California State University, Northridge an Ecological

Total Page:16

File Type:pdf, Size:1020Kb

California State University, Northridge an Ecological CALIFORNIA STATE UNIVERSITY, NORTHRIDGE AN ECOLOGICAL AND PHYSIOLOGICAL ASSESSMENT OF TROPICAL CORAL REEF RESPONSES TO PAST AND PROJECTED DISTURBANCES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology By Elizabeth Ann Lenz May 2014 The thesis of Elizabeth A. Lenz is approved by: Robert C. Carpenter, Ph.D. Date: Eric D. Sanford, Ph.D. Date: Mark A. Steele, Ph.D. Date: Peter J. Edmunds, Ph.D., Chair Date: California State University, Northridge ii ACKNOWLEDGEMENTS I would like to thank Dr. Peter J. Edmunds first and foremost for being my fearless leader and advisor - for the incredible opportunities and invaluable mentorship he has provided to me as a graduate student in the Polyp Lab. I am ever so grateful for his guidance, endless caffeinated energy, constructive critiques, and dry British humor. I would also like to thank my loyal committee members Drs. Robert Carpenter and Mark Steele at CSUN for their availability and expert advise during this process. Their suggestions have greatly contributed to my thesis. I would not only like to acknowledge Dr. Eric Sanford from UC Davis for serving on my committee, but thank him for his incessant support throughout my career over the last 7 years. I will always admire his contagious enthusiasm for invertebrates, passion for scientific research, and unlimited knowledge about marine ecology. My research would not have been possible without the technical support and assistance from my colleagues in Moorea, French Polynesia and St. John, USVI. I am grateful to Dr. Lorenzo Bramanti, Dr. Steeve Comeau, Vince Moriarty, Nate Spindel, Emily Rivest, Christopher Wall, Darren Brown, Alexandre Yarid, Nicolas Evensen, Craig Didden, the VIERS staff, and undergraduate assistants: Kristin Privitera-Johnson and Amanda Arnold. I would like to thank the former and current members of the CSUN Biology Department. Particularly, I am thankful for the MBGSA community, WiS group, Hollie Putnam, Anya Brown, Lianne Jacobson, Stella Swanson, Heather Hillard, Amy Briggs, Camdilla Wirth, Lauren Valentino, Mia Adreani, Justin Hackitt, and of course my fellow female scholars in the Polyp Lab: Sylvia Zamudio, Jennifer Smolenski, and Ananda Ellis. I would like to thank my constant sources of encouragement - Dr. Thomas Lenz and Debbra Lenz for their unconditional love and patience, my five siblings especially Mary Lenz for her generous time and reliability, and for my dear friends for enhancing my graduate experience: Sarah McVay, Emily Tung, Lauren Burgunder, Megan Boyd, Theresa Dineen, Malia Collins, Melanie Levy, Jackie Sones, DSO Jason Heron, Kristin Aquilino, Christopher Kwan, Bart Bagdasaryan, Casey Scott, Hamilton W. Fennie, Alexander G. Snyder, Kerry Nichols, Evelyne Kuo, Brian Lee, Kirk Sato, Tren Kauzer, Paul Logston, Maggie Sogin, Sean McCann, and Lauren Mickool. Finally, I am grateful to Drs. Annaliese Hettinger and John J. Stachowicz for recommending I pursue my master’s degree at CSUN in the Polyp Lab. My graduate thesis was made possibly by the financial support of CSUN’s College of Science and Mathematics Graduate Research Promise Fellowship, the National Science Foundation research support for Moorea Coral Reef Long-Term Ecological Research (OCE 10-26852), Division of Ocean Science (OCE 10-41270), St. John USVI Long- Term Research in Environmental Biology (DEB 03-43570, DEB 08-41441, and OCE 13- 32915), and the Gordon and Betty Moore Foundation. iii Signature Page ii Acknowledgements iii Abstract v Chapter 1 General Introduction 1 Chapter 2 Decadal-scale changes in the density of Caribbean gorgonians Introduction 14 Methods 17 Results 22 Discussion 27 Tables 36 Figures 48 Chapter 3 Contrasting morphologies of the Pacific coral Porites rus are not affected by ocean acidification Introduction 56 Methods 60 Results 70 Discussion 75 Tables 83 Figures 96 Chapter 4 Concluding remarks 105 Literature Cited 109 iv Abstract An Ecological and Physiological Assessment of Tropical Coral Reef Responses to Past and Projected Disturbances By Elizabeth A. Lenz Masters of Science in Biology Tropical reef structure and topographical complexity is a product of coral morphology, which greatly enhances