USGS Geologic Investigation Series I-2592, Pamphlet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Washington Division of Geology and Earth Resources Open File Report
l 122 EARTHQUAKES AND SEISMOLOGY - LEGAL ASPECTS OPEN FILE REPORT 92-2 EARTHQUAKES AND Ludwin, R. S.; Malone, S. D.; Crosson, R. EARTHQUAKES AND SEISMOLOGY - LEGAL S.; Qamar, A. I., 1991, Washington SEISMOLOGY - 1946 EVENT ASPECTS eanhquak:es, 1985. Clague, J. J., 1989, Research on eanh- Ludwin, R. S.; Qamar, A. I., 1991, Reeval Perkins, J. B.; Moy, Kenneth, 1989, Llabil quak:e-induced ground failures in south uation of the 19th century Washington ity of local government for earthquake western British Columbia [abstract). and Oregon eanhquake catalog using hazards and losses-A guide to the law Evans, S. G., 1989, The 1946 Mount Colo original accounts-The moderate sized and its impacts in the States of Califor nel Foster rock avalanches and auoci earthquake of May l, 1882 [abstract). nia, Alaska, Utah, and Washington; ated displacement wave, Vancouver Is Final repon. Maley, Richard, 1986, Strong motion accel land, British Columbia. erograph stations in Oregon and Wash Hasegawa, H. S.; Rogers, G. C., 1978, EARTHQUAKES AND ington (April 1986). Appendix C Quantification of the magnitude 7.3, SEISMOLOGY - NETWORKS Malone, S. D., 1991, The HAWK seismic British Columbia earthquake of June 23, AND CATALOGS data acquisition and analysis system 1946. [abstract). Berg, J. W., Jr.; Baker, C. D., 1963, Oregon Hodgson, E. A., 1946, British Columbia eanhquak:es, 1841 through 1958 [ab Milne, W. G., 1953, Seismological investi earthquake, June 23, 1946. gations in British Columbia (abstract). stract). Hodgson, J. H.; Milne, W. G., 1951, Direc Chan, W.W., 1988, Network and array anal Munro, P. S.; Halliday, R. J.; Shannon, W. -
USGS Geologic Investigations Series I-1963, Pamphlet
U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I-1963 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE SKYKOMISH RIVER 30- BY 60 MINUTE QUADRANGLE, WASHINGTON By R.W. Tabor, V.A. Frizzell, Jr., D.B. Booth, R.B. Waitt, J.T. Whetten, and R.E. Zartman INTRODUCTION From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The quadrangle straddles parts of two major river systems, the Skykomish and the Snoqualmie Rivers, which drain westward from the mountains to the lowlands (figs. 1 and 2). In the late 19th Century mineral deposits were discovered in the Monte Cristo, Silver Creek and the Index mining districts within the Skykomish River quadrangle. Soon after came the geologists: Spurr (1901) studied base- and precious- metal deposits in the Monte Cristo district and Weaver (1912a) and Smith (1915, 1916, 1917) in the Index district. General geologic mapping was begun by Oles (1956), Galster (1956), and Yeats (1958a) who mapped many of the essential features recognized today. Areas in which additional studies have been undertaken are shown on figure 3. Our work in the Skykomish River quadrangle, the northwest quadrant of the Wenatchee 1° by 2° quadrangle, began in 1975 and is part of a larger mapping project covering the Wenatchee quadrangle (fig. 1). Tabor, Frizzell, Whetten, and Booth have primary responsibility for bedrock mapping and compilation. -
Landslide Mobility and Hazards: Implications of the 2014 Oso Disaster ∗ R.M
Earth and Planetary Science Letters 412 (2015) 197–208 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Landslide mobility and hazards: implications of the 2014 Oso disaster ∗ R.M. Iverson a, , D.L. George a, K. Allstadt b,1, M.E. Reid c, B.D. Collins c, J.W. Vallance a, S.P. Schilling a, J.W. Godt d, C.M. Cannon e, C.S. Magirl f, R.L. Baum d, J.A. Coe d, W.H. Schulz d, J.B. Bower g a U.S. Geological Survey, Vancouver, WA, USA b University of Washington, Seattle, WA, USA c U.S. Geological Survey, Menlo Park, CA, USA d U.S. Geological Survey, Denver, CO, USA e U.S. Geological Survey, Portland, OR, USA f U.S. Geological Survey, Tacoma, WA, USA g NOAA National Weather Service, Seattle, WA, USA a r t i c l e i n f o a b s t r a c t Article history: Landslides reflect landscape instability that evolves over meteorological and geological timescales, and Received 8 September 2014 they also pose threats to people, property, and the environment. The severity of these threats depends Received in revised form 9 December 2014 largely on landslide speed and travel distance, which are collectively described as landslide “mobility”. To Accepted 10 December 2014 investigate causes and effects of mobility, we focus on a disastrous landslide that occurred on 22 March Available online xxxx 2014 near Oso, Washington, USA, following a long period of abnormally wet weather. The landslide’s Editor: P. -
