The Epizootiology of Coral Diseases in South Florida

Total Page:16

File Type:pdf, Size:1020Kb

The Epizootiology of Coral Diseases in South Florida The Epizootiology of Coral Diseases in South Florida Research and Development EPA/600/R-05/146 May 2006 The Epizootiology of Coral Diseases in South Florida by Deborah L. Santavy1, Jed Campbell1, Robert L. Quarles1, James M. Patrick1, Linda M. Harwell1, Mel Parsons2 , Lauri MacLaughlin3 , John Halas3, Erich Mueller4, 5, Esther C. Peters4, 6, Jane Hawkridge4, 7 1United States Environmental Protection Agency National Health and Environmental Effects Research Laboratory Gulf Ecology Division 1 Sabine Island Drive Gulf Breeze, FL 32561 2United States Environmental Protection Agency, Region 4 Science and Ecosystems Support Division 980 College Station Road Athens, GA 30605 3NOAA, Florida Keys National Marine Sanctuary Upper Region, MM 95 Overseas Highway Key Largo, FL 33037 4Mote Marine Laboratory Center for Tropical Research 24244 Overseas Highway (US 1) Summerland Key, FL 33042 5Perry Institute for Marine Science 100 N. U.S. Highway 1, Suite 202 Jupiter, FL 33477 6Tetra Tech, Inc. 10306 Eaton Place, Suite 340 Fairfax, VA 22030 7Joint Nature Conservation Committee, Monkstone House, City Road Peterborough, United Kingdom PE1 1JY Notice The U.S. Environmental Protection Agency (U.S. EPA), Office of Research and Development (ORD), National Health and Environmental Effect Research Laboratory (NHEERL), Gulf Ecology Division (GED), the U.S. Department of Commerce (U.S. DOC) National Oceanographic and Atmospheric Association (NOAA) National Marine Sanctuary Program Florida Keys National Marine Sanctuary (FKNMS), and the U.S. Department of Interior (DOI) National Park Service (NPS) Dry Tortugas National Park (DTNP) jointly conducted this program. The report has undergone U.S. EPA’s peer and administrative reviews and has received approval for publication as a U.S. EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. The recommendations expressed in this publication are solely those of the authors and do not necessarily reflect those of the sponsoring agencies. The appropriate citation for this report is: Santavy, D.L., J. Campbell, R.L. Quarles, J.M. Patrick, L.M. Harwell, M. Parsons, L. MacLaughlin, J. Halas, E. Mueller, E.C. Peters and J. Hawkridge. 2006. The Epizootiology of Coral Diseases in South Florida. EPA/ 600/R-05/146. U.S. Environmental Protection Agency, Gulf Ecology Division, Gulf Breeze, Florida. ii Abstract The mortality of reef-building corals has increased at unprecedented rates during the past three decades. It is widely accepted among the scientific community that pristine reefs no longer exist anywhere on earth. Some scientists are forewarning of ecological extinction for region-wide coral reefs within this century if current trends persist. This report summarizes the condition of South Florida reefs by providing an overview of historical studies published in the scientific literature and a synopsis of collaborative field investigations by EPA, NOAA and Mote Marine Laboratory. The study’s objectives were to establish the current status of coral health and disease and detect changes over time. Four epizootiological surveys were conducted: (1) spring 1998, (2) summer 1998, (3) spring 1999, and (4) August 2000. We surveyed sites in the Upper, Middle and Lower Florida Keys, the New Grounds of the Florida Keys National Marine Sanctuary, Biscayne National Park, and Dry Tortugas National Park. All surveys were conducted using a radial arc transect method developed for the coral disease assessment. Only the 2m-wide segment, 8-10m from the center of the radial arc transect, was surveyed at each site (area surveyed = 113m2). Twenty-two species of scleractinian corals and gorgonian sea fans were inspected for 11 coral diseases described in the literature, plus two additional syndromes. A probabilistic survey design in August 2000 generated areal estimates of the extent and intensity of coral disease in South Florida. At least one coral colony was affected by active disease at any single location in 85 ± 9% (95% confidence interval) of the area sampled; 15 ± 9% (662 ha) of the area sampled contained no coral disease. Coral disease was widely dispersed throughout South Florida reefs and was not confined to a particular region. Although disease was widespread, maximum disease prevalence at a site was 13%, representing 2.2 ± 4% (97 ha) of the sampling area. This study established a baseline so that future probabilistic surveys can examine changes and trends in coral condition. Annual disease prevalence from 1998 through 2000 ranged from 0 to 43% among all the sites surveyed. No hot spots were found where a high level of disease was sustained at the same site for multiple survey periods. The highest disease prevalence was observed at Looe Key (LK03) back reef site in summer 1998, where 42.9% of the colonies were diseased, with white pox affecting 41.4% of the monitored species. White pox and aspergillosis were the most abundant diseases observed at sites, where greater than 20% of the colonies were diseased. The dominant diseases found among all the sites were white pox, aspergillosis, dark spots disease, white-band disease, and white plague. Species with significant declines over the course of the study were Acropora palmata, Acropora cervicornis, Montastraea annularis complex, and Colpophyllia natans. This report compares spatial and temporal distribution of species composition and disease prevalence among regions, reef types, and between survey periods. The highest level of disease prevalence was recorded in 1998 and 1999, with lower or no disease prevalence observed in subsequent years. Overall, the greatest destruction of coral colonies occurred