Final Mountain Loop Road Repair Environmental Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Final Mountain Loop Road Repair Environmental Assessment Figure 1-Vicinity Map, Location of Damage Forest-wide, 2003 Flood i Table of Content Chapter 1 –Need for Action ....................................................................................................... 1 Introduction ......................................................................................................................................... 1 Mountain Loop History, Desired Road Condition ............................................................................................. 1 October 2003 Flood Event ................................................................................................................................. 3 Need for Action .................................................................................................................................... 6 Proposed Action................................................................................................................................... 7 Proposed Repair at Milepost 33.1 (T30N, R11E, Section 29) ........................................................................... 7 Proposed Repair at Milepost 33.6 (T30N, R11E, Section 29) ......................................................................... 11 Proposed Repair at Milepost 34.8 (T30N, R11E, Section 28) ......................................................................... 16 Proposed Repair at Milepost 35.6 (T30N, R11E, Section 21) ......................................................................... 18 Project Scope...................................................................................................................................... 21 Project Scope...................................................................................................................................... 22 The Decision Framework................................................................................................................................. 22 Relationship to the Forest Plan......................................................................................................................... 22 Relationship to Other Documents .................................................................................................................... 27 Other Relevant Laws and Direction................................................................................................................. 28 Public Involvement ............................................................................................................................ 31 Significant Issues................................................................................................................................ 32 Significant or Key Issues ................................................................................................................................. 32 Other Issues...................................................................................................................................................... 33 Chapter 2 - Alternatives, Including the Proposed Action....................................................... 34 Introduction ....................................................................................................................................... 34 Alternative Development Process..................................................................................................... 34 Alternatives Considered But Eliminated From Detailed Study........................................................................ 35 Alternatives Considered in Detail .................................................................................................... 41 Alternative 1 - No Action................................................................................................................................. 41 Alternative–Proposed Action: Realign Road Away from River at Damaged Sites, Construct 60-Foot Bridge at Milepost 33.6 ................................................................................................................................................... 41 Alternative 3: Realign Away from River at Mileposts 33.1 and 34.8, Construct Long Multi-span Bridges at Mileposts 33.6 and 35.6 ................................................................................................................................... 45 Mitigation Measures, Management Practices and Requirements, and Monitoring for Action Alternatives 2 and 3 ....................................................................................................................................................................... 50 Required Monitoring........................................................................................................................................ 53 Comparison of Alternatives ............................................................................................................................. 54 Chapter 3 – Affected Environment and Environmental Consequences ................................ 58 Introduction ....................................................................................................................................... 58 Aquatic Resources and Soils – Affected Environment ................................................................... 58 Project Area ..................................................................................................................................................... 58 Geology/Soils................................................................................................................................................... 59 Hydrology ........................................................................................................................................................ 60 Channel Dynamics ........................................................................................................................................... 62 Water Quality (Including 303(d) Streams)....................................................................................................... 65 Aquatic Resources and Soils – Environmental Effects................................................................... 67 Environmental Effects of Implementing Alternative 1 (No Action) – Aquatic Resources and Soils............... 68 Environmental Effects of Implementing Alternative 2 (Proposed Action –Aquatic Resources and Soils....... 70 ii Environmental Effects of Implementing Alternative 3–Aquatic Resources and Soils..................................... 74 Aquatic Resources and Soils Cumulative Effects ............................................................................................ 75 Fisheries – Affected Environment.................................................................................................... 81 Fish Presence in the Project Area..................................................................................................................... 81 Special Fish Habitat Designations.................................................................................................................... 83 Fish Habitat: Baseline Assessment at the Watershed Scale ............................................................................. 84 Fish Habitat: Baseline Assessment at the Watershed Scale ............................................................................. 85 Watershed and Fish Habitat Restoration.......................................................................................................... 87 Fisheries – Environmental Effects ................................................................................................... 87 Definitions, General Effects............................................................................................................................. 87 ESA Consultation............................................................................................................................................. 88 Environmental Effects of Implementing Alternative 1 (No Action) – Fisheries.............................................. 89 Environmental Effects of Implementing Alternative 2 (Proposed Action) – Fisheries.................................... 90 Environmental Effects of Implementing Alternative 3–Fisheries.................................................................... 92 Fisheries Cumulative Effects ........................................................................................................................... 94 Riparian Reserve Resources – Affected Environment ................................................................... 98 Channel Dynamics and the Riparian Reserve .................................................................................................. 99 Riparian Reserve Resources – Environmental Effects................................................................... 99 Environmental Effects of Implementing Alternative 1 (No Action) – Riparian Reserve Resources ............... 99 Environmental Effects of Implementing Alternative 2 (Proposed Action) and Alternative 3 – Riparian Reserve Resources ......................................................................................................................................... 100 Riparian Reserve Cumulative Effects ............................................................................................................ 101 Wild and Scenic River – Affected Environment..........................................................................