Franklinwesleyearlynne1975
AN ABSTRACT OF THE THESIS OF WESLEY EARLYNNE FRANKLIN for the degree Master of Science (Name of student) (Degree) in Geology presented on November 22, 1974 (Major department) (Date) Title: STRUCTURAL SIGNIFICANCE OF META-IGNEOUS FRAGMENTS IN THE PRAIRIE MOUNTAIN AREA, NORTH CASCADE RANGE, SNOHOMISH COUNTY, WASHINGTON Abstract approved by: Redacted for privacy Dr. Robert ID. Lawrence The interrelationship of rock assemblages in the Prairie Mountain area suggests that a Permo-Triassic subduction zone existed in the western North Cascades.The2fsquare mile rneta- igneous complex in the thesis area correlates with other tectonic bodies which occur west of the Straight Creek Fault.The rocks are uniquely associated with thrust faulting, a blueschist terrane and a possible melange of deformed Late Paleozoic sediments and meta- sediments.In the Prairie Mountain area the meta.- igneous rocks were emplaced by thrust and high-angle reversefaults into the Late Paleozoic Chilliwack Group.The meta-igneous rocks are metadio- rites, meta- quartz diorites, metatrondlijemites, mylonite gneis ses, rare greenstone metavoLcanic s and metamorphosed ultramafi.c s. Though the rocks were metamorphosed to the greenschist facies, only locally do they display a strong metamorphic fabric. A weak secondary cataclastic overprint resulting from ucoldtt intrusion is superimposed on the meta-igneous rocks. The meta-igneous rocks possibly represent fragments of island arc crust and/or oceanic crust that were incorporated into a Permo- Triassic subductj.on zone from a position -
Where the Water Meets the Land: Between Culture and History in Upper Skagit Aboriginal Territory
Where the Water Meets the Land: Between Culture and History in Upper Skagit Aboriginal Territory by Molly Sue Malone B.A., Dartmouth College, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate and Postdoctoral Studies (Anthropology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2013 © Molly Sue Malone, 2013 Abstract Upper Skagit Indian Tribe are a Coast Salish fishing community in western Washington, USA, who face the challenge of remaining culturally distinct while fitting into the socioeconomic expectations of American society, all while asserting their rights to access their aboriginal territory. This dissertation asks a twofold research question: How do Upper Skagit people interact with and experience the aquatic environment of their aboriginal territory, and how do their experiences with colonization and their cultural practices weave together to form a historical consciousness that orients them to their lands and waters and the wider world? Based on data from three methods of inquiry—interviews, participant observation, and archival research—collected over sixteen months of fieldwork on the Upper Skagit reservation in Sedro-Woolley, WA, I answer this question with an ethnography of the interplay between culture, history, and the land and waterscape that comprise Upper Skagit aboriginal territory. This interplay is the process of historical consciousness, which is neither singular nor sedentary, but rather an understanding of a world in flux made up of both conscious and unconscious thoughts that shape behavior. I conclude that the ways in which Upper Skagit people interact with what I call the waterscape of their aboriginal territory is one of their major distinctive features as a group. -
Winter Summits