biodiversity, ecological function, and ecosystem services. However, reef-building corals have declined in cover by 50-80% in response to the accumulated effects of natural and anthropogenic disturbances over the last 3 to 4 decades. This thesis is comprised of two different studies that address potential changes in shallow reef communities and benthic structure in response to natural and anthropogenic disturbances. The first objective was to examine changes in Caribbean benthic communities as scleractinians have declined and the second objective was to determine differential responses of contrasting morphotypes of corals to acidified conditions in Moorea, French Polynesia. In Chapter 2, I assessed the abundance of arborescent gorgonians (AGs) at local and regional scales to test the hypothesis that AGs have increased in abundance on Caribbean reefs over multiple decades. In St. John, mean abundance of AGs increased 42% from 1992-2012, with each of the dominant genera (Gorgonia, Antillogorgia, and pooled genera: Sea Rods) increasing 11-221% over the same period. Regionally, the compiled data show that AGs have increased in abundance, with mean densities rising from 7.0 to 15.1 colonies m-2 over the last 45 years. This study highlights the apparent success and importance of AGs on contemporary Caribbean v reefs, where scleractinian percent cover has remained at ~10%. In Chapter 3, I evaluated the calcification rates of branches and plates of Porites rus in response to ocean acidification (OA) (~800 µatm and 1000 µatm PCO2) with temperature, light and water flow. Skeletal morphology of reef-building hermatypic corals is influenced by abiotic factors, but calcification of coral skeleton is expected to decline as ocean acidification (OA) increases. Theory predicts that hermatypic corals with contrasting morphologies will differ in calcification rates due to differences in: 1) light absorption by Symbiodinium spp. for photosynthesis to enhance coral calcification, and 2) differential mass transfer characteristics (e.g., modulating the flux of dissolved inorganic carbon and hydrogen), which may mitigate the negative effects on calcification in high PCO2. In the second study, I determined that branches and plates were both tolerant of elevated temperature and PCO2. However, branches had higher variability in calcification rates than plates in response to light, and flow. Together these results of this research demonstrate two successful taxa (gorgonians and a weedy scleractinian) in tropical reef communities that have relatively high tolerances against natural and anthropogenic disturbances. Although, gorgonians and P. rus may be alternatives to formerly dominant, slow growing, and diverse communities of hermatypic corals, the functional roles and the ecosystem services they provide will likely differ. vi Chapter 1 General Introduction Disturbances on Tropical Coral Reefs Tropical coral reefs facilitate the highest biodiversity of any ecosystems in the world (Connell 1978) and provide economic value through coastal protection, fisheries, and ecotourism (Moberg and Folke 1999; Cesar et al. 2003). Hermatypic corals (P: Cnidaria, C: Anthozoa, SC: Hexacorallia, O: Scleractinia) are the ecosystem engineers responsible for the topographically complex framework that many organisms rely on for food and shelter (Idjadi and Edmunds 2006; Wild et al. 2011). The skeletal framework of scleractinians is created from the deposition of calcium carbonate (CaCO3) in the form of aragonite. However, natural and anthropogenic stressors are dramatically changing corals, from the molecular (e.g., gene regulation) to ecological scale (e.g., community structure) (Nyström et al. 2000; Bellwood et al. 2004; Hoegh-Guldberg et al. 2007). Tropical hermatypic coral communities are restricted geographically and constantly exposed to multiple stressors acting on reef systems. These stressors include both pulse (e.g., hurricanes, disease outbreaks, and thermal bleaching events) and press (e.g., ocean acidification and increased sea surface temperature [SST]) disturbances (Connell 1997). These assaults can have several grave consequences, with the effects on calcification and maintenance of reef complexity (Kleypas et al. 1999; Langdon and Atkinson 2005; Kleypas et al. 2001) at the forefront of concerns over the