Beta-Glucan Effects on Pasting Properties and Potential Health Benefits of Flours from Different Oat Lines Yanjun Liu Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Utilization of Cellulose Oligosaccharides by Cellvibrio Gilvus MARION L
JOURNAL OF BACTERIOLOGY, Jan., 1965 Vol. 89, No. 1 Copyright © 1965 American Society for Microbiology Printed in U.S.A. Utilization of Cellulose Oligosaccharides by Cellvibrio gilvus MARION L. SCHAFER' AND KENDALL W. KING Department of Biochemistry and Nutrition, Virginia Polytechnic Institute, Blacksburg, Virginia Received for publication 19 August 1964 ABSTRACT SCHAFER, MARION L. (Virginia Polytechnic Institute, Blacksburg), AND KENDALL W. KING. Utilization of cellulose oligosaccharides by Cellvibrio gilvus. J. Bacteriol. 89: 113-116. 1965.-The hypothesis that oligosaccharides of the cellulose polymer series can be absorbed by cellulolytic bacteria, prior to hydrolysis to the level of glucose or cello- biose, has been tested. Resting-cell suspensions of Cellvibrio gilvus removed oligosac- charides of one to six monomer units from solution at a rate providing the cells with 37 X 106 to 42 X 106 molecules of glucose per cell per minute. There was no concurrent extracellular hydrolysis of the oligosaccharides. The fact that the rate of up- take was constant indicates that an active absorption system is involved. Filtrates from washed-cell suspensions before or after exposure to the oligosaccharides were in- capable of hydrolyzing the sugars. In media where the carbohydrate concentration was growth-limiting, the larger members of the oligosaccharide series supported greater final cell densities than the smaller sugars, but there were no recognizable differences in the growth rates during the logarithmic-growth phase. Recent reviews of microbial utilization of phosphorylase (Ayers, 1958; Sih and McBee, cellulose as an energy and carbon source have 1955; Hulcher and King, 1958a, b). considered primarily the extracellular events In the present report, the ability of C. -
Added Beta-Glucan As a Source of Fibre for Consumers
ESPOO 2006 VTT PUBLICATIONS 594 View metadata, citation and similar papers at core.ac.uk brought to you by CORE VTT PUBLICATIONS 594VTT PUBLICATIONS Added ßglucan as a source of fibre for consumers provided by Helsingin yliopiston digitaalinen arkisto The intake of dietary fibre does not currently meet the recommendations in many Western countries, and it is important to find new ways to increase its intake. The aim of this thesis was to investigate whether providing foods enriched with ß•glucan would be a feasible strategy for improving consumers’ dietary fibre intake regarding the sensory properties and consumer acceptance of these foods. ß•glucan is a good option for fibre enrichment of foods because of its proven capability to reduce elevated blood cholesterol levels and to balance blood glucose and insulin response after meals. The study showed that dietary fibre had a positive image among Finnish respondents and it was considered important for health. Beverages and soups with added ß•glucan were acceptable regarding their sensory characteristics, thus being feasible carrier products for ß•glucan and providing a possible nontraditional source of dietary fibre. Liking for the products with added ß•glucan was the most important factor affecting the willingness to use them, indicating that the sensory quality of products with added dietary fibre with health benefits has to be acceptable, only then consumers are willing to buy them. Marika Lyly Added ß•glucan as a source of fibre for consumers Tätä julkaisua myy Denna publikation säljs av This publication is available from VTT VTT VTT PL 1000 PB 1000 P.O. -
Action of Low Molecular Weight Glucan on Trascriptome of Neoplastic Cell Lines