during the summer of 1998, when a period of high disease prevalence, massive bleaching, and a powerful hurricane passed over this area causing great destruction of the reefs. Non-parametric multivariate analyses did not reveal any logical spatial correlations between disease distribution and geographical regions, reef type, or water depth. Future research will evaluate geospatial relationships between stressors, including water quality, and trends in coral health on the Florida reef tract. iii iv Contents Abstract ........................................................................................................................................... iii Figures ............................................................................................................................................. vi Tables .............................................................................................................................................. vii Site Names and Codes .................................................................................................................... viii Acronyms and Abbreviations ............................................................................................................ ix Acknowledgements .......................................................................................................................... x Introduction ...................................................................................................................................... 1 Documented Declines in Coral Coverage.................................................................................... 1 Diseases of Reef-Building Corals...................................................................................................... 3 Distribution and Frequency of Coral Diseases ............................................................................ 4 Epizootiological Assessment of Coral Disease ................................................................................. 5 Background ............................................................................................................................... 5 Approach ................................................................................................................................... 5 Sampling Selection ................................................................................................................ 7 Survey Methodology ............................................................................................................... 7 Statistical Analysis ................................................................................................................. 9 Results and Discussion ................................................................................................................... 10 Species Composition and Disease Prevalence ........................................................................... 11 Principal Component Analysis ................................................................................................... 14 Spatial Distribution of Diseases ................................................................................................. 16 Conclusions ..................................................................................................................................... 16 References ....................................................................................................................................... 17 Appendices A. All sites sampled during surveys, including regions, site names, codes, latitude and longitudes, and depths .............................................................................. A-1 B. Coral diseases sampled for the study during the 1998-2000 surveys............................. B-1 C.
Recommended publications
  • Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings.
    [Show full text]
  • Coral Bleaching Early Warning Network Current Conditions Report #20090910
    Mote Marine Laboratory / Florida Keys National Marine Sanctuary Coral Bleaching Early Warning Network Current Conditions Report #20090910 Updated September 10, 2009 Summary: Based on climate predictions, current conditions, and field observations, the threat for mass coral bleaching within the FKNMS remains MODERATE. Figure 2. NOAA’s Coral Bleaching HotSpot Map for September 10, 2009. Figure 1. NOAA’s Coral Bleaching Thermal Stress Outlook for Sept. – Dec., 2009. www.osdpd.noaa.gov/PSB/EPS/SST/climohot.html http://coralreefwatch.noaa.gov/satellite/index.html Weather and Sea Temperatures According to the latest NOAA Coral Reef Watch Coral Bleaching Thermal Stress Outlook (updated Sept. 10, 2009) there continues to be significant potential for coral bleaching throughout the Caribbean in 2009, especially in the Lesser Antilles; however, it now appears that the likelihood of significant bleaching in the Florida Keys has been reduced compared to the rest of the greater Caribbean (Fig. 1). Current remote sensing analysis by NOAA’s Coral Reef Watch program Figure 3. NOAA’s Degree Heating Weeks Map for September 10, 2009. indicates that the Florida Keys region continues to experience elevated levels www.osdpd.noaa.gov/PSB/EPS/SST/dhw_retro.html of thermal stress and moderate potential for coral bleaching. NOAA’s recent Water Temperatures (August 27 - September 10, 2009) Coral Bleaching HotSpot Map (Fig. 2), which provides current sea surface 35 temperature (SST) compared to the historically expected SST’s for the region, shows that temperature anomalies for the Florida Keys National Marine 30 Sanctuary and surrounding waters continue to remain above-average and have increased slightly since the end of August.