Recommended publications
  • USGS Geologic Investigations Series I-1963, Pamphlet
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I-1963 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE SKYKOMISH RIVER 30- BY 60 MINUTE QUADRANGLE, WASHINGTON By R.W. Tabor, V.A. Frizzell, Jr., D.B. Booth, R.B. Waitt, J.T. Whetten, and R.E. Zartman INTRODUCTION From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The quadrangle straddles parts of two major river systems, the Skykomish and the Snoqualmie Rivers, which drain westward from the mountains to the lowlands (figs. 1 and 2). In the late 19th Century mineral deposits were discovered in the Monte Cristo, Silver Creek and the Index mining districts within the Skykomish River quadrangle. Soon after came the geologists: Spurr (1901) studied base- and precious- metal deposits in the Monte Cristo district and Weaver (1912a) and Smith (1915, 1916, 1917) in the Index district. General geologic mapping was begun by Oles (1956), Galster (1956), and Yeats (1958a) who mapped many of the essential features recognized today. Areas in which additional studies have been undertaken are shown on figure 3. Our work in the Skykomish River quadrangle, the northwest quadrant of the Wenatchee 1° by 2° quadrangle, began in 1975 and is part of a larger mapping project covering the Wenatchee quadrangle (fig. 1). Tabor, Frizzell, Whetten, and Booth have primary responsibility for bedrock mapping and compilation.
    [Show full text]
  • Wednesday, March 25, 2009
    8 TFW -16B-90-0 11 EVALUATION OF TIlE TFW STREAM CLASSIFICATION SYSTEM: STRATIFICATION OF PHYSICAL HABITAT AREA AND DISTRIBUTION By T. J. Beechie and T. H. Sibley TIMB~:R &WILDLIFE July 1990 EVALUATION OF THE TFW STREAM CLASSIFICATION SYSTEM: STRATIFICATION OF PHYSICAL HABITAT AREA AND DISTRIBUTION. FINAL REPORT 1988,1990 Prepared by T. J. Beechie and T. H. Sibley Center for Streamside Studies (AR-lO) and Fisheries Research Institute (WH-10) University of Washington Seattle, W A. 98195 Submitted to: TimberIFishlWildlife Ambient Monitoring Steering Committee and State of Washington. Department of Natural Resources (EL-03) Olympia, W A. 98504 July, 1990 TABLE OF CONTENTS List of Tables IV List of Figures v Executive Summary vm 1. Introduction 1 1.1 Stream Classification Review 1 1.2 Proposed Classification System 4 1.3 Objectives 5 2. Approach 7 2.1 Problems in Variable Definition 7 2.2 The Problem of Spatial Scale 11 2.3 The Problem of Time 11 2.4 Addressing Sources of Variability 12 2.5 Recent Evaluations and Their Implications 15 2.6 Variables Used in this Study 15 3. Methods 19 3.1 Data Collected 19 3.2 Code Definitions 20 3.3 Field Procedures 21 3.4 Visual Estimation Procedure 22 3.5 Statistical Analyses 23 3.6 Study Area 23 4. Results and Discussion 33 4.1 Reference Sites 33 Summary of site characteristics 33 Variation channel unit areas with changes in discharge 36 Relative importance of several physical factors in predicting the percentage of summer pools 40 Discharge-area relationships 42 Large organic debris as obstructions 42 ii Page 4.2 South Fork Stillaguamish River Basin Sites 44 Percentages of summer pool surface area in paired segments 46 Comparison of spawning gravel percentages 48 Distributions of channel unit types 50 Cluster Analysis 50 Discriminant analysis 53 4.3 Multiple Watershed Sites 55 Spawning gravel distribution 55 Discriminant analysis 58 Percentages of pools 58 Physical factors affecting pool area 61 5.
