FOOD ANALYSIS: Carbohydrate Analysis

Total Page:16

File Type:pdf, Size:1020Kb

FOOD ANALYSIS: Carbohydrate Analysis FOOD ANALYSIS: Carbohydrate Analysis B. Pam Ismail [email protected] FScN 146 612 625 0147 FOOD ANALYSIS: Carbohydrate Analysis The following is/are a carbohydrate(s): A. Pectin B. Cellulose C. Lignin D. A & B E. B & C F. A & C G. All of the above H. None of the above 1 FOOD ANALYSIS: Carbohydrate Analysis The following is/are a carbohydrate(s): A. Pectin B. Cellulose C. Lignin D. A & B E. B & C F. A & C G. All of the above H. None of the above FOOD ANALYSIS: Carbohydrate Analysis The method used to determine starch gelatinization could be used to determine starch retrogradation A. True B. False 2 FOOD ANALYSIS: Carbohydrate Analysis Importance of Carbohydrates Importance of Analyzing Carbohydrates FOOD ANALYSIS: Carbohydrate Analysis Carbohydrate Classification CH2OH CH2OH HO O O OH OH OH Monosaccharides O Di and oligosaccharides (2-10 units) OH OH Polysaccharides CH2OH HOH C O O 2 OH o Starch HO O HO CH2OH o Dietary fiber OH OH CH2OH CH2OH O O OH OH O O O OH OH CH2OH CH2OH CH2OH CH2 CH2OH CH2OH O O O O OH OH O O OH OH OH OH O O O O O O O OH OH OH OH OH OH 3 FOOD ANALYSIS: Carbohydrate Analysis General Sample Preparation Drying o Vacuum oven Fat extraction o Soxhlet FOOD ANALYSIS: Carbohydrate Analysis Total Carbohydrate Analysis H (research purposes) HO O Phenol-sulfuric acid method O What happens to glycosidic linkages under acidic conditions? strongly acidic conditions furans monosaccharides (heat) CH2OH CH2OH O O enolizations, OH OH OH dehydrating reactions H O HO O OH OH O 4 FOOD ANALYSIS: Carbohydrate Analysis Total Carbohydrate Analysis (research purposes) Phenol-sulfuric acid method Furfural derivatives (furans) react with phenols to produce colored compounds (triarylmethane dyes) Absorption maxima between 480 and 490 nm OH OH absorption @ 490 nm concentration + H2SO4 2 O R OHC O R OH Absorption @ 490 nm 490 Absorption @ Not a Stoichiometric reaction concentration FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Somogyi-Nelson Colorimetric Munson-Walker Based on reducing Methods Cu+2 to Cu+1 Lane-Eynon Paper and TLC Chromatographic Methods HPLC GC Enzymatic Methods 5 FOOD ANALYSIS: Carbohydrate Analysis Extraction Solvent extraction o mono- and disaccharides are soluble in water and also in 80% ethanol o most polysaccharides and proteins are insoluble in 80% ethanol o mono/disaccharide extraction using hot 80% ethanol o neutral pH conditions required to prevent hydrolysis Carrez treatment o clarification with Carrez-reagents o Potassium hexacyanoferrate K4[Fe(CN)6] solution, ZnSO4 o Breaks emulsions o precipitates proteins and partially polysaccharides o absorbs colors FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Colorimetric For reducing sugars Methods Principle: Based on reduction of cupric ions in alkaline solution to cuprous ions by reducing sugars; reaction with a complex compound to generate color; amount of cuprous ions generated is measured to quantitate reducing sugars (gravimetric or titration) 6 FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Colorimetric For reducing sugars Methods Principle: Based on reduction of cupric ions in alkaline solution to cuprous ions by reducing sugars; reaction with a complex compound to generate color; amount of cuprous ions generated is measured to quantitate reducing sugars (gravimetric or titration) CHO COOH H OH Cu2+ H OH HO H Cu2O + HO H - H OH OH H OH H OH H OH CH OH 2 CH2OH What is wrong? FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Colorimetric For reducing sugars Methods Lane-Eynon Somogyi-Nelson Munson-Walker Cu(II) complexes and Quantification: reagents uses: -Determination of Cu2O by -Citrate gravimetric procedures or titrimetric procedures (sodium - ethylenediaminetetraacetic Differences in Methods acid (EDTA) thiosulfate or potassium permanganate - tartrate - spectrophotometric assays - pH and reagent to create (reduction of arsenomolybdate, alkaline conditions (NaOH, blue color – 520 nm) KOH, Na2CO3) 7 FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Colorimetric For reducing sugars Methods What carbohydrates do you analyze using the Somogyi-Nelson method and other reduction methods? How can you analyze sucrose? CH2OH HOH C O O 2 OH HO O HO CH2OH OH OH FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Very popular approach in the field of carbohydrate Enzymatic analysis Methods Enzymes are proteins with powerful catalytic activity (lower the activation energy) High specificity for both the compound to be converted and for the type of reaction enzyme reactant enzyme product 8 FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Enzymatic food analysis involves