    [Show full text]
  • Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
    www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent.
    [Show full text]
  • White-Band Disease in <I>Acropora Palmata</I>
    NOTES 639 BULLETIN OF MARINE SCIENCE. 32(2): 639-643. 1982 WHITE-BAND DISEASE IN ACROPORA PALMATA: IMPLICATIONS FOR THE STRUCTURE AND GROWTH OF SHALLOW REEFS W. B. Gladfelter In the last two decades a wide variety of organisms has been implicated in the destruction of reef-building corals (Glynn, 1973; Endean, 1976; Antonius, 1977). These fall generally into three categories: predators (Endean, 1973; Bak and van Eys, 1975; Reese, 1977), competitors for substrate (Glynn, 1973; Lang, 1973; Gladfelter et al., 1978) and disease-causing organisms (Garrett and DuckIow, 1975; Mitchell and Chet, 1975). In most instances the known impact of such organisms is restricted to portions of, or at most, single coral colonies. The impact of such organisms on whole reefs or systems has been documented only for the predatory starfish Acanthaster planci (Endean, 1973). In the present study we document the impact of another agent on a reef-wide scale. In much of the Caribbean Sea shallow windward reefs are dominated at depths of 1 to 5 m or more by the large branched coral Acropora palmata (Adey and Burke, 1976; Adey, 1978). In some such reefs >99% of living coral surface be- longs to this species (pers. obs.). In addition to quantitative dominance on such reefs this coral has one of the greatest rates of deposition of CaC03 per unit tissue surface (Gladfelter et al., 1978; Gladfelter and Gladfelter, unpublished) as well as high linear growth rates (5-10 cm/yr, Gladfelter et al., 1978) and consequently healthy A. palmata reefs exhibit some of the greatest measured reef growth rates (Adey and Burke, 1976 and unpublished calculations by Gladfelter and Gladfelter 2 of 10.3 kg CaC03/m /yr).
    [Show full text]
  • Coral Disease Fact Sheet
    Florida Department of Environmental Protection Coral Reef Conservation Program SEAFAN BleachWatch Program Coral Disease Fact Sheet About Coral Disease Like all other animals, corals can be affected by disease. Coral disease was first recognized in the Florida Keys and the Caribbean in the 1970s, and since that time disease reports have emerged from reefs worldwide. Naturally, there are background levels of coral disease but reports of elevated disease levels – often called disease outbreaks – have been increasing in both frequency and severity over the past few decades. Today, coral disease is recognized as a major driver of coral mortality and reef degradation. Coral disease can result from infection by microscopic organisms (such as bacteria or fungi) or can be caused by abnormal growth (akin to tumors). The origins or causes of most coral diseases are not known and difficult to determine. There is increasing evidence that environmental stressors, including increasing water temperatures, elevated nutrient levels, sewage input, sedimentation, overfishing, plastic pollution, and even recreational diving, are increasing the prevalence and Disease affecting Great Star Coral (Montastraea severity of coral diseases. There is also strong evidence cavernosa). Photo credit: Nikole Ordway-Heath (Broward County; 2016). that a combination of coral bleaching and disease can be particularly devastating to coral populations. This is likely due to corals losing a major source of energy during a bleaching event, reducing their ability to fight off or control disease agents. Coral disease is often identifiable by a change in tissue color or skeletal structure as well as progressive tissue loss. Tissue loss may originate from a single discrete spot, multiple discrete areas, or appear scattered throughout the colony.