future of tropical coral reef communities (Knowlton 2001; Hough-Guldberg et al. 2007). As anthropogenic and natural disturbances continue, it is crucial to understand the physiological and ecological 1 responses of tropical corals to projected environmental conditions in order to determine reef resilience and shifts in coral reef communities. Changes in Coral Reef Communities Field surveys, photoquadrats, video recordings, and aerial photographs have been common tools used for long-term monitoring of scleractinian communities with percent cover the most widely used metric of coral abundance (Gardner et al. 2003; De’ath et al. 2013; Edmunds 2013; Ruzicka et al. 2013). In the last 3-5 decades, monitoring efforts have determined coral loss to be ~50% on the Great Barrier Reef from 1965-2012 (De’ath et al. 2013), ~80% throughout the Caribbean from 1977 to 2001 (Gardner et al. 2003), and ~22% in the Florida Keys from 1999-2009 (Ruzicka et al. 2013). In the Caribbean, the massive decline in scleractinian
Recommended publications
  • SEPTEMBER 6, 2021 Delmarracing.Com
    21DLM002_SummerProgramCover_ Trim_4.125x8.625__Bleed_4.375x8.875 HOME OF THE 2021 BREEDERS’ CUP JULY 16 - SEPTEMBER 6, 2021 DelMarRacing.com 21DLM002_Summer Program Cover.indd 1 6/10/21 2:00 PM DEL MAR THOROUGHBRED CLUB Racing 31 Days • July 16 - September 6, 2021 Day 8 • Friday July 30, 2021 First Post 4:00 p.m. These are the moments that make history. Where the Turf Meets the Surf Keeneland sales graduates have won Del Mar racetrack opened its doors (and its betting six editions of the Pacific Classic over windows) on July 3, 1937. Since then it’s become West the last decade. Coast racing’s summer destination where avid fans and newcomers to the sport enjoy the beauty and excitement of Thoroughbred racing in a gorgeous seaside setting. CHANGES AND RESULTS Courtesy of Equibase Del Mar Changes, live odds, results and race replays at your ngertips. Dmtc.com/app for iPhone or Android or visit dmtc.com NOTICE TO CUSTOMERS Federal law requires that customers for certain transactions be identi ed by name, address, government-issued identi cation and other relevant information. Therefore, customers may be asked to provide information and identi cation to comply with the law. www.msb.gov PROGRAM ERRORS Every effort is made to avoid mistakes in the of cial program, but Del Mar Thoroughbred Club assumes no liability to anyone for Beholder errors that may occur. 2016 Pacific CHECK YOUR TICKET AND MONIES BEFORE Classic S. (G1) CONFIRMING WAGER. MANAGEMENT ASSUMES NO RESPONSIBLITY FOR TRANSACTIONS NOT COMPLETED WHEN WAGERING CLOSES. POST TIMES Post times for today’s on-track and imported races appear on the following page.
    [Show full text]
  • A Mass Mortality of <I>Gorgonia Ventalina</I>
    BULLETIN OF MARINE SCIENCE, 50(3): 522-526. 1992 A MASS MORTALITY OF GORGONIA VENT ALINA (CNIDARIA: GORGONIIDAE) IN THE SANTA MARTA AREA, CARIBBEAN COAST OF COLOMBIA Jaime Garzon-Ferreira and Sven Zea The steep, rocky shores of the Santa Marta area (including the Tayrona Natural Park) in the Colombian Caribbean (11012'N and 74°14'W to 11°18'N and 73°54'W) comprise more than 90 km of irregular shoreline (Fig. 1). Hard substrata continue below the sea surface usually down to a maximum depth of 30 m, supporting rich communities of reef associated organisms (Garzon-Ferreira and Cano, 1990). Gorgonaceans are common and can dominate the sessile biocoenosis at some sites. The sea fan, Gorgonia ventalina Linnaeus (Cnidaria, Gorgoniidae), was known as one of the most conspicuous and abundant of the 39 living species of gorgonaceans in the area (Botero, 1987a, 1987b; pers. observ.). In September 1988, one of us (J.G.-F.) started to dive intensively in the area to map marine communities, and noted the absence of live individuals of sea fans. By the end of 1990, J.G.-F. had surveyed most of the coast to a depth of 20-30 m, and was able to recognize the dramatic mortality suffered by sea fans around Santa Marta. This note documents this mass mortality, compares it with other similar events and discusses its possible date of occurrence and causes. There are a few reports of octocoral mass mortalities in the tropical western Atlantic, all of which involved mainly sea fans and occurred along the southern Caribbean during the 1980's (Fig.