    [Show full text]
  • 2015 Removal Action Appendices
    APPENDICES Appendix A. Health and Safety Plan Appendix B. Updated HELP Model Simulations Appendix C. MCMA Repository Run-on Control Drain Appendix D. Technical Specifications and Construction Quality Assurance Plan Appendix E. Biological Monitoring Plan Appendix F. Cultural Resources Monitoring and Treatment Plan Appendix G. MCMA 2015 Removal Action Proposed Schedule Appendix H Modified XRF Protocol for Field Screening Appendix A. Health and Safety Plan Health and Safety Plan 2015 Removal Action Monte Cristo Mining Area Mt. Baker-Snoqualmie National Forest Snohomish County, Washington April 2015 Cascade Earth Sciences 3511 Pacific Blvd SW Albany, OR 97321 Ph. (541) 926-7737 Fax (541) 967-7619 www.cascade-earth.com Health and Safety Plan 2015 Removal Action Monte Cristo Mining Area Mt. Baker-Snoqualmie National Forest Snohomish County, Washington EMERGENCY PHONE NUMBERS Medical Emergency/Ambulance .......................................................................................... 911 Police.......................................................................................................................................... 911 Fire .............................................................................................................................................. 911 National Poison Control Center ...................................................................... (800) 222-1222 CES Corporate Safety Officer (Ellen Crawford) ............................................ (541) 812-6620 US Forest Service, Snoqualmie National
    [Show full text]
  • Channel Stabilization Publications Available in Corps of Engineers Offices
    TECHNICAL REPORT NO. 4 CHANNEL STABILIZATION PUBLICATIONS AVAILABLE IN CORPS OF ENGINEERS OFFICES i <SESS> ¡01 101 LfU U-U lOi 00¡DE November 1966 Committee on Channel Stabilization CORPS OF ENGINEERS, U. S. ARMY REPORTS OF COMMITTEE ON CHANNEL STABILIZATION ¿i BUREAU OF RECLAMATION DENVER Lll 92035635 VT ■ieD3Sb3S nsJjfe-» TECHNICAL REPORT 4 7 3 CHANNEL STABILIZATION PUBLICATIONS AVAILABLE IN CORPS OF ENGINEERS OFFICES j f November 1966 f Committee on Channel Stabilization - i / y > CORPS OF ENGINEERS/ U. S. ARMY ARM Y-MRC VICKSBURG. MISS. PRESENT MEMBERSHIP OF COMMITTEE ON CHANNEL STABILIZATION J. H. Douma Office, Chief of Engineers Chairman E. B. Lipscomb Lower Mississippi Valley Division Recorder D. C. Bondurant Missouri River Division R. H. Haas Lower Mississippi Valley Division W. E. Isaacs Little Rock District C. P. Lindner South Atlantic Division E. B. Madden Southwestern Division H. A. Smith North Pacific Division J. B. Tiffany Waterways Experiment Station G. B. Fenwick Consultant FOREWORD Establishment of the Committee on Channel Stabilization in April 1962 was confirmed by Engineer Regulation 15-2-1, dated 1 November 1962. As stated in ER 15-2-1, the objectives of the Committee with respect to channel stabilization are: a. To review and evaluate pertinent information and disseminate the results thereof. b. To determine the need for and recommend a program of research; and to have advisory technical review responsibility for research assigned to the Committee. £. To determine basic principles and design criteria. d. To provide, at the request of field offices, advice on design and operational problems. In accordance with the desire of the Committee to inventory available data, reports, papers, etc., pertaining to channel stabilization, arrangements were made for the Research Center Library, U.