    [Show full text]
  • High Density of Diploria Strigosa Increases
    HIGH DENSITY OF DIPLORIA STRIGOSA INCREASES PREVALENCE OF BLACK BAND DISEASE IN CORAL REEFS OF NORTHERN BERMUDA Sarah Carpenter Department of Biology, Clark University, Worcester, MA 01610 ([email protected]) Abstract Black Band Disease (BBD) is one of the most widespread and destructive coral infectious diseases. The disease moves down the infected coral leaving complete coral tissue degradation in its wake. This coral disease is caused by a group of coexisting bacteria; however, the main causative agent is Phormidium corallyticum. The objective of this study was to determine how BBD prominence is affected by the density of D. strigosa, a common reef building coral found along Bermuda coasts. Quadrats were randomly placed on the reefs at Whalebone Bay and Tobacco Bay and then density and percent infection were recorded and calculated. The results from the observations showed a significant, positive correlation between coral density and percent infection by BBD. This provides evidence that BBD is a water borne infection and that transmission can occur at distances up to 1m. Information about BBD is still scant, but in order to prevent future damage, details pertaining to transmission methods and patterns will be necessary. Key Words: Black Band Disease, Diploria strigosa, density Introduction Coral pathogens are a relatively new area of study, with the first reports and descriptions made in the 1970’s. Today, more than thirty coral diseases have been reported, each threatening the resilience of coral communities (Green and Bruckner 2000). The earliest identified infection was characterized by a dark band, which separated the healthy coral from the dead coral.
    [Show full text]
  • Atoll Research Bulletin No. 481 First Protozoan Coral
    ATOLL RESEARCH BULLETIN NO. 481 FIRST PROTOZOAN CORAL-KILLER IDENTIFIED IN THE INDO-PACIFIC BY ARNFRIED A. ANTONIUS AND DIANA LIPSCOMB ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. JUNE 2000 Great Barrier Reef 0 M Mauritius 6 0 120 Figure 1. Chart of Indo-Pacific region showing the three SEB observation sites where corals infected with Halofollict~lina corallcuia were investigated: the coral reefs along the coast of Sinai, Red Sea; around the island of Mauritius, Indian Ocean; and in the area of Lizard Island, Great Barrier Reef, Pacific. Motupore Island on the SE coast of Papua New Guinea is not marked on the chart. Sites that were investigated with negative result (no SEB found) are: B: Bali; W: Wakatobi Islands; G: Guam; and M: Moorea. FIRST PROTOZOAN CORAL-KILLER IDENTIFIED IN THE INDO-PACIFIC ARNFRIED ANTONIUS' and DIANA LIPS COMB^ ABSTRACT A unique coral disease has appeared on several Indo-Pacific reefs. Unlike most known coral diseases, this one is caused by an eukaryote, specifically Halofolliculina covallasia, a heterotrich, folliculinid ciliate. This protist is sessile inside of a secreted black test or lorica. It kills the coral and damages the skeleton when it settles on the living coral tissue and secretes the lorica. Thus, the disease was termed Skeleton Eroding Band (SEB). The ciliate population forms an advancing black line on the coral leaving behind it the denuded white coral skeleton, often sprinkled with a multitude of empty black loricae. This disease was first noted in 1988 and since has been observed infecting both branching and massive corals at several locations in the Indo-Pacific.