WCRJ 2020; 7: e1460 ACTION OF LOW MOLECULAR WEIGHT GLUCAN ON TRASCRIPTOME OF NEOPLASTIC CELL LINES A. DEL BUONO1, S. DI MARTINO2, A. D’ORTA1, A. DE MONACO3, D. SIMONA4, M.R. SANTILLO4, C. MONTANINO5, B. DE FELICE5 1DD Clinic Research Foundation, Caserta, Italy 2Pathology Unit, San Rocco Hospital, Sessa Aurunca (ASL CE), Caserta, Italy 3CETAC Research Center, Caserta, Italy 4Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy 5Department of Biological and Pharmaceutical Environmental Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy Abstract – Objective: Glucans are already known as biological modifiers of the immune system and cytokine modulation (IFN-y; TNF; T-CD4/CD8), but the role of low molecular weight glucans on transcriptome regulation is not well documented. Materials and Methods: In this paper, the mechanism of action of a mix in capsules of 0.6 g of β-Glucan (Active hexose correlated compound “AHCC” and β-Glucan 1,3-1,6) on the neoplastic cell line transcriptome has been explored. The cellular models used were Caco2 and LS174T cell lines. Transcriptome analysis was performed by RNA expression analysis of transcripts of both single and multiple samples. The analysis was completed with the aid of information technology. Results: ROS (Reactive Oxygen Species) decrease following glucans treatment (Figure 1) com- bined with a marked improvement in the Redox control of SOD1 (Superoxide Dismutase 1) (Figure 2), which is pre-sent in the cytosol of all eukaryotic cells with copper and zinc (Cu-Zn-SOD). Follow- ing glucan mix treatment, COX-2 (cyclooxygenase-2) expression levels showed a marked reduction (Figure 3A). -
FOOD ANALYSIS: Carbohydrate Analysis
FOOD ANALYSIS: Carbohydrate Analysis B. Pam Ismail [email protected] FScN 146 612 625 0147 FOOD ANALYSIS: Carbohydrate Analysis The following is/are a carbohydrate(s): A. Pectin B. Cellulose C. Lignin D. A & B E. B & C F. A & C G. All of the above H. None of the above 1 FOOD ANALYSIS: Carbohydrate Analysis The following is/are a carbohydrate(s): A. Pectin B. Cellulose C. Lignin D. A & B E. B & C F. A & C G. All of the above H. None of the above FOOD ANALYSIS: Carbohydrate Analysis The method used to determine starch gelatinization could be used to determine starch retrogradation A. True B. False 2 FOOD ANALYSIS: Carbohydrate Analysis Importance of Carbohydrates Importance of Analyzing Carbohydrates FOOD ANALYSIS: Carbohydrate Analysis Carbohydrate Classification CH2OH CH2OH HO O O OH OH OH Monosaccharides O Di and oligosaccharides (2-10 units) OH OH Polysaccharides CH2OH HOH C O O 2 OH o Starch HO O HO CH2OH o Dietary fiber OH OH CH2OH CH2OH O O OH OH O O O OH OH CH2OH CH2OH CH2OH CH2 CH2OH CH2OH O O O O OH OH O O OH OH OH OH O O O O O O O OH OH OH OH OH OH 3 FOOD ANALYSIS: Carbohydrate Analysis General Sample Preparation Drying o Vacuum oven Fat extraction o Soxhlet FOOD ANALYSIS: Carbohydrate Analysis Total Carbohydrate Analysis H (research purposes) HO O Phenol-sulfuric acid method O What happens to glycosidic linkages under acidic conditions? strongly acidic conditions furans monosaccharides (heat) CH2OH CH2OH O O enolizations, OH OH OH dehydrating reactions H O HO O OH OH O 4 FOOD ANALYSIS: Carbohydrate Analysis Total Carbohydrate -
Molecular Interactions of Β-(1→3)-Glucans with Their Receptors
Molecules 2015, 20, 9745-9766; doi:10.3390/molecules20069745 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Molecular Interactions of β-(1→3)-Glucans with Their Receptors Laurent Legentil 1,2, Franck Paris 1,2, Caroline Ballet 1,2, Sophie Trouvelot 3, Xavier Daire 3, Vaclav Vetvicka 4,* and Vincent Ferrières 1,2,* 1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France; E-Mails: [email protected] (L.L.); [email protected] (F.P.); [email protected] (C.B.) 2 Université européenne de Bretagne, F-35000 Rennes, France 3 INRA, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300, 21065 Dijon Cedex, France; E-Mails: [email protected] (S.T.); [email protected] (X.D.) 4 Department of Pathology, University of Louisville, Louisville, KY 40202, USA * Authors to whom correspondence should be addressed; E-Mails: [email protected] (V.V.); [email protected] (V.F.); Tel.: +1-502-852-1612 (V.V.); +33-223-238-058 (V.F.). Academic Editors: Els Van Damme and Kristof De Schutter Received: 14 April 2015 / Accepted: 20 May 2015 / Published: 27 May 2015 Abstract: β-(1→3)-Glucans can be found as structural polysaccharides in cereals, in algae or as exo-polysaccharides secreted on the surfaces of mushrooms or fungi. Research has now established that β-(1→3)-glucans can trigger different immune responses and act as efficient immunostimulating agents. -
Beta-Glucan COMMON NAME: Beta-Glucan