    [Show full text]
  • Erosion Control and Slope Stabilization of Embankments Using Vetiver System
    EROSION CONTROL AND SLOPE STABILIZATION OF EMBANKMENTS USING VETIVER SYSTEM SHAMIMA NASRIN MASTER OF SCIENCE IN CIVIL ENGINEERING (GEOTECHNICAL) Department of Civil Engineering BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY September, 2013 EROSION CONTROL AND SLOPE STABILIZATION OF EMBANKMENTS USING VETIVER SYSTEM A Thesis Submitted by SHAMIMA NASRIN In partial fulfillment of the requirement for the degree of MASTER OF SCIENCE IN CIVIL ENGINEERING Department of Civil Engineering BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY September, 2013 DEDICATED TO MY PARENTS The thesis titled “Erosion Control and Slope Stabilization of Embankments using Vetiver System”, submitted by Shamima Nasrin, Roll No. 0409042245F, Session April 2009 has been accepted as satisfactory in partial fulfillment of the requirement for the degree of Master of Science in Civil Engineering on 30th September, 2013. BOARD OF EXAMINERS Dr. Mohammad Shariful Islam Chairman Associate Professor (Supervisor) Department of Civil Engineering BUET, Dhaka-1000 Dr. A.M.M. Taufiqul Anwar Member Professor and Head (Ex-Officio) Department of Civil Engineering BUET, Dhaka-1000 Dr. Abdul Muqtadir Member Professor Department of Civil Engineering BUET, Dhaka-1000 Prof. Dr. Ainun Nishat Member Vice-Chancellor (External) BRAC University 66 Mohakhali, Dhaka-1212 i DECLARATION It is thereby declared that except for the contents where specific reference have been made to the work of others, the study contained in this thesis are the result of investigation carried out by the author under the supervision of Dr. Mohammad Shariful Islam, Associate Professor, Department of Civil Engineering, Bangladesh University of Engineering and Technology. No part of this thesis has been submitted to any other university or other educational establishment for a degree, diploma or other qualification (except for publication).
    [Show full text]
  • Bank Stability Resulting from Rapid Flood Recession Along the Licking River, Kentucky
    UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ BANK INSTABILITY RESULTING FROM RAPID FLOOD RECESSION ALONG THE LICKING RIVER, KENTUCKY A thesis submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the Requirements for the degree of MASTER OF SCIENCE In the Department of Geology Of the College of Arts and Sciences 2004 by Ana Cristina Londono G. B.S., Universidad Nacional de Colombia, 1995 Committee Chair: Dr. David B. Nash ABSTRACT River bank instability has been linked with changing land use, deforestation and channel meandering. Fluctuations in water level, either seasonal or more frequent, have also been related to instability. Increased pore water pressure has been correlated with flooding. When, the level of water decreases rapidly, the pore water pressure within the soil remains high, thereby decreasing the soil’s effective shear strength. This reduction in shear strength may result in bank failure. The banks of the Licking River near Wilder, Kentucky were selected as a study site because they exhibit instability features: tension cracks, circular and wedge failures, slumps and piping, some of which developed after a major flooding event in 1997. Tensiometers were installed at depth from 4 ft to 10 ft and a piezometer was installed at a depth of 12 ft. The bank material is clay with low plasticity (CL) with total cohesion and friction angle of 27 kPa and 13o respectively.
    [Show full text]
  • North Stillaguamish Valley ECONOMIC REDEVELOPMENT PLAN October, 2015 ACKNOWLEDGEMENTS
    North Stillaguamish Valley ECONOMIC REDEVELOPMENT PLAN October, 2015 ACKNOWLEDGEMENTS The strength of the North Stillaguamish Economic Redevelopment Plan lies in the people who have crafted it, who live and work in the valley and who will continue to shape its future. The project team is honored to have worked with this enthusiastic group of stakeholders. Office of Senator Maria Cantwell Town of Darrington Sally Hintz, Northwest Washington Director Dan Rankin, Mayor Snohomish County Councilman Ken Klein, Snohomish County Council District 1 Washington State University Sean Connell, Trade and Economic Development Director Curtis Moulton, Snohomish County Director, WSU Extension Annique Bennett, Tourism Promotion Area Coordinator Bradley Gaolach, Director, Western Center for Metropolitan Extension & Research Linda Neunzig, Agricultural Project Coordinator Martha Aitken, Senior Associate for Metropolitan Extension Judy Pendergrass, Extension Coordinator City of Arlington Barbara Tolbert, Mayor Workforce Snohomish Paul Ellis, City Administrator Erin Monroe, CEO Reid Shockey, Consultant Mary Houston, Director of Service Delivery PROJECT TEAM Economic Alliance Snohomish County Troy McClelland, President and CEO Glenn Coil, Senior Manager, Public Policy & Research Community Attributes Inc. Funded by Chris Mefford, President and CEO U.S. Department of Commerce Economic Development Administration Alison Peters, Research Principal Award # 07-79-07116 Elliot Weiss, Project Manager Tim Degner, Graphic Designer Economic Adjustment Assistance Program under 42 U.S.C. §3149, Section 290 Mark Goodman, Planning Analyst of the Public Works and Economic Development Act of 1965 (Public Law 89- 136), as amended by the Economic Development Administration Reauthoriza- Yolanda Ho, Planning Analyst tion Act of 2004 (Public Law 108-373) Bryan Lobel, Senior Planning Analyst North Stillaguamish Valley ECONOMIC REDEVELOPMENT PLAN 808 134th St.