determination of food Enzymatic constituents which are usually substrates for enzymes Since the final determination is a spectrophotometric Methods assay solutions have to be clarified, sometimes enzyme- inhibitors have to be removed Very often two types of reaction are necessary since it is not possible to measure the reactant or the product Measuring the reaction food Auxiliary reaction constituent A + B P + Q Indicator reaction P + C R + S C, R or S FOOD ANALYSIS: Carbohydrate Analysis glucose Auxiliary reaction A + B P + Q D-Glucose + ATP Hexokinase Glucose-6-phosphate + ADP Indicator reaction NADPH P + C R + S Glucose-6-phosphate + NADP+ G6P-DH 6-Phosphogluconate + NADPH + H+ G6P-DH - Glucose-6-phosphate-Dehydrogenase 9 FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Enzymatic Methods Example Applications: o Monosaccharides Fructose, Glucose, Galactose o Oligosaccharides Lactose, Maltose, Sucrose o Polysaccharides Amylose, Amylopectin FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Enzymatic Methods Advantages: Usually specific for substance being measured Kits commercially available Generally have low detection limits Disadvantages: Interfering compounds maybe present Not always 100% specific 10 FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Chromatographic Paper and TLC Methods mostly qualitative information, however, TLC also used for quantitation Visualized by autoradiography FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Chromatographic Paper and TLC Methods TLC: stationary phases: cellulose, silica or impregnated silica mobile phase, e.g.: similar to paper Paper chromatography: Chromatography; 1-butanol-acetone-H2O stationary phase: cellulose filter; 4:5:1 (v/v); 1-butanol-ethanol-H2O mobile phase: e.g. n-propanol/ethyl 2:1:2 (v/v) (for acetate impregnated silica) acetate/H2O (65/10/25 v/v/v); Silica impregnation: acetates (0.02 – 0.2 M) or phosphates (0.07 – 0.5M) improved separation/resolution, spots are sharpened 11 FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Chromatographic HPLC Methods Anion-Exchange HPLC Normal-Phase HPLC Cation-Exchange HPLC Reversed-Phase HPLC FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Normal-Phase HPLC Stationary phase: unmodified silica strong interactions between free silanol groups of the silica gel and the hydroxyl groups of the carbohydrates good separation of carbohydrates almost impossible Use chemically modified silica stationary phases! Also called HILIC (Hydrophilic Interaction Liquid Chromatography) 12 FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Normal-Phase HPLC Chemically modified silica stationary phases (HILIC): amine-bonded stationary phases (e.g. -C3H6NH2) mobile phase usually acetonitrile/water (50-85% acetonitrile) separation may be influenced by the column temperature formation of hydrogen bonds between amino groups and hydroxyl groups FOOD ANALYSIS: Carbohydrate Analysis Recap Questions How do we measure total carbohydrates? What are the preparatory steps for carbohydrate analysis? How do we extract mono, di and oligosaccharides? Name methods used to determine mono, di, and oligosaccharides What is the basis of carbohydrate analysis using enzymes? 13 FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Normal-Phase HPLC ? Amine-bonded stationary phases Detection: usually RI-detection Drawbacks: gradient elution is not possible, insensitive and highly unspecific FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Normal-Phase HPLC Drawbacks of amine-bonded stationary phases: H+ O H OH H limited column life due to the formation C H+ of Schiff bases between the amino H C OH H C NR HNRC R-NH2 group and the sugar molecules HO C H H C OH H C OH -H O H C OH HO C H 2 HO C H H C OH H C OH H C OH Modifiers CH2OH H C OH H C OH CH2OH CH OH Glucoseglucose 2 ImineImin (Schiff Other modifications available for uses in carbohydrate analysis: base) … diol-bonded (e.g., -C3H6OC2H3OHCH2OH) stationary phases cyano-bonded stationary phases (e.g., -C2H4CN) 14 FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Reversed-Phase HPLC Stationary phase: e.g. RP-18-columns Used for the analysis of gluco-oligomers with water as mobile phase Separation of different monosaccharides is difficult….Why? What can be done? Reversed-phase chromatography is usually affected by anomers, resulting in peak doubling or broadening (use amine groups in mobile phase to acceleraate anomerization) FOOD ANALYSIS: Carbohydrate Analysis Mono- and Oligosaccharide Analysis Anion-Exchange HPLC In solution of high pH carbohydrate hydroxyl groups
Recommended publications
  • Utilization of Cellulose Oligosaccharides by Cellvibrio Gilvus MARION L