    [Show full text]
  • Appendix C - Monroe County
    2016 Supplemental Summary Statewide Regional Evacuation Study APPENDIX C - MONROE COUNTY This document contains summaries (updated in 2016) of the following chapters of the 2010 Volume 1-11 Technical Data Report: Chapter 1: Regional Demographics Chapter 2: Regional Hazards Analysis Chapter 4: Regional Vulnerability and Population Analysis Funding provided by the Florida Work completed by the Division of Emergency Management South Florida Regional Council STATEWIDE REGIONAL EVACUATION STUDY – SOUTH FLORIDA APPENDIX C – MONROE COUNTY This page intentionally left blank. STATEWIDE REGIONAL EVACUATION STUDY – SOUTH FLORIDA APPENDIX C – MONROE COUNTY TABLE OF CONTENTS APPENDIX C – MONROE COUNTY Page A. Introduction ................................................................................................... 1 B. Small Area Data ............................................................................................. 1 C. Demographic Trends ...................................................................................... 4 D. Census Maps .................................................................................................. 9 E. Hazard Maps .................................................................................................15 F. Critical Facilities Vulnerability Analysis .............................................................23 List of Tables Table 1 Small Area Data ............................................................................................. 1 Table 2 Health Care Facilities Vulnerability
    [Show full text]
  • Download the Meeting Program, Including Abstracts
    PROGRAM: Overview of oral and poster presentations FINAL PROGRAM 37th AMLC SCIENTIFIC MEETING CURACAO (MAY 18-22, 2015) MAY 17 17:00 Registration (optional) and "ice breaker" on the beach at Carmabi END of DAY 0 (MAY 17) MAY 18 8:00 Registration at the Hilton Hotel 9:00 Official opening 37th AMLC Meeting The Eastern Caribbean: A laboratory for studying the resilience and 9:30 PLENARY: DR. B. STENECK management of coral reefs 10:30 Coffee break Time Authors Title Shifting baselines: three decades of nitrogen enrichment on two 11:00 * Lapointe B, Herren L, Tarnowski, M, Dustan P Caribbean coral reefs Finding a new path towards reef conservation: Antigua’s community- 11:15 S Camacho R, Steneck R based no-take reserves Lyons P, Arboleda E, Benkwitt C, Davis B, Gleason M, Howe 11:30 * C, Mathe J, Middleton J, Sikowitz N, Untersteggaber L, The effect of recreational scuba diving on the benthic community Villalobos S assemblage and structural complexity of Caribbean coral reefs Perspective on how fast and efficient sponge engines drive and 11:45 * De Goeij JM modulate the food web of reef ecosystems Lesion recovery of two scleractinian corals under low pH: 12:00 S Dungan A, Hall ER, DeGroot BC, Fine M implications for restoration efforts Session chair: Kristen Marhaver Kristen chair: Session The status of coral reefs and marine fisheries in Jamaica’s Portland 12:15 * Palmer SE, Lang JC Bight Protected Area to inform proposed development decisions 12:30 Lunch (can be obtained at the Hilton, Carmabi (next to Hilton) or nearby restaurants and bars Historical analysis of ciguatera incidence in the Caribbean islands 13:30 * Mancera-Pineda JE, Celis JS, Gavio B during 31 years: 1980-2010 Smith TB, Richlen ML, Robertson A, Liefer JD, Anderson DM, Ciguatera fish poisoning: long-term dynamics of Gambierdiscus spp.
    [Show full text]
  • MSRP Appendix A
    APPENDIX A: RECOVERY TEAM MEMBERS Multi-Species Recovery Plan for South Florida Appendix A. Names appearing in bold print denote those who authored or prepared Appointed Recovery various components of the recovery plan. Team Members Ralph Adams Geoffrey Babb Florida Atlantic University The Nature Conservancy Biological Sciences 222 South Westmonte Drive, Suite 300 Boca Raton, Florida 33431 Altimonte Springs, Florida 32714-4236 Ross Alliston Alice Bard Monroe County, Environmental Florida Department of Environmental Resource Director Protection 2798 Overseas Hwy Florida Park Service, District 3 Marathon , Florida 33050 1549 State Park Drive Clermont, Florida 34711 Ken Alvarez Florida Department of Enviromental Bob Barron Protection U.S. Army Corps of Engineers Florida Park Service, 1843 South Trail Regulatory Division Osprey, Florida 34229 P.O. Box 4970 Jacksonville, Florida 32232-0019 Loran Anderson Florida State University Oron L. “Sonny” Bass Department of Biological Science National Park Service Tallahassee, Florida 32306-2043 Everglades National Park 40001 State Road 9336 Tom Armentano Homestead, Florida 33034-6733 National Park Service Everglades National Park Steven Beissinger 40001 State Road 9336 Yale University - School of Homestead, Florida 33034-6733 Forestry & Environmental Studies Sage Hall, 205 Prospect Street David Arnold New Haven, Connecticut 06511 Florida Department of Environmental Protection Rob Bennetts 3900 Commonwealth Boulevard P.O. Box 502 Tallahassee, Florida 32399-3000 West Glacier, Montana 59936 Daniel F. Austin Michael Bentzien Florida Atlantic University U.S. Fish and Wildlife Service Biological Sciences Jacksonville Field Office 777 Glades Road 6620 Southpoint Drive South, Suite 310 Boca Raton, Florida 33431 Jacksonville, Florida 32216-0912 David Auth Nancy Bissett University of Florida The Natives Florida Museum of Natural History 2929 J.B.