    [Show full text]
  • River Bank Erosion in the Minnesota River Valley A
    RIVER BANK EROSION IN THE MINNESOTA RIVER VALLEY A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY ANDREW C KESSLER IN PARTIAL FULFILLMENT OF THE REQUIERMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DR. SATISH C GUPTA DECEMBER 2015 © ANDREW C. KESSLER, 2015 ACKNOWLEDGMENTS I gratefully acknowledge the assistance that was provided over the years in completing this research by Blue Earth County Environmental Services Staff especially Scott Salisbury and Professor Susan Galatowitsch of Fish, Wildlife and Conservation Biology for their insights about early survey data; Ryan Mattke and the staff at the University of Minnesota, John R. Borchert Map Library for their help with the historical aerial photographs; and Greg Spoden and Pete Boulay of the State Climatologist Office of the Minnesota Department of Natural Resources for sharing the long-term climatic data. In addition, I’d like to acknowledge help from Ashley Grundtner, Melinda Brown, David Thoma, and Kari Wolf with field work and manuscript reviews. The original 2009 Lidar scan was jointly funded by the Minnesota Corn and Soybean Research and Promotion Councils. Remaining research projects were partially supported with funds from the Minnesota Corn Research and Promotion Council. I’d also like to acknowledge the tireless work of my major adviser Dr. Satish Gupta whose guidance made this research possible. Finally, I would like to acknowledge my wife Andrea and our three daughters for supporting me through this endeavor. i ABSTRACT Sediments remain one of the major causes of water quality impairments in the United States. Although soil erosion from agricultural lands has been viewed as the major source of sediment to rivers and lakes, in many watersheds, river banks are also contributing a significant amount of sediments to surface waters.
    [Show full text]
  • Geologic Map of Washington - Northwest Quadrant
    GEOLOGIC MAP OF WASHINGTON - NORTHWEST QUADRANT by JOE D. DRAGOVICH, ROBERT L. LOGAN, HENRY W. SCHASSE, TIMOTHY J. WALSH, WILLIAM S. LINGLEY, JR., DAVID K . NORMAN, WENDY J. GERSTEL, THOMAS J. LAPEN, J. ERIC SCHUSTER, AND KAREN D. MEYERS WASHINGTON DIVISION Of GEOLOGY AND EARTH RESOURCES GEOLOGIC MAP GM-50 2002 •• WASHINGTON STATE DEPARTMENTOF 4 r Natural Resources Doug Sutherland· Commissioner of Pubhc Lands Division ol Geology and Earth Resources Ron Telssera, Slate Geologist WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Ron Teissere, State Geologist David K. Norman, Assistant State Geologist GEOLOGIC MAP OF WASHINGTON­ NORTHWEST QUADRANT by Joe D. Dragovich, Robert L. Logan, Henry W. Schasse, Timothy J. Walsh, William S. Lingley, Jr., David K. Norman, Wendy J. Gerstel, Thomas J. Lapen, J. Eric Schuster, and Karen D. Meyers This publication is dedicated to Rowland W. Tabor, U.S. Geological Survey, retired, in recognition and appreciation of his fundamental contributions to geologic mapping and geologic understanding in the Cascade Range and Olympic Mountains. WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES GEOLOGIC MAP GM-50 2002 Envelope photo: View to the northeast from Hurricane Ridge in the Olympic Mountains across the eastern Strait of Juan de Fuca to the northern Cascade Range. The Dungeness River lowland, capped by late Pleistocene glacial sedi­ ments, is in the center foreground. Holocene Dungeness Spit is in the lower left foreground. Fidalgo Island and Mount Erie, composed of Jurassic intrusive and Jurassic to Cretaceous sedimentary rocks of the Fidalgo Complex, are visible as the first high point of land directly across the strait from Dungeness Spit.