    JOURNAL OF BACTERIOLOGY, Jan., 1965 Vol. 89, No. 1 Copyright © 1965 American Society for Microbiology Printed in U.S.A. Utilization of Cellulose Oligosaccharides by Cellvibrio gilvus MARION L. SCHAFER' AND KENDALL W. KING Department of Biochemistry and Nutrition, Virginia Polytechnic Institute, Blacksburg, Virginia Received for publication 19 August 1964 ABSTRACT SCHAFER, MARION L. (Virginia Polytechnic Institute, Blacksburg), AND KENDALL W. KING. Utilization of cellulose oligosaccharides by Cellvibrio gilvus. J. Bacteriol. 89: 113-116. 1965.-The hypothesis that oligosaccharides of the cellulose polymer series can be absorbed by cellulolytic bacteria, prior to hydrolysis to the level of glucose or cello- biose, has been tested. Resting-cell suspensions of Cellvibrio gilvus removed oligosac- charides of one to six monomer units from solution at a rate providing the cells with 37 X 106 to 42 X 106 molecules of glucose per cell per minute. There was no concurrent extracellular hydrolysis of the oligosaccharides. The fact that the rate of up- take was constant indicates that an active absorption system is involved. Filtrates from washed-cell suspensions before or after exposure to the oligosaccharides were in- capable of hydrolyzing the sugars. In media where the carbohydrate concentration was growth-limiting, the larger members of the oligosaccharide series supported greater final cell densities than the smaller sugars, but there were no recognizable differences in the growth rates during the logarithmic-growth phase. Recent reviews of microbial utilization of phosphorylase (Ayers, 1958; Sih and McBee, cellulose as an energy and carbon source have 1955; Hulcher and King, 1958a, b). considered primarily the extracellular events In the present report, the ability of C.
    [Show full text]
  • Beta-Glucan Effects on Pasting Properties and Potential Health Benefits of Flours from Different Oat Lines Yanjun Liu Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Beta-glucan effects on pasting properties and potential health benefits of flours from different oat lines Yanjun Liu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Nutrition Commons Recommended Citation Liu, Yanjun, "Beta-glucan effects on pasting properties and potential health benefits of flours from different oat lines" (2010). Graduate Theses and Dissertations. 11303. https://lib.dr.iastate.edu/etd/11303 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Beta-glucan effects on pasting properties and potential health benefits of flours from different oat lines by Yanjun Liu A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Food Science and Technology Program of Study Committee: Pamela J. White, Major Professor Terri Boylston Theodore B. Bailey Iowa State University Ames, Iowa 2010 Copyright © Yanjun Liu, 2010. All rights reserved. ii TABLE OF CONTENTS CHAPTER 1 GENERAL INTRODUCTION 1 Introduction 1 Literature Review 3 Origin of Oats 3 Oat Grain 3 Health Benefits of Oats 6 Oat Milling and Processing
    [Show full text]
  • Food Intake and Symptoms in FGID: Short-Chain Carbohydrates
    Food intake and symptoms in FGID: Short-chain carbohydrates Susan J Shepherd1, Miranda CE Lomer2, Peter R Gibson3 1 La Trobe University, Department of Dietetics and Human Nutrition Bundoora, Victoria 3086, Australia 2 4.21 Franklin-Wilkins Building, Nutritional Sciences Division King's College London, 150 Stamford Street, London SE1 9NH, UK 3 Department of Gastroenterology, The Alfred Hospital and Monash University 55 Commercial Road, Melbourne Victoria 3004, Australia Short Title (Running Head): Food intake, symptoms in FGID: Short-chain carbohydrates Words: 4,449 Correspondence to: Dr Susan Shepherd Department of Dietetics and Human Nutrition, La Trobe University, Bundoora, Victoria 3086, Australia Telephone +61 3 9890 4911 Fax + 61 3 9890 4944 Email [email protected] or [email protected] 1 Abstract Carbohydrates occur across a range of foods regularly consumed including grains such as wheat and rye, vegetables, fruits and legumes. Short-chain carbohydrates with chains of up to ten sugars vary in their digestibility and subsequent absorption. Those that are poorly absorbed exert osmotic effects in the intestinal lumen increasing its water volume, and are rapidly fermented by bacteria with consequent gas production. These two effects alone may underlie most of the induction of gastrointestinal symptoms after they are ingested in moderate amounts via luminal distension in patients with visceral hypersensitivity. This has been the basis of the use of lactose-free diets in those with lactose malabsorption and of fructose-reduced diets for fructose malabsorption. However, application of such dietary approaches in patients with functional bowel disorders has been restricted to observational studies with uncertain efficacy.