    [Show full text]
  • Gonian Eunicella Singularis (Esper, 1791) (Anthozoa Gorgoni - Idae) of Paloma Island, Algeria
    Biodiversity Journal , 2019, 10 (3): 185–194 https://doi.org/ 10.31396/Biodiv.Jour.2019.10.3.185.194 Morphometric data and allometric relationships of the gor - gonian Eunicella singularis (Esper, 1791) (Anthozoa Gorgoni - idae) of Paloma Island, Algeria Mouloud Benabdi 1, Lalla A. T. Cherif-Louazani 1, Alae Eddine Belmahi 1, Samir Grimes 2, Yassine G.E. Khames 3, Billel Boufekane 3, Salim Mouffok 1 & Mohamed Bouderbala 1 1Laboratoire Réseau de Surveillance Environnementale, Faculté SNV, Université Oran1, Algeria 2École Nationale Supérieure des Sciences de la Mer et de l’Aménagement du Littoral Alger, Algeria 3Faculté des Sciences Biologiques, USTHB, Alger, Algeria *Corresponding author, email: [email protected] ABSTRACT The gorgonian Eunicella singularis (Esper, 1791) (Anthozoa Gorgoniidae) is abundant on rocky bottoms at Paloma Island (Algeria) in the south-western of the Mediterranean basin. In this study area, 150 gorgonian colonies of E. singularis were collected randomly using SCUBA diving and the following morphometric macro-features were measured (maximum height, maximum width, total branch length, rectangular surface area, height to width ratio and dry weight). Allometric growth was examined using the relationships between the dry weight and the five morphometric macro-features. The power equation of the simple allometry applied was y=ax b and the parameters of the linear regression a and b were estimated after the logarithmic transformation log (y)=log( a)+ b*log(x). The allometric relationships between the dry weight and the morphometric macro-features studied show that the growth of the gor - gonian E. singularis in the study area is correlated positively and significantly with the five macro-features and that both the macro-features total branch length and the maximum width are the most appropriate parameter applied to the gorgonian E.
    [Show full text]
  • Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
    www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent.
    [Show full text]
  • Coral Reefs & Global Climate Change
    environment+ + Coral reefs & Global climate change Potential Contributions of Climate Change to Stresses on Coral Reef Ecosystems + Robert W. Buddemeier KANSAS G EOLOGICAL S URVEY Joan A. Kleypas NATIONAL C ENTER FOR ATMOSPHERIC R ESEARCH Richard B. Aronson DAUPHIN I SLAND S EA L AB + Coral reefs & Global climate change Potential Contributions of Climate Change to Stresses on Coral Reef Ecosystems Prepared for the Pew Center on Global Climate Change by Robert W. Buddemeier KANSAS G EOLOGICAL S URVEY Joan A. Kleypas NATIONAL C ENTER FOR ATMOSPHERIC R ESEARCH Richard B. Aronson DAUPHIN I SLAND S EA L AB February 2004 Contents Foreword ii Executive Summary iii I. Introduction 1 A. Coral Reefs and Reef Organisms 1 B. The “Coral Reef Crisis” 4 C. Climate and Environmental Change 5 II. Nonclimatic Stresses to Coral Reefs 7 A. Types and Categories of Stresses and Effects 7 B. Terrestrial Inputs 9 C. Overfishing and Resource Extraction 11 D. Coastal Zone Modification and Mining 13 E. Introduced and Invasive Species 13 III. Climatic Change Stresses to Coral Reefs 14 A. Coral Bleaching 15 B. Global Warming and Reef Distribution 17 C. Reduced Calcification Potential 19 D. Sea Level 21 E. El Niño-Southern Oscillation 21 F. Ocean Circulation Changes 22 + G. Precipitation and Storm Patterns 22 IV. Synthesis and Discussion 24 A. Infectious Diseases 24 B. Predation 25 C. Connections with Global Climate Change and Human Activity 26 D. Regional Comparison 27 E. Adaptation 28 V. Resources at Risk 30 + A. Socioeconomic Impacts 30 B. Biological and Ecological Impacts 31 C. Protection and Conservation 31 VI.