Supplements to help manage Blood Sugar Health Beta-Glucan COMMON NAME: beta-glucan SCIENTIFIC NAME: 1-3, 1-6-beta-glucan; beta-1,3-D-glucan; beta-1-6,1,3-beta-glucan RECOMMENDED WITH CAUTION LEVELS OF EVIDENCE 1 2 Recommended: Recommended with Caution: Several well-designed studies in humans Preliminary studies suggest some benefit. have shown positive benefit. Our team is Future trials are needed before we can confident about its therapeutic potential. make a stronger recommendation. 3 4 Not Recommended - Evidence: Not Recommended – High Risk: Our team does not recommend this Our team recommends against using this product because clinical trials to date product because clinical trials to date suggest little or no benefit. suggest substantial risk greater than the benefit. Evaluated Benefits Beta-glucan may lower blood glucose and insulin levels for improved blood sugar control in diabetes and metabolic syndrome. Supported by P&G BloodSugar-RecommendedWithCaution.indd 1 6/26/2017 4:34:17 PM Source Beta-glucan is a soluble fiber derived from the cell walls of certain algae, bacteria, fungi, yeast, and plants. Yeast-derived beta-glucan is more palatable and easier to incorporate into food products. Oat beta-glucan is soluble in water and may have a higher therapeutic benefit with its increased viscosity. Indications/Population Lower post-prandial glucose and insulin levels Lower HbA1c Patients with type 2 diabetes and prediabetes Patients with metabolic syndrome Mechanism of Action The mechanism of glucose lowering by beta-glucan is unclear. It may be due to delayed gastric emptying, and/or decreased rates of D-glucose uptake across the small intestine. -
Fractionation of Barley Flour Using Elusieve Processing: a Combination of Sieving and Air Classification
FRACTIONATION OF BARLEY FLOUR USING ELUSIEVE PROCESSING: A COMBINATION OF SIEVING AND AIR CLASSIFICATION R. Srinivasan, K. B. Hicks, R. K. Challa, J. Wilson, M. Kurantz, R. A. Moreau ABSTRACT. The availability of winter barley in areas of the U.S. that are not well suited to grow corn, such as the mid‐Atlantic states, makes it a feedstock of choice for fuel ethanol production in those regions. Recently, it was found that the Elusieve process, the combination of sieving and air classification (elutriation or aspiration), was effective in fiber separation from corn flour prior to fermentation. The objective of this study was to determine the effect of the Elusieve process on the compositions of fractions from barley flour of a hulled (Thoroughbred) and a hulless (Doyce) barley variety. The barley grains were milled using a hammer mill and sieved into four size fractions. Air classification of the two largest size fractions using a commercial aspirator resulted in heavier fractions with higher starch, higher beta‐glucan, and lower neutral detergent fiber (NDF) contents. Hulls were preferentially carried into the lighter fractions, as signified by higher NDF contents of lighter fractions. Elusieve processing was more effective (higher separation factors) for the hulled variety than the hulless variety because higher hull presence caused increased carryover of hull into the lighter fractions for the hulled variety. The increase in beta‐glucan and starch contents in barley flour, by hull separation using the combination of sieving and air classification, may increase ethanol productivity and may be beneficial in fuel ethanol production from barley when using a process that converts both starch and beta‐glucans into fuel ethanol. -
Perspective of Β-Glucan As Functional Ingredient for Food Industry
ition & F tr oo u d N f S o c l i e a n n c Ahmad et al., J Nutr Food Sci 2012, 2:2 r e u s o J Journal of Nutrition & Food Sciences DOI: 10.4172/2155-9600.1000133 ISSN: 2155-9600 Research Article Open Access Perspective of β-Glucan as Functional Ingredient for Food Industry Asif Ahmad1*, Bushra Munir2, Muhammad Abrar4, Shaukat Bashir1, Muhammad Adnan3 and Tahira Tabassum1 1Department of Food Technology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan 2Department of Chemistry & Biochemistry, University of Agriculture, Faisalabad, 38040, Paksitan 3Wheat Research Institute, Ayub Agriculture Research Institute, Faisalabad, 38040, Paksitan 4Food and Agriculture Section, Planning and Development Division, Pak Secretariat, Islamabad, 47000, Pakistan Abstract β-Glucan is an important functional ingredient having many health