EVERETT MOUNTAINEERS Recommended Winter Summits Snow and weather conditions greatly influence the difficulty of winter scrambles. Because conditions change very quickly, things like road access, avalanche hazard, strenuousness, and summit success can vary a tremendous amount. So these ratings are only a rough comparison of the peaks. Winter scrambling can be a dangerous activity. Be a smart scrambler -- be willing to turn back if conditions are unsafe. Even a slight deviation from the surveyed routes may affect exposure and avalanche hazard considerably. The fact that a peak is listed here does not represent that it will be safe. Exposure Rating Avalanche Rating A: Falling will only get snow on your face. B: Falling may require self arrest, but usually good A: Usually safe in high, considerable, moderate, and low run-out. avalanche conditions. C: Falling requires self arrest, unchecked falls could B: Often safe in moderate and low conditions. be serious. C: Only recommended in low conditions. Note that B-rated slopes could become C-rated when icy. Table of contents by region (peaks within each region listed from West to East): Highway 542 (Mt Baker Highway): Church, Excelsior, Barometer, Herman, Table Highway 20 (North Cascades Highway): Goat, Welker, Sauk, Lookout, Hidden Lake, Oakes, Damnation, Trappers, Sourdough, Ruby Highway 530 (Darrington area): Higgins, Round, Prairie Mountain Loop Highway: Pilchuck, Gordon (Anaconda), Long, Marble, Dickerman Highway 2 (west & east of Stevens Pass): Stickney, Persis, Philadelphia, Frog, Mineral Butte, Iron, Conglomerate Point, Baring, Palmer, Cleveland, Eagle Rock, Evergreen, Captain Point, Windy, Tunnel Vision, Big Chief, Cowboy, McCausland, Union, Jove, Lichtenberg, Jim Hill, Rock, Arrowhead, Natapoc, Tumwater I-90 (west & east of Snoqualmie Pass): Teneriffe, Green, Mailbox, Washington, Web, Kent, Bandera, Defiance, Pratt, Granite, Humpback, Silver, Snoqualmie, Kendall, Guye, Catherine, Margaret, Baldy, Thomas, Amabalis, Hex, Jolly, Yellow Hill, Teanaway Butte Mt. -
Across the Cascade Range
Series I B> DescriPtive Geology- 4l Bulletin No. 235 \ D, Petrography and Mineralogy, DEPARTMENT'OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES \). WALCOTT, Di HECTOR GEOLOGICAL RECONNAISSANCE ACROSS THE CASCADE RANGE NEAR THE FORTY-NINTH PARALLEL GEORGE OTIS SMITH AND FRANK C. CALKINS WASHINGTON GOVERNMENT PRINTING OFFICE 1904 Trri-o^) SL'BD C 0 N T E N T S. I'lliJO. Letter of transmittal. ---_--_---..-.._-_.____.._-______._....._.._____.._.. 9 Introduction-__-._.__,.__-.----._--._._.__..._....__....---_--__._.__.-.-_- 11 Scope of report ---.--_.____.._______-.--....._---.._...._.__ ._.- 11 Route followed ........................:......................... 12 Geography .............................................................. 12 Topography .......................................................... 12 Primary divisions of the region..--.........-.--.-.--.-.-.. 12 Okanogan Valley .................:.. ............................ 18 Cascade Range ...............:........,..._ ....^......i........ 13 General characteristics..._.....-.....-..----.--.----.-.-..-.. 13 Northern termination.,.---.....-......--.-.............._ 13 Subdivision .............................................. 14 Okanogan Mountains ........................................... 14 Hozonieen Range ............................................ 15 Skagit Mountains....-.... ......-.----....-.-----..-...--.--- 16 Drainage ..................................................... 17 Climate ...................................................... ...... 17 Roads and trails -
SKAGIT COOPERATIVE WEED MANAGEMENT AREA Upper Skagit Knotweed Control Program 2013 Season Ending Report
SKAGIT COOPERATIVE WEED MANAGEMENT AREA Upper Skagit Knotweed Control Program 2013 Season Ending Report Sauk River during 2013 knotweed surveys. Prepared by: Michelle Murphy Stewardship Manager Skagit Fisheries Enhancement Group PO Box 2497 Mount Vernon, WA 98273 Introduction In the 2013 season, the Skagit Fisheries Enhancement Group (SFEG) and our partners with the Skagit Cooperative Weed Management Area (CWMA) or Skagit Knotweed Working Group, completed extensive surveys of rivers and streams in the Upper Skagit watershed, treating knotweed in a top-down, prioritized approach along these waterways, and monitoring a large percentage of previously recorded knotweed patches in the Upper Skagit watershed. We continued using the prioritization strategy developed in 2009 to guide where