    [Show full text]
  • PRAVILNIK O PREKOGRANIĈNOM PROMETU I TRGOVINI ZAŠTIĆENIM VRSTAMA ("Sl
    PRAVILNIK O PREKOGRANIĈNOM PROMETU I TRGOVINI ZAŠTIĆENIM VRSTAMA ("Sl. glasnik RS", br. 99/2009 i 6/2014) I OSNOVNE ODREDBE Ĉlan 1 Ovim pravilnikom propisuju se: uslovi pod kojima se obavlja uvoz, izvoz, unos, iznos ili tranzit, trgovina i uzgoj ugroţenih i zaštićenih biljnih i ţivotinjskih divljih vrsta (u daljem tekstu: zaštićene vrste), njihovih delova i derivata; izdavanje dozvola i drugih akata (potvrde, sertifikati, mišljenja); dokumentacija koja se podnosi uz zahtev za izdavanje dozvola, sadrţina i izgled dozvole; spiskovi vrsta, njihovih delova i derivata koji podleţu izdavanju dozvola, odnosno drugih akata; vrste, njihovi delovi i derivati ĉiji je uvoz odnosno izvoz zabranjen, ograniĉen ili obustavljen; izuzeci od izdavanja dozvole; naĉin obeleţavanja ţivotinja ili pošiljki; naĉin sprovoĊenja nadzora i voĊenja evidencije i izrada izveštaja. Ĉlan 2 Izrazi upotrebljeni u ovom pravilniku imaju sledeće znaĉenje: 1) datum sticanja je datum kada je primerak uzet iz prirode, roĊen u zatoĉeništvu ili veštaĉki razmnoţen, ili ukoliko takav datum ne moţe biti dokazan, sledeći datum kojim se dokazuje prvo posedovanje primeraka; 2) deo je svaki deo ţivotinje, biljke ili gljive, nezavisno od toga da li je u sveţem, sirovom, osušenom ili preraĊenom stanju; 3) derivat je svaki preraĊeni deo ţivotinje, biljke, gljive ili telesna teĉnost. Derivati većinom nisu prepoznatljivi deo primerka od kojeg potiĉu; 4) država porekla je drţava u kojoj je primerak uzet iz prirode, roĊen i uzgojen u zatoĉeništvu ili veštaĉki razmnoţen; 5) druga generacija potomaka
    [Show full text]
  • The Isotopic Composition of Respired Carbon Dioxide in Scleractinian Corals: Implications for Cycling of Organic Carbon in Corals
    Geochimica et Cosmochimica Acta, Vol. 69, No. 6, pp. 1495–1509, 2005 Copyright © 2005 Elsevier Ltd Printed in the USA. All rights reserved 0016-7037/05 $30.00 ϩ .00 doi:10.1016/j.gca.2004.09.004 The isotopic composition of respired carbon dioxide in scleractinian corals: Implications for cycling of organic carbon in corals 1, 2 3 4 3 5 PETER K. SWART *, ALINA SZMANT ,JAMES W. PORTER ,RICHARD E. DODGE ,JENNIFER I. TOUGAS , and JOHN R. SOUTHAM 1Division of Marine Geology and Geophysics, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA 2Center for Marine Science, University of North Carolina at Wilmington, 5600 Marvin Moss Lane, Wilmington, NC 28409, USA 3Institute of Ecology, University of Georgia, Athens, GA 30602, USA 4National Coral Reef Institute, Nova Southeastern University, Dania, FL, USA 5Department of Geological Sciences, University of Miami, Coral Gables, FL 33129, USA (Received March 18, 2004; accepted in revised form September 10, 2004) Abstract—The origin of ␦13C variations within the skeletons of zooxanthellate scleractinian corals is still a ␦13 matter of considerable debate. In particular, the role respired CO2 plays in controlling the eventual Cofthe ␦13 skeleton remains unclear. In this study, the temporal variability of the C of respired CO2 produced by Montastraea faveolata has been measured at approximately monthly intervals over a 1-year period. In these experiments, three corals maintained on a platform at 8 m depth near Molasses Reef in the Florida Keys were incubated in closed chambers for 24-h periods and samples of the incubation water analyzed for the ␦13Cof ⌺ ϳ the dissolved inorganic carbon ( CO2)at 3-h intervals.
    [Show full text]
  • What Evidence Exists on the Impacts of Chemicals Arising from Human Activity on Tropical Reef-Building Corals?