    [Show full text]
  • Carbohydrates: Occurrence, Structures and Chemistry
    Carbohydrates: Occurrence, Structures and Chemistry FRIEDER W. LICHTENTHALER, Clemens-Schopf-Institut€ fur€ Organische Chemie und Biochemie, Technische Universit€at Darmstadt, Darmstadt, Germany 1. Introduction..................... 1 6.3. Isomerization .................. 17 2. Monosaccharides ................. 2 6.4. Decomposition ................. 18 2.1. Structure and Configuration ...... 2 7. Reactions at the Carbonyl Group . 18 2.2. Ring Forms of Sugars: Cyclic 7.1. Glycosides .................... 18 Hemiacetals ................... 3 7.2. Thioacetals and Thioglycosides .... 19 2.3. Conformation of Pyranoses and 7.3. Glycosylamines, Hydrazones, and Furanoses..................... 4 Osazones ..................... 19 2.4. Structural Variations of 7.4. Chain Extension................ 20 Monosaccharides ............... 6 7.5. Chain Degradation. ........... 21 3. Oligosaccharides ................. 7 7.6. Reductions to Alditols ........... 21 3.1. Common Disaccharides .......... 7 7.7. Oxidation .................... 23 3.2. Cyclodextrins .................. 10 8. Reactions at the Hydroxyl Groups. 23 4. Polysaccharides ................. 11 8.1. Ethers ....................... 23 5. Nomenclature .................. 15 8.2. Esters of Inorganic Acids......... 24 6. General Reactions . ............ 16 8.3. Esters of Organic Acids .......... 25 6.1. Hydrolysis .................... 16 8.4. Acylated Glycosyl Halides ........ 25 6.2. Dehydration ................... 16 8.5. Acetals ....................... 26 1. Introduction replacement of one or more hydroxyl group (s) by a hydrogen atom, an amino group, a thiol Terrestrial biomass constitutes a multifaceted group, or similar heteroatomic groups. A simi- conglomeration of low and high molecular mass larly broad meaning applies to the word ‘sugar’, products, exemplified by sugars, hydroxy and which is often used as a synonym for amino acids, lipids, and biopolymers such as ‘monosaccharide’, but may also be applied to cellulose, hemicelluloses, chitin, starch, lignin simple compounds containing more than one and proteins.