benefits. A lot of sources for this valuable ingredient have been identified. β-Glucan from these sources may be extracted to fulfill the ever growing demand for nutraceutical product. The industrialists may also exploit this situation by using this functional ingredient for developing new nutraceutical products. Such products may provide health benefits beyond basic nutrition. Numerous health benefits of β-Glucan are documented in scientific literature that may range from simple stomach problem to complex defense shield against cancer. This review focuses on potential sources of β-glucan, health implications, industrial applications and immunomodulatory effect of β-glucan. Keywords: β-glucan; Functional foods; Nutraceutical; Immuno- linkages. The structure of β-glucan molecule consists of predominantly modulation; Health benefits; Cholesterol; Food industry β-(1→3)-linked cellotriosyl and cellotetraosyl units [6,7] with overall glucose residues may extend more than 250,000 [8]. -
Food Intake and Symptoms in FGID: Short-Chain Carbohydrates
Food intake and symptoms in FGID: Short-chain carbohydrates Susan J Shepherd1, Miranda CE Lomer2, Peter R Gibson3 1 La Trobe University, Department of Dietetics and Human Nutrition Bundoora, Victoria 3086, Australia 2 4.21 Franklin-Wilkins Building, Nutritional Sciences Division King's College London, 150 Stamford Street, London SE1 9NH, UK 3 Department of Gastroenterology, The Alfred Hospital and Monash University 55 Commercial Road, Melbourne Victoria 3004, Australia Short Title (Running Head): Food intake, symptoms in FGID: Short-chain carbohydrates Words: 4,449 Correspondence to: Dr Susan Shepherd Department of Dietetics and Human Nutrition, La Trobe University, Bundoora, Victoria 3086, Australia Telephone +61 3 9890 4911 Fax + 61 3 9890 4944 Email [email protected] or [email protected] 1 Abstract Carbohydrates occur across a range of foods regularly consumed including grains such as wheat and rye, vegetables, fruits and legumes. Short-chain carbohydrates with chains of up to ten sugars vary in their digestibility and subsequent absorption. Those that are poorly absorbed exert osmotic effects in the intestinal lumen increasing its water volume, and are rapidly fermented by bacteria with consequent gas production. These two effects alone may underlie most of the induction of gastrointestinal symptoms after they are ingested in moderate amounts via luminal distension in patients with visceral hypersensitivity. This has been the basis of the use of lactose-free diets in those with lactose malabsorption and of fructose-reduced diets for fructose malabsorption. However, application of such dietary approaches in patients with functional bowel disorders has been restricted to observational studies with uncertain efficacy. -
Polysaccharide Treatment Reduces Gastric Ulceration in Active Horses
Journal of Equine Veterinary Science 50 (2017) 116–120 Contents lists available at ScienceDirect Journal of Equine Veterinary Science journal homepage: www.j-evs.com Original Research Polysaccharide Treatment Reduces Gastric Ulceration in Active Horses Nathan Slovis* McGee Medical Center, Hagyard Equine Medical Institute, Lexington, KY article info abstract Article history: Equine gastric ulceration effects condition, performance, and behavior. Prevalence of ulcers Received 16 August 2016 in horses can reach 80% to 100%. After reviewing the literature, we propose an oral Received in revised form 17 November 2016 polysaccharide preparation will be effective in treating equine gastric ulceration. Ten adult Accepted 17 November 2016 horses with gastric ulceration were used to evaluate the clinical efficacy of a poly- Available online 30 November 2016 saccharide gel containing a blend of hyaluronan and schizophyllan for 30 days. Post- treatment gastroscopies were conducted to determine treatment findings, and images Keywords: were scored. Percent healing was assessed comparing initial images to posttreatment EGUS fi Hyaluronan ndings. Of the horses treated with the combinational therapy, 90% showed complete Sodium hyaluronate resolution and/or improvement in ulcerative areas, increased appetite, weight gain, and Polysaccharide positive behavioral changes. This study provides evidence that gastric ulceration in active Gastric ulcer horses can be successfully treated with a naturally safe and effective polysaccharide blend Schizophyllan of hyaluronan and schizophyllan. Ó 2016 Elsevier Inc. All rights reserved. 1. Introduction pepsin, bile acids, and organic acids) and mucosal protec- tive factors (mucus, bicarbonate) [1]. Glandular gastric ul- 1.1. Gastric Ulceration in Horses cers are most likely due to decreased blood flow, mucus production, and bicarbonate secretion. -