    Ouédraogo et al. Environ Evid (2020) 9:18 https://doi.org/10.1186/s13750-020-00203-x Environmental Evidence SYSTEMATIC MAP PROTOCOL Open Access What evidence exists on the impacts of chemicals arising from human activity on tropical reef-building corals? A systematic map protocol Dakis‑Yaoba Ouédraogo1* , Romain Sordello2, Sophie Brugneaux3, Karen Burga4, Christophe Calvayrac5,6, Magalie Castelin7, Isabelle Domart‑Coulon8, Christine Ferrier‑Pagès9, Mireille M. M. Guillaume10,11, Laetitia Hédouin11,12, Pascale Joannot13, Olivier Perceval14 and Yorick Reyjol2 Abstract Background: Tropical coral reefs cover ca. 0.1% of the Earth’s surface but host an outstanding biodiversity and provide important ecosystem services to millions of people living nearby. However, they are currently threatened by both local (e.g. nutrient enrichment and chemical pollution of coastal reefs, arising from poor land management, agriculture and industry) and global stressors (mainly seawater warming and acidifcation, i.e. climate change). Global and local stressors interact together in diferent ways, but the presence of one stressor often reduces the tolerance to additional stress. While global stressors cannot be halted by local actions, local stressors can be reduced through ecosystem management, therefore minimizing the impact of climate change on reefs. To inform decision‑makers, we propose here to systematically map the evidence of impacts of chemicals arising from anthropogenic activities on tropical reef‑building corals, which are the main engineer species of reef ecosystems. We aim to identify the combina‑ tions of chemical and coral responses that have attracted the most attention and for which evidence can be further summarized in a systematic review that will give practical information to decision‑makers.
    [Show full text]
  • 1 Ecological Engineering Considerations for Coral
    ECOLOGICAL ENGINEERING CONSIDERATIONS FOR CORAL REEFS IN THE DESIGN OF MULTIFUNCTIONAL COASTAL STRUCTURES Michael Foley1, Yuko Stender2, Amarjit Singh1, Paul Jokiel2, and Ku‘ulei Rodgers2 A multifunctional structure is being designed for the Kahului Harbor, Maui, Hawai‘i, to mitigate operational problems caused by wave energy while also providing coral reef habitat. There is limited information on how the design of a coastal structure can be manipulated to enhance the ecology of targeted coral communities. To inform the ecological engineering of an artificial coral reef, the relationship between substrate characteristics and coral colonization was investigated through coral recruitment experiments and study of field conditions. Three concrete compositions that differed by the use of basalt, limestone, or recycled aggregates were tested in field and laboratory experiments to determine the impact of each substrate on the recruitment of juvenile hermatypic corals. The concrete test plates were deployed in three environments for a period of about one year, after which the coral recruits on each plate were identified and counted. No significant difference was found in the average number of coral recruits on the concrete mixed with basalt, limestone and recycled aggregate (60 ± 9, 83 ± 17 and 77 ± 14, respectively). Significant differences in coral recruitment were found due to the laboratory tanks, deep water, and shallow water field tests environments (86 ± 11, 135 ± 15 and 4 ± 1, respectively). These results highlight the importance of environmental site conditions for the development of coral reef habitat. A field study was conducted in the vicinity of purposed artificial reef site to relate the topographic features of the surrounding environment to the levels of live coral coverage.
    [Show full text]
  • Mollusks Background the Florida Keys Marine Ecosystem Supports a Diverse Fauna of Mollusks Belonging to Several Orders
    2010 Quick Look Report: Miller et al. VII. Abundance and Size of Selected Mollusks Background The Florida Keys marine ecosystem supports a diverse fauna of mollusks belonging to several orders. Opisthobranch mollusks, for example, are represented by at least 30 species of sea slugs (Sacoglossa) and 23 species of nudibranchs (Nudibranchia) (Clark and DeFreese 1987; Levy et al. 1996), including at least three endemic species (Clark 1994). Data on the status and trends of mollusk populations and habitat utilization patterns in the Florida Keys, with the exception of queen conch (Strombus gigas), are generally limited (Marcus 1960; Jensen and Clark 1983; Clark and DeFreese 1987), as most previous studies have been qualitative in nature (Clark 1994; Trowbridge 2002). Clark (1994) noted a declining population trend for the lettuce sea slug, Elysia (Tridachia) crispata Mörch (see cladistic analyses in Gosliner 1995; Jensen 1996) in southern Florida, based upon qualitative comparisons of occurrence and population densities between 1969-80 and 1987-93. About 50% of the nearshore populations assessed by Clark (1994) nearly 17 years ago were declining due to habitat destruction, siltation, eutrophication, and over- collection, particularly evident in nearshore habitats. Since 2001, we have conducted intermittent surveys of various gastropod mollusk species in conjunction with assessments of other benthic variables. For example, we encountered unusually high densities of lettuce sea slugs among 63 shallow fore reef sites during June-September 2001. While sacoglossans are not particularly rare in many shallow-water marine habitats where densities correlate with algal biomass (Clarke and DeFreese 1987), our observations offshore were considered unusual because fleshy algal cover tends to be relatively low (Chiappone et al.
