CE Production of dextrins by heating starch: British Gums Adapted from John Robyt, Essentials of Carbohydrate Chemistry 1 4 History of Carbohydrate Uses & Knowledge 1838 CE Sugar from honey, grapes, starch, & cellulose was found to be glucose 1866 CE Kekule changed the name of glucose to dextrose because it rotates plane polarized
    [Show full text]
  • Fructo-Oligosaccharide Effects on Serum Cholesterol Levels. an Overview1
    9 – ORIGINAL ARTICLE SYTEMATIC REVIEW Fructo-oligosaccharide effects on serum cholesterol levels. An overview1 Graciana Teixeira CostaI, Giselle Castro de AbreuII, André Brito Bastos GuimarãesII, Paulo Roberto Leitão de VasconcelosIV, Sergio Botelho GuimarãesV DOI: http://dx.doi.org/10.1590/S0102-865020150050000009 IAssistant Professor, Nutrition Division, Federal University of Amazon (UFAM), Brazil. Fellow PhD degree, Postgraduate Program in Surgery, Department of Surgery, Federal University of Ceara (UFC), Fortaleza-CE, Brazil. Conception and design of the study, acquisition and interpretation of data. IIGraduate student, Faculty of Medicine, UFC, Fortaleza-CE, Brazil. Acquisition of data. IIIFellow Master degree, Postgraduate Program in Surgery, Department of Surgery, UFC, Fortaleza-CE, Brazil. Acquisition of data. IVPhD, Full Professor, Coordinator, Postgraduate Program in Surgery, Department of Surgery, UFC, Fortaleza-CE, Brazil. Critical revision. VPhD, Associate Professor, Department of Surgery, Head, Experimental Surgical Research Laboratory (LABCEX), UFC, Fortaleza-CE, Brazil. Critical revision, final approval of manuscript. ABSTRACT PURPOSE: To address the effects of fructooligosaccharides (FOS) intake on serum cholesterol levels. METHODS: We performed a search for scientific articles in MEDLINE database from 1987 to 2014, using the following English keywords: fructooligosaccharides; fructooligosaccharides and cholesterol. A total of 493 articles were found. After careful selection and exclusion of duplicate articles 34 references were selected. Revised texts were divided into two topics: “FOS Metabolism” and “FOS effects on plasma cholesterol.” RESULTS: The use of a FOS diet prevented some lipid disorders and lowered fatty acid synthase activity in the liver in insulin-resistant rats. There was also reduction in weight and total cholesterol in beagle dogs on a calorie-restricted diet enriched with short-chain FOS.
    [Show full text]
  • Approval Report – Application A1123 Isomalto-Oligosaccharide As A
    16 May 2017 [13–17] Approval report – Application A1123 Isomalto-oligosaccharide as a Novel Food Food Standards Australia New Zealand (FSANZ) assessed an Application made by Essence Group Pty Ltd via FJ Fleming Food Consulting Pty Ltd to permit isomalto-oligosaccharide as a novel food for use as an alternative (lower calorie) sweetener and bulk filler in a range of general purpose and special purpose foods, and prepared a draft food regulatory measure. On 13 December 2016, FSANZ sought submissions on a draft variation and published an associated report. FSANZ received six submissions. FSANZ approved the draft variation on 3 May 2017. The Australia and New Zealand Ministerial Forum on Food Regulation was notified of FSANZ’s decision on 15 May 2017. This Report is provided pursuant to paragraph 33(1)(b) of the Food Standards Australia New Zealand Act 1991 (the FSANZ Act). i Table of contents EXECUTIVE SUMMARY ......................................................................................................................... 3 INTRODUCTION ..................................................................................................................................... 5 1.1 THE APPLICANT ......................................................................................................................... 5 1.2 THE APPLICATION ...................................................................................................................... 5 1.3 CURRENT STANDARDS ..............................................................................................................
    [Show full text]
  • Effect of Some Oligosaccharides on Functional Properties of Wheat Starch
    Zeng et al Tropical Journal of Pharmaceutical Research January 2015; 14 (1): 7-14 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v14i1.2 Original Research Article Effect of Some Oligosaccharides on Functional Properties of Wheat Starch Jie Zeng*, Haiyan Gao, GuangLei Li, Junliang Sun and Hanjun Ma School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China *For correspondence: Email: [email protected]; Tel: +86 373 3693005; Fax: +86 373 3693005 Received: 25 August 2013 Revised accepted: 10 December 2014 Abstract Purpose: To investigate the effects of oligosaccharides on the functional properties of wheat starch. Methods: The blue value, retrogradation and pasting properties of wheat starch were determined. In addition, water activity (Aw), melting enthalpy and melting temperature of wheat starch paste were analyzed. Results: Fructo-oligosaccharide (FOS) and xylo-oligosaccharide (XOS) inhibited the retrogradation of wheat starch. The peak viscosity of wheat starch with oligosaccharides increased from 3238 ± 8 to 3822 ± 10 cP, with the highest peak obtained for sucrose. The setback of wheat starch decreased (from 1158 ± 5 to 799 ± 6 cP), with the lowest setback for FOS. Aw of control sample changed significantly (falling from 0.978 ± 0.025 to 0.397 ± 0.013) when the drying time was from 6 to 12 hours, while the Aw of the samples to which different oligosaccharides were added only showed slight decrease (from 0.98 ± 0.019 to 0.854 ± 0.022).
    [Show full text]