Focus on Mapping the Brain

Total Page:16

File Type:pdf, Size:1020Kb

Focus on Mapping the Brain Focus on Mapping the Brain e are entering a new era in neuroscience in which techno- CONTENTS logical development will allow us to obtain full anatomi- 483 From the connectome Wcal, high-resolution renderings of entire brain circuits and to brain function to map the activity of ever larger cellular populations as an animal C I Bargmann & E Marder performs specific behaviors. Assembling anatomical, molecular and 491 Making sense of brain functional maps has the potential to greatly advance our under- network data standing of how brains work. O Sporns In this Focus, experts outline the technologies needed to obtain 494 Why not these maps and discuss what will be needed beyond them to under- connectomics? J L Morgan & stand brain function. J W Lichtman Visualization of functional In a Historical Perspective, Cornelia Bargmann and Eve Marder connectivity in the human 501 Cellular-resolution discuss what has been learned from invertebrate circuits whose connectomics: cerebral cortex based on magnetic connectivity patterns are known and what will be needed beyond challenges of dense resonance imaging data. Brain neural circuit image by Joachim Böttger and anatomical maps to understand brain function in other organisms. reconstruction Daniel Margulies (Max Planck In a Commentary, Jeff Lichtman and Joshua Morgan express their M Helmstaedter Institute for Human Cognitive and views about why obtaining detailed, high-resolution structural Brain Sciences, Leipzig, Germany) maps should be an essential part of this endeavor. To understand 508 CLARITY for mapping with compositing help by Tobias S. the nervous system Hoffmann. Cover composition by the deluge of data these maps will engender once generated, Olaf K Chung & K Deisseroth Erin Dewalt. Sporns argues in another Commentary that data representation and 515 Mapping brain modeling will be critical. circuitry with a light Other experts discuss the newest technologies available for microscope obtaining brain maps. Moritz Helmstaedter presents the state of P Osten & T W Margrie the art and current challenges of electron microscopy–based cir- 524 Imaging human © 2013 Nature America, Inc. All rights reserved. America, Inc. © 2013 Nature cuit reconstruction. In three papers, the potential of using light connectomes at the macroscale to unveil the function and anatomy of brain circuits is presented. R C Craddock, S Jbabdi, Karl Deisseroth and Kwanghun Chung discuss their newly devel- C-G Yan, J T Vogelstein, npg oped method named CLARITY for rendering mammalian brains F X Castellanos, permeable to visible photons and molecules. Pavel Osten and Troy A Di Martino, C Kelly, Margrie review light-microscopy methods available for large-scale K Heberlein, S Colcombe & anatomical tracing and discuss ways to integrate molecular identity, M P Milham activity recording and anatomical information. In a Resource, Josh 540 Improved tools for the Brainbow toolbox Sanes and colleagues present improved tools for mapping the mouse Dawen Cai, K B Cohen, brain using the Brainbow technology. Finally, Michael Milham, Stan T Luo, J W Lichtman & Colcombe and their colleagues review methods for functional and J R Sanes anatomical analysis of human brains at the macroscale. We are pleased to acknowledge the financial support of Carl Zeiss Microscopy, Hamamatsu Corporation, LaVision BioTec, TissueVision, Inc. and Chroma Technology Corp. Nature Methods carries sole responsibility for all editorial content and peer review. Erika Pastrana Editor, Nature Methods Daniel Evanko Copy Editor Odelia Ghodsizadeh Carol Evangelista, Ivy Robles Focus Editor Erika Pastrana Managing Production Editor Sponsorship David Bagshaw, Publisher Stephanie Diment Renee Lucas Yvette Smith, Reya Silao Senior Copy Editor Irene Kaganman Production Editors Brandy Cafarella, Marketing Nazly De La Rosa NATURE METHODS | VOL.10 NO.6 | JUNE 2013 | 481 FOCUS ON MAPPING THE BRAIN HISTORICAL PERSPECTIVE From the connectome to brain function Cornelia I Bargmann1 & Eve Marder2,3 In this Historical Perspective, we ask what behaviors5–7. In association with the recordings of information is needed beyond connectivity these individually recognizable, identified neurons, the diagrams to understand the function of nervous cells were filled with dye to visualize their structures systems. Informed by invertebrate circuits and projection patterns via light microscopy8–10. In whose connectivities are known, we highlight some cases, electron microscopy was used to observe the importance of neuronal dynamics and the anatomical synapses in these small circuits11–13. neuromodulation, and the existence of parallel But until the publication of the heroic electron micros- circuits. The vertebrate retina has these features in copy reconstruction of the full nervous system of common with invertebrate circuits, suggesting that C. elegans14 in the mid-1980s, it was unimaginable they are general across animals. Comparisons across that the electron microscope could be used to deter- these systems suggest approaches to study the mine circuit connectivity rather than providing functional organization of large circuits based on ultrastructural detail to connectivity determined existing knowledge of small circuits. either with physiological or light microscopy–based An animal’s behavior arises from the coordinated activ- anatomical methods. ity of many interconnected neurons—“many” meaning Recent advances in electron microscopy and image 302 for Caenorhabditis elegans, 20,000 for a mollusc, analysis have made it possible to scale up this ultrastruc- several hundred thousand for an insect or billions for tural approach: to serially section and reconstruct pieces humans. Determining the connectivity of these neu- of both vertebrate and invertebrate nervous systems, rons, via combined anatomical and electrophysiologi- with the stated purpose of using detailed connectomes cal methods, has always been a part of neuroscience. As to reveal how these circuits work4,15–18. Such large- we were writing this, these ideas were being revisited scale projects will provide new anatomical data that will © 2013 Nature America, Inc. All rights reserved. America, Inc. © 2013 Nature from the perspective of massively parallel methods for offer invaluable insights into the functional organiza- dense reconstruction, or ‘connectomics’. One thread of tion of the structures studied. An unbiased