    [Show full text]
  • FKNMS Lower Region
    se encuentran entre los entre encuentran se Florida la de Cayos los de coralinos arrecifes Los agua. del salinidad la o como los erizos y pepinos de mar. Las hierbas marinas son una base para la crianza del crianza la para base una son marinas hierbas Las mar. de pepinos y erizos los como aves, peces y tortugas que se enredan en ella o la ingieren, confundiéndola con alimentos. con confundiéndola ingieren, la o ella en enredan se que tortugas y peces aves, grados C), ni más cálidas de 86 grados F (30 grados C), ni a cambios pronunciados de la calidad la de pronunciados cambios a ni C), grados (30 F grados 86 de cálidas más ni C), grados atíes y diversos peces, y son el hábitat de organismos marinos filtradores, así como forrajeros, como así filtradores, marinos organismos de hábitat el son y peces, diversos y atíes delicados puede asfixiarlos, romperlos o erosionarlos. La basura puede resultar mortal para las para mortal resultar puede basura La erosionarlos. o romperlos asfixiarlos, puede delicados vivir a la exposición continua de aguas del mar a temperaturas por debajo de los 68 grados F (18 F grados 68 los de debajo por temperaturas a mar del aguas de continua exposición la a vivir ue at motned acdn lmnii.Poocoa lmnoalstrua,man- tortugas, las a alimento Proporcionan alimenticia. cadena la de importante parte tuyen que las aves mueran de hambre. El cordel de pescar y la basura que se enreda en los corales los en enreda se que basura la y pescar de cordel El hambre.
    [Show full text]
  • FKNMS Artificial Habitat Permits As of July 7, 2015
    FKNMS artificial habitat permits as of July 7, 2015 Date issued or Waypoint deployed Project Permit holder(s)/affiliation Activity or items deployed Artificial reef (scuttled vessel) permits Flynn/Dade County DERM; 1 7/28/1998 Ocean Freeze (Scott Mason Chaite) Smith/Moby Marine Vessel Garrett/Monroe County; Schurger/Schurger Bros 27 12/5/1998 Adolphus Busch Diving & Salvage Vessel 2 5/17/2002 Spiegel Grove Garrett/Monroe County Vessel 28 5/27/2009 Hoyt S. Vandenberg Weekly/City of Key West Vessel Education permits 5 1/21/1999 Educational Marine Science Project Coleman 15 concrete blocks 3 6/3/1999 Wolfe Reef Memorial Makepeace/Coral Shores HS 3 reef balls 7 5/23/2000 Davis Reef reef balls Makepeace/Coral Shores HS 6 reef balls 7 5/31/2001 Davis Reef reef balls Makepeace/Coral Shores HS 4 reef balls Wampler/Boy Scouts of 6 5/23/2001 BSA reef balls, after the fact America 106 reef balls Research permits The Effects of Artificial Reef Habitats on Fish 4 5/1/2001 Production St. Mary/UF 25 small quarried rock piles Impact of Illegal Artificial Reefs on Spiny Lobster One small concrete reef structure and a 100- 6/10/2004 Populations Herron/NMFS lb weight 12,13,14, Determining the Ecological Significance of the Spotted 18,19,20, Spiny Lobster, Panulirus guttatus, on the Coral Reef 21,25 5/23/2005 Communities of the Florida Keys Butler/ODU Settlement blocks (20x40cm) 10,11,15, The Influence of Conspecific Cues and Community 16,17,22, Composition on the Recruitment of Juvenile Spiny 23,24 7/7/2005 Lobsters Childress/Clemson Univ.
    [Show full text]