    [Show full text]
  • Fructo-Oligosaccharide Effects on Serum Cholesterol Levels. an Overview1
    9 – ORIGINAL ARTICLE SYTEMATIC REVIEW Fructo-oligosaccharide effects on serum cholesterol levels. An overview1 Graciana Teixeira CostaI, Giselle Castro de AbreuII, André Brito Bastos GuimarãesII, Paulo Roberto Leitão de VasconcelosIV, Sergio Botelho GuimarãesV DOI: http://dx.doi.org/10.1590/S0102-865020150050000009 IAssistant Professor, Nutrition Division, Federal University of Amazon (UFAM), Brazil. Fellow PhD degree, Postgraduate Program in Surgery, Department of Surgery, Federal University of Ceara (UFC), Fortaleza-CE, Brazil. Conception and design of the study, acquisition and interpretation of data. IIGraduate student, Faculty of Medicine, UFC, Fortaleza-CE, Brazil. Acquisition of data. IIIFellow Master degree, Postgraduate Program in Surgery, Department of Surgery, UFC, Fortaleza-CE, Brazil. Acquisition of data. IVPhD, Full Professor, Coordinator, Postgraduate Program in Surgery, Department of Surgery, UFC, Fortaleza-CE, Brazil. Critical revision. VPhD, Associate Professor, Department of Surgery, Head, Experimental Surgical Research Laboratory (LABCEX), UFC, Fortaleza-CE, Brazil. Critical revision, final approval of manuscript. ABSTRACT PURPOSE: To address the effects of fructooligosaccharides (FOS) intake on serum cholesterol levels. METHODS: We performed a search for scientific articles in MEDLINE database from 1987 to 2014, using the following English keywords: fructooligosaccharides; fructooligosaccharides and cholesterol. A total of 493 articles were found. After careful selection and exclusion of duplicate articles 34 references were selected. Revised texts were divided into two topics: “FOS Metabolism” and “FOS effects on plasma cholesterol.” RESULTS: The use of a FOS diet prevented some lipid disorders and lowered fatty acid synthase activity in the liver in insulin-resistant rats. There was also reduction in weight and total cholesterol in beagle dogs on a calorie-restricted diet enriched with short-chain FOS.
    [Show full text]
  • Approval Report – Application A1123 Isomalto-Oligosaccharide As A
    16 May 2017 [13–17] Approval report – Application A1123 Isomalto-oligosaccharide as a Novel Food Food Standards Australia New Zealand (FSANZ) assessed an Application made by Essence Group Pty Ltd via FJ Fleming Food Consulting Pty Ltd to permit isomalto-oligosaccharide as a novel food for use as an alternative (lower calorie) sweetener and bulk filler in a range of general purpose and special purpose foods, and prepared a draft food regulatory measure. On 13 December 2016, FSANZ sought submissions on a draft variation and published an associated report. FSANZ received six submissions. FSANZ approved the draft variation on 3 May 2017. The Australia and New Zealand Ministerial Forum on Food Regulation was notified of FSANZ’s decision on 15 May 2017. This Report is provided pursuant to paragraph 33(1)(b) of the Food Standards Australia New Zealand Act 1991 (the FSANZ Act). i Table of contents EXECUTIVE SUMMARY ......................................................................................................................... 3 INTRODUCTION ..................................................................................................................................... 5 1.1 THE APPLICANT ......................................................................................................................... 5 1.2 THE APPLICATION ...................................................................................................................... 5 1.3 CURRENT STANDARDS ..............................................................................................................
    [Show full text]
  • Effect of Some Oligosaccharides on Functional Properties of Wheat Starch
    Zeng et al Tropical Journal of Pharmaceutical Research January 2015; 14 (1): 7-14 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v14i1.2 Original Research Article Effect of Some Oligosaccharides on Functional Properties of Wheat Starch Jie Zeng*, Haiyan Gao, GuangLei Li, Junliang Sun and Hanjun Ma School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China *For correspondence: Email: [email protected]; Tel: +86 373 3693005; Fax: +86 373 3693005 Received: 25 August 2013 Revised accepted: 10 December 2014 Abstract Purpose: To investigate the effects of oligosaccharides on the functional properties of wheat starch. Methods: The blue value, retrogradation and pasting properties of wheat starch were determined. In addition, water activity (Aw), melting enthalpy and melting temperature of wheat starch paste were analyzed. Results: Fructo-oligosaccharide (FOS) and xylo-oligosaccharide (XOS) inhibited the retrogradation of wheat starch. The peak viscosity of wheat starch with oligosaccharides increased from 3238 ± 8 to 3822 ± 10 cP, with the highest peak obtained for sucrose. The setback of wheat starch decreased (from 1158 ± 5 to 799 ± 6 cP), with the lowest setback for FOS. Aw of control sample changed significantly (falling from 0.978 ± 0.025 to 0.397 ± 0.013) when the drying time was from 6 to 12 hours, while the Aw of the samples to which different oligosaccharides were added only showed slight decrease (from 0.98 ± 0.019 to 0.854 ± 0.022).