    [Show full text]
  • Campaign Treasurer's Report Summary
    FLORIDA DEPARTMENT OF STATE, DIVISION OF ELECTIONS CAMPAIGN TREASURER’S REPORT SUMMARY (1)ERVIN HIGGS (2) ERVIN HIGGS Candidate, Committee or Party Name I.D. Number (3) 80 Key Haven Rd Key West FL 33040 Address (number and street) City State Zip Code Check box if address has changed since last report (4) Check appropriate box(es): PROPERTY APPRAISER ✔ Candidate (office sought): Political Committee Check if PC has DISBANDED Committee of Continuous Existence Check if CCE has DISBANDED Party Executive Committee (5) REPORT IDENTIFIERS Cover Period: From9/25/2004 To10/8/2004 Report Type: G3 ✔ Original Amendment Special Election Report Independent Expenditure Report (6) CONTRIBUTIONS THIS REPORT (7) EXPENDITURES THIS REPORT Monetary 1,700.00 1,416.98 Cash & Checks $ Expenditures $ Transfers to Office 0.00 0.00 Loans $ Account $ 1,700.00 1,416.98 Total Monetary $ Total Monetary $ 0.00 0.00 In-Kind $ (8) Other Distributions $ (9) TOTAL Monetary Contributions to Date (10) TOTAL Monetary Expenditures to Date 10,453.32 $ 17,675.00 $ (11) CERTIFICATION It is a first degree misdemeanor for any person to falsify a public record (ss. 839.13, F.S.) I certify that I have examined this report and it is I certify that I have examined this report and it is true, true, correct and complete correct and complete Name of Treasurer Deputy Treasurer Name of Candidate Chairman (PC/PTY only) XX Signature Signature DS-DE 12 (7/98) SEE REVERSE FOR INSTRUCTIONS AND CODE VALUES CAMPAIGN TREASURER’S REPORT – ITEMIZED CONTRIBUTIONS (1) Name ______________________________________________________ERVIN HIGGS (2) I.D. Number ____________________ERVIN HIGGS (3) Cover Period ___________________9/25/2004 through ___________________10/8/2004 (4) Page ____________1 of _____________1 (5) (7) (8) (9) (10) (11) (12) Date Full Name Contributor (6) (Last, Suffix, First, Middle) Sequence Street Address & Contribution In-kind Number City, State, Zip Code Type Occupation Type Description Amendment Amount Liermann Emily C I CHE 100.00 126 Indies Dr.
    [Show full text]
  • Assessing the Effectiveness of Two Intervention Methods for Stony Coral
    www.nature.com/scientificreports OPEN Assessing the efectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa Erin N. Shilling 1*, Ian R. Combs 1,2 & Joshua D. Voss 1* Stony coral tissue loss disease (SCTLD) was frst observed in Florida in 2014 and has since spread to multiple coral reefs across the wider Caribbean. The northern section of Florida’s Coral Reef has been heavily impacted by this outbreak, with some reefs experiencing as much as a 60% loss of living coral tissue area. We experimentally assessed the efectiveness of two intervention treatments on SCTLD-afected Montastraea cavernosa colonies in situ. Colonies were tagged and divided into three treatment groups: (1) chlorinated epoxy, (2) amoxicillin combined with CoreRx/Ocean Alchemists Base 2B, and (3) untreated controls. The experimental colonies were monitored periodically over 11 months to assess treatment efectiveness by tracking lesion development and overall disease status. The Base 2B plus amoxicillin treatment had a 95% success rate at healing individual disease lesions but did not necessarily prevent treated colonies from developing new lesions over time. Chlorinated epoxy treatments were not signifcantly diferent from untreated control colonies, suggesting that chlorinated epoxy treatments are an inefective intervention technique for SCTLD. The results of this experiment expand management options during coral disease outbreaks and contribute to overall knowledge regarding coral health and disease. Coral reefs face many threats, including, but not limited to, warming ocean temperatures, overfshing, increased nutrient and plastic pollution, hurricanes, ocean acidifcation, and disease outbreaks 1–6. Coral diseases are com- plex, involving both pathogenic agents and coral immune responses.
    [Show full text]