    [Show full text]
  • Mt. Baker-Snoqualmie Campground Prospectus
    United States Forest Mt. Baker- 2930 Wetmore Ave/ Suite 3A Department of Service Snoqualmie Everett, Washington, 09201 Agriculture National Forest File Code: 2730-1 Date: September 1, 2017 Route To: (2720) Subject: Forest-wide Campground Concession To: Dear Interested Parties REPLY DUE OCTOBER 2, 2017 Dear Interested Parties: Thank you for your interest in providing visitor services at various recreation sites within the Mount Baker-Snoqualmie National Forest (MBS). The Prospectus (solicitation for offers) is now available for review and download on the Forest website (address below). Detailed information on this business opportunity, Forest Service concession program and policies, special use permit, application and post-selection requirements are available in the Prospectus. This website will also serve as the main source for all Prospectus related information and updates throughout this solicitation and selection process. If requested by applicants, a single site visit may be scheduled in Fall 2017. All applicants will be encouraged to attend this on-site visit to review the facilities when and if it is scheduled. Applications submitted in response to this Prospectus are subject to cost recovery pursuant to 36 CFR 251.58(c)(3)(iii). Applicants must submit an application fee of $400.00 to cover the cost of the Prospectus and review of the application. Additionally, the selected applicant will be responsible for the cost of preparing and issuing the permit and conducting a Financial Ability Determination (FAD), unless the Forest Service has conducted a FAD on the applicant within the past year. Payments due the United States for this application must be paid in the form of a bank draft, money order, or cashier’s check payable to the USDA- Forest Service.
    [Show full text]
  • Research Issues for Riverine Bank Stability Analysis in the 21St Century
    RESEARCH ISSUES FOR RIVERINE BANK STABILITY ANALYSIS IN THE 21ST CENTURY Submitted by: A.N. Papanicolaou, S. Dey, M. Rinaldi, and A. Mazumdar IIHR Technical Report No. 457 IIHR-Hydroscience & Engineering College of Engineering The University of Iowa Iowa City, IA 52242 July 2006 TABLE OF CONTENTS 1. Introduction .......................................................................................................... 1 2. Literature review .................................................................................................. 2 3. Sub-aerial processes ............................................................................................. 3 4. Fluvial entrainment and erosion ........................................................................... 4 4.1.Erodibility parameters .................................................................................. 5 4.1.1 Granular loose sediment .................................................................... 5 4.1.2 Granular partly packed or cemented sediment ................................... 9 4.1.3 Fine-grained cohesive sediment ......................................................... 9 4.1.4 Failed blocks of fine-grained cohesive sediment ............................... 11 4.2 Near-bank shear stress .................................................................................. 12 5. Mass failures ........................................................................................................ 13 6. Interaction between fluvial erosion and mass failure .........................................
    [Show full text]
  • USGS Geologic Investigation Series I-2592, Pamphlet
    GEOLOGIC MAP OF THE SAUK RIVER 30- BY 60-MINUTE QUADRANGLE, WASHINGTON By R.W. Tabor, D.B. Booth, J.A. Vance, and A.B. Ford But lower, in every dip and valley, the forest is dense, of trees crowded and hugely grown, impassable with undergrowth as toughly woven as a fisherman’s net. Here and there, unnoticed until you stumble across them, are crags and bouldered screes of rock thickly clothed with thorn and creeper, invisible and deadly as a wolf trap.1 The Hollow Hills by Mary Stewart, 1973 INTRODUCTION AND Ortenburger for office and laboratory services. R.W. Tabor ACKNOWLEDGMENTS prepared the digital version of this map with considerable help from Kris Alvarez, Kathleen Duggan, Tracy Felger, Eric When Russell (1900) visited Cascade Pass in 1898, he Lehmer, Paddy McCarthy, Geoffry Phelps, Kea Umstadt, Carl began a geologic exploration which would blossom only after Wentworth, and Karen Wheeler. three-quarters of a century of growing geologic theory. The Paleontologists who helped immensely by identifying region encompassed by the Sauk River quadrangle is so struc- deformed, commonly recrystallized, and usually uninspiring turally complex that when Misch (1952) and his students fossils are Charles Blome, William Elder, Anita Harris, David began their monumental studies of the North Cascades in L. Jones, Jack W. Miller, and Kate Schindler. Chuck Blome 1948, the available geologic tools and theories were barely has been particularly helpful (see table 1). adequate to start deciphering the history. Subsequently, Bryant We thank John Whetten, Bob Zartman, and John Stacey (1955), Danner (1957), Jones (1959), Vance (1957a), Ford and his staff for unpublished U-Pb isotopic analyses (cited (1959), and Tabor (1961) sketched the fundamental outlines of in table 2).
    [Show full text]