    [Show full text]
  • 1 Part 4. Carbohydrates As Bioorganic Molecules Сontent Pages 4.1
    1 Part 4. Carbohydrates as bioorganic molecules Сontent Pages 4.1. General information……………………….. 3 4.2. Classification of carbohydrates …….. 4 4.3. Monosaccharides (simple sugar)…….. 4 4.3.1. Monosaccharides classification……………………….. 5 4.3.2. Stereochemical properties of monosaccharides. … 6 4.3.2.1. Chiral carbon atom…………………………………. 6 4.3.2.2. D-, L-configurations of optical isomers ……….. 8 4.3.2.3. Optical activity of enantiomers. Racemate. …… 9 4.3.3. Open chain (acyclic) and closed chain (cyclic) forms of monosaccharides. Haworth projections ……………… 9 4.3.4. Pyranose and furanose forms of sugars ……………. 10 4.3.5. Mechanism of cyclic form of aldoses and ketoses formation ………………………………………………………………….. 11 4.3.6. Anomeric carbon …………………………………………. 14 4.3.7. α and β anomers ………………………………………… 14 4.3.8. Chair and boat 3D conformations of pyranoses and envelope 3D conformation of furanoses ……………………. 15 4.3.9. Mutarotation as a interconverce of α and β forms of D-glucose ………………………………………………………………… 15 4.3.10. Important monosaccharides .............................. 17 4.3.11. Physical and chemical properties of monosaccharides ………………………………………………………… 18 4.3.11.1. Izomerization reaction (with epimers forming). 18 4.3.11.2. Oxidation of monosaccharides…………………. 18 4.3.11.3. Reducing Sugars …………………………………. 19 4.3.11.4. Visual tests for aldehydes ……………………… 21 4.3.11.5. Reduction of monosaccharides ……………….. 21 4.3.11.6. Glycoside bond and formation of Glycosides (Acetals) ……………………………………………………………….. 22 4.3.12. Natural sugar derivatives ................................... 24 4.3.12.1. Deoxy sugars ............................................... 24 4.3.12.2. Amino sugars …………………………………….. 24 4.3.12.3. Sugar phosphates ………………………………… 26 4.4. Disaccharides ………………………………… 26 4.4.1.
    [Show full text]
  • Carbohydrate, Oligosaccharide, and Organic Acid Separations
    Carbohydrate, Oligosaccharide, and Organic Acid Separations Long column lifetimes. Accurate, reproducible analysis. Trust Rezex™ For Excellent Resolution and Reproducibility of Sugars, Starches, and Organic Acids Phenomenex Rezex HPLC ion-exclusion columns are guaranteed to give you the performance you need. From drug formulation and excipient analysis to quality control testing of finished food products, Rezex columns consistently provide accurate and reproducible results. “ I have been using Phenomenex Rezex …for sugar quantitation in the last few years, we are very happy with the resolution of this column, plus a short running time. ” - Global Leader, Food & Beverage Ingredient Production Try Rezex Risk Free! Rezex is a guaranteed alternative to: • Bio-Rad® Aminex® If you are not completely satisfied with the performance Waters® Sugar-Pak™ • of any Rezex column, as compared to a competing Supelco® SUPELCOGEL™ product of the same size and phase, simply return the • Rezex column with your comparative data within 45 • Transgenomic® CARBOSep™ days for a FULL REFUND. Experience the Rezex™ Performance Advantage Broad Range of Phases to Perfectly Suit Your Application Needs .........................................2 Column Selection – Variety Gives You the Power of Optimization .................................................3 See the Difference! The Rezex Performance Advantage Sharper Peak Shape = Easy & Accurate Quantitation .........................................................4 Lower Backpressure = Longer Column Lifetimes & Faster
    [Show full text]
  • Carbohydrates.Pdf
    CHEM464 / Medh, J.D. Carbohydrates Carbohydrates • General formula Cn(H2O)n (carbon-hydrates) • Also known as saccharides or sugars • They serve as energy stores or fuel • They are components of DNA and RNA • They are the primary component of cell walls of bacteria and plants • They are linked to proteins and lipids to form key intermediates and regulators of physiological processes Monosaccharides • They are polyhydroxy aldehydes (aldose) or ketones (ketose). • Carbon chain from 3 to 9 with general name of triose, hexose etc or aldohexose, ketohexose etc. • Fischer projection formulas are written as linear C chains with the aldehyde numbered as C1 in aldoses and ketone as C2 in ketoses. • Each monosaccharide (except dihydroxyacetone) has at least one chiral carbon. The highest numbered C is generally achiral • The orientation of the –OH around the chiral carbons determines the identity of the sugar. 1 CHEM464 / Medh, J.D. Carbohydrates Stereoisomers • The (n-1) C determines the enantiomeric form of the sugar. If the hydroxyl on Cn-1 is to the left, it is the L-isoform; if the n-1 hydroxyl is to the right, it is the D isoform. Enantiomers are mirror-images of each other. All sugars in biomolecules are in the D-form • All of the aldoses that posses the same number of C atoms are called as diastereomers. They are not mirror images of each other. • Usually there is n-2 chiral carbons in hexoaldoses. And there are 2(n-2) possible hexoaldose stereoisomers (enantiomers + diastereoisomers) • Two sugars that differ in the orientation of only one hydroxyl are called as epimers of each other.