The Structure of a P-(1-*3)-D-Glucan from Yeast Cell Walls by DAVID J
Biochem. J. (1973) 135, 19-30 19g Printed in Great Britain The Structure of a P-(1-*3)-D-Glucan from Yeast Cell Walls By DAVID J. MANNERS, ALAN J. MASSON and JAMES C. PATTERSON Department ofBrewing and Biological Sciences, Heriot- Watt University, Edinburgh EH1 IHX, U.K. (Received 2 February 1973) Yeast glucan as normally prepared by various treatments of yeast (Saccharomyces cerevisiae) cell walls to remove mannan and glycogen is still heterogeneous. The major component (about 85 %) is a branched fi-(1 -+3)-glucan of high molecular weight (about 240000) containing 3% of f-(1 -÷6)-glucosidic interchain linkages. The minor com- ponent is a branched ,-(I -÷6)-glucan. A comparison of our results with those of other workers suggests that different glucan preparations may differ in the degree of hetero- geneity and that the major fl-(1 -*3)-glucan component may vary considerably in degree of branching. The structure of the polysaccharide components of also incorrect. We now describe a reassessment of yeast cell walls has been the subject of numerous our previous experimental results (Manners & studies (for reviews, see Phaff, 1963, 1971; Mac- Patterson, 1966), together with additional informa- William, 1970). In this earlier work, the cell wall of tion, which leads to the conclusion that the major baker's yeast (Saccharomyces cerevisiae) has been glucan component of yeast cell walls has a branched regarded as a complex containing glucan, mannan, structure, containing about 3 % of f-(! -+6)-D-gluco- small amounts ofchitin, phosphate, lipid and protein, sidic interchain linkages. The results oi an examina- part of the latter being enzymic. -
Carbohydrates: Occurrence, Structures and Chemistry
Carbohydrates: Occurrence, Structures and Chemistry FRIEDER W. LICHTENTHALER, Clemens-Schopf-Institut€ fur€ Organische Chemie und Biochemie, Technische Universit€at Darmstadt, Darmstadt, Germany 1. Introduction..................... 1 6.3. Isomerization .................. 17 2. Monosaccharides ................. 2 6.4. Decomposition ................. 18 2.1. Structure and Configuration ...... 2 7. Reactions at the Carbonyl Group . 18 2.2. Ring Forms of Sugars: Cyclic 7.1. Glycosides .................... 18 Hemiacetals ................... 3 7.2. Thioacetals and Thioglycosides .... 19 2.3. Conformation of Pyranoses and 7.3. Glycosylamines, Hydrazones, and Furanoses..................... 4 Osazones ..................... 19 2.4. Structural Variations of 7.4. Chain Extension................ 20 Monosaccharides ............... 6 7.5. Chain Degradation. ........... 21 3. Oligosaccharides ................. 7 7.6. Reductions to Alditols ........... 21 3.1. Common Disaccharides .......... 7 7.7. Oxidation .................... 23 3.2. Cyclodextrins .................. 10 8. Reactions at the Hydroxyl Groups. 23 4. Polysaccharides ................. 11 8.1. Ethers ....................... 23 5. Nomenclature .................. 15 8.2. Esters of Inorganic Acids......... 24 6. General Reactions . ............ 16 8.3. Esters of Organic Acids .......... 25 6.1. Hydrolysis .................... 16 8.4. Acylated Glycosyl Halides ........ 25 6.2. Dehydration ................... 16 8.5. Acetals ....................... 26 1. Introduction replacement of one or more hydroxyl group (s) by a hydrogen atom, an amino group, a thiol Terrestrial biomass constitutes a multifaceted group, or similar heteroatomic groups. A simi- conglomeration of low and high molecular mass larly broad meaning applies to the word ‘sugar’, products, exemplified by sugars, hydroxy and which is often used as a synonym for amino acids, lipids, and biopolymers such as ‘monosaccharide’, but may also be applied to cellulose, hemicelluloses, chitin, starch, lignin simple compounds containing more than one and proteins.