work is completed. SFEG contracted with the Washington Conservation Corps (WCC) crew and rafting companies to survey, monitor and treat knotweed patches. In addition SFEG was assisted by the DNR Aquatics Puget Sound Corps Crew (PSCC) in knotweed survey and treatment. SFEG and WCC also received on-the-ground assistance in our efforts from several Skagit CWMA partners including: U.S. Forest Service, Seattle City Light and the Sauk-Suiattle Indian Tribe. The Sauk-Suiattle Indian Tribe received a grant from the EPA in 2011 to do survey and treatment work on the Lower Sauk River and in the town of Darrington through 2013. This work was done in coordination with SFEG’s Upper Skagit Knotweed Control Project. The knotweed program met its goal of surveying and treating both the upper mainstem floodplains of the Sauk and Skagit Rivers. SFEG and WCC surveyed for knotweed from May through June and then implemented treatment from July until the first week of September. -
Limestone Resources of Western Washington
State of Washington DANIEL J. EVANS, Governor Department of Conservation H. MA URI CE AHLQUIST, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 52 LIMESTONE RESOURCES OF WESTERN WASHINGTON By WILBERT R. DANNER With a section on the UME MOUNTAIN DEPOSIT By GERALD W. THORSEN STATII PRINTING PLANT, OLYMPI A, WASH, 1966 For sale by Department of Conservation, Olympia, Washington. Price, $4,50 FOREWORD Since the early days of Washington's statehood, limestone has been recognized as one of the important mineral resources _of the State. The second annual report of the Washington Geological Survey, published in 1903, gave details on the State's limestone deposits, and in later years five other reports published by the Survey and its successor agencies hove given additional information on this resource. Still other reports by Federal and private agencies hove been published in response to demands for data on limestone here. Although some of the earlier reports included analyses to show the purity of the rocks, very few of the samples for analysis were taken systemati cally in a way that would fairly represent the deposits sampled. Prior to 1900 limestone was produced for use as building stone here, and another important use was for the production of burned Ii me . Portland cement plants soon became leading consumers of Ii mestone, and they con tinue as such to the present time . Limestone is used in large quantities in the pulp industry in the Northwest, and in 1966 there was one commercial lime-burning plant in the State. Recognizing the potential for industrial development in Washington based on more intensive use of our mineral resources, and recognizing the need to up-dote the State's knowledge of raw material resources in order to channel those resources into the State's growing economy, the Industrial Row Materials Advisory Committee of the Deportment of Commerce and Economic Development in 1958 recommended that a comprehensive survey be made of the limestone resources of Washington. -
B.18: Skagit County Public Utilities District (PUD)
B.18: Skagit County Public Utilities District (PUD) www.skagitpud.org Skagit Public Utility District Number 1 (Skagit PUD) Resource conservation and stewardship are increasing concerns of the operates the largest water system in the county, PUD. Recognizing the value of water resources in Skagit County, the providing 9,000,000 gallons of piped water to PUD is a member of the Skagit Watershed Council and is actively approximately 70,000 people every day. The PUD participating in efforts to protect ins-stream flows. maintains nearly 600 miles of pipelines and has over 31,000,000 gallons of storage volume. The vision of the PUD - is to be recognized as an outstanding regional leader and innovative utility provider that embodies environmental Mount Vernon, Burlington, and Sedro-Woolley receive the majority of stewardship and sound economic practices. the PUD’s water. Due to public demand for quality water, the PUD also provides service to unincorporated and remote areas of the county. The mission of the PUD - is to provide quality, safe, reliable, and The District’s service area includes part of Fidalgo Island at the west affordable utility services to its customers in an environmentally- end of the county and extends as far east as Marblemount. From north responsible, collaborative manner. to south, the District’s service area starts in Conway and extends north to Alger/Lake Samish. The values of the PUD are: PUD water originates in the protected Cultus Mountain watershed area Quality east of Clear Lake from 4 streams. Melting snow and season rainfall Reliability are diverted from an uninhabited, 9 square mile, forested area, located Environmental responsibility high about the mountains. -