    [Show full text]
  • Facts About Sugars – Brochure
    1. INTRODUCTION Sugars are found in nature. All green plants providing foodstuffs, including fruits and vegetables, grains, as well as milk and honey, contain naturally-occurring sugars. Many types of sugars are found in the diet on a daily basis. These include, for example, glucose, fructose, sucrose, and lactose. When the term ‘sugar’ is used, people are referring to ‘sucrose’ (table sugara). Over recent years, a debate has arisen over the amount of sugars people should eat and the potential effects sugars may have on health. This brochure explores the science around sugars and intends to put the evidence on sugars and health into context. a Table sugar is produced from sugar beet or sugar cane. 1 1.1 Biochemistry of sugars Sugars are carbohydratesb. As such, they provide the body with the energy that our organs and muscles need to function. Sugars are typically named in relation to their size and chemical structure (Figure 1). Monosaccharides are single unit sugars with ‘mono’ meaning ‘one’ and ‘saccharide’ meaning sugar mol- ecule. Monosaccharides commonly found in food are glucose, fructose and galactose. Disaccharides consist of two monosaccharides joined together. Disaccharides commonly found in food are sucrose (glucose + fructose), lactose (glucose + galactose) and maltose (glucose + glucose). Oligo - and polysaccharides contain more than two monosaccharides joined together. Starch is a well- known polysaccharide. Other examples include fructo-oligosaccharides and malto-oligosaccharides. Oligo - and polysaccharides are sometimes called ‘complex carbohydrates’ in recognition of their size dif- ference from mono- and disaccharides, which are classed as ‘simple sugars’ due to their small size. It is mono- and disaccharides which are the focus of this brochure.
    [Show full text]
  • The Science Behind Digestive Tolerance
    THE SCIENCE BEHIND DIGESTIVE TOLERANCE WEIGHING YOUR OPTIONS FOR DIETARY FIBRE MAKING FOOD EXTRAORDINARY WHY DO SOME TYPES OF DIETARY FIBRE RESULT IN BETTER GASTROINTESTINAL TOLERANCE? Dietary fibres are carbohydrate polymers that are not Potential gastrointestinal side effects of fibre can include digested in the stomach or small intestine and pass intact bloating, borborygmi (intestinal noises), cramping, flatus to the large intestine (also called the colon). The gut and diarrhoea, particularly if the fibre is consumed at high microbiota ferment fibres in the colon to produce short doses. These effects are due primarily to the production chain fatty acids (SCFA) and carbon dioxide and hydrogen of gases by fermentation as well as water-binding effects gases. Each type of fibre has its own unique solubility, of fibre in the large intestine. In general, smaller chain viscosity, branching, structural components and degree fibres are rapidly fermented, and are thus more likely to of polymerisation (DP), also known as chain length or size cause flatulence, bloating and laxative effects or diarrhoea. (see Table 1 for examples). It is these variations that Larger chain fibres that ferment more slowly are usually cause the microbiota to ferment each fibre differently better tolerated. and contribute to alterations in gastrointestinal tolerance of the fibre ingredient. Table 1. Structure, Linkages and Size for Common Fibre Ingredients Name of the Fibre Structure Linkages Polysaccharide Size Components Inulin/chicory root Fructose linear β (2 1) Medium/large Oligofructose aka Fructose Small fructo-oligosaccharide linear β (2 1) (FOS) Soluble corn fibre Glucose Branched, mix Medium/large of α 1-6, α 1-4, and others 2 UNDERSTANDING THE VARIATION IN DIGESTIVE TOLERANCE A number of in vitro models of the gut are able to explore the fermentation profile of fibres and shed light on the likely causes of variation in tolerance seen in humans.
    [Show full text]