Final Mountain Loop Road Repair Environmental Assessment
Figure 1-Vicinity Map, Location of Damage Forest-wide, 2003 Flood i Table of Content Chapter 1 –Need for Action ....................................................................................................... 1 Introduction ......................................................................................................................................... 1 Mountain Loop History, Desired Road Condition ............................................................................................. 1 October 2003 Flood Event ................................................................................................................................. 3 Need for Action .................................................................................................................................... 6 Proposed Action................................................................................................................................... 7 Proposed Repair at Milepost 33.1 (T30N, R11E, Section 29) ........................................................................... 7 Proposed Repair at Milepost 33.6 (T30N, R11E, Section 29) ......................................................................... 11 Proposed Repair at Milepost 34.8 (T30N, R11E, Section 28) ......................................................................... 16 Proposed Repair at Milepost 35.6 (T30N, R11E, Section 21) ......................................................................... 18 Project Scope..................................................................................................................................... -
© Copyright 2019 Sean R. Lahusen
© Copyright 2019 Sean R. LaHusen Landslides in Cascadia: Using geochronometry and spatial analysis to understand the timing, triggering and spatial distribution of slope failures in the Pacific Northwest United States Sean R. LaHusen A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: Alison R. Duvall, Chair David R. Montgomery Joseph Wartman Program Authorized to Offer Degree: Earth and Space Sciences University of Washington Abstract Landslides in Cascadia: Using geochronometry and spatial analysis to understand the timing, triggering and spatial distribution of slope failures in the Pacific Northwest United States Sean R. LaHusen Chair of the Supervisory Committee: Dr. Alison R. Duvall Earth and Space Sciences Landslides kill hundreds to thousands of people every year, cause billions of dollars in infrastructure damage, and act as important drivers of landscape evolution. In the Pacific Northwest USA, landslides routinely block roads and railways and periodically destroy homes, as recently evinced by the catastrophic 2014 Oso Landslide, which killed 43 people. Ongoing mapping efforts, aided by the ever-growing availability of bare-earth lidar elevation data, have identified tens of thousands of landslides in Washington and Oregon States. Little is known about the timing of these slope failures, and without age constraints, it is impossible to assess recurrence frequency or understand past landslide triggers. In Chapter 2, I address this problem by developing a landslide dating technique which uses surface roughness measured from lidar data as a proxy for landslide age. Unlike other landslide dating methods such as radiocarbon, exposure dating, or dendrochronology, the surface-roughness dating technique can be practically applied on a regional scale and offers an important tool for estimating landslide recurrence interval and assessing changes in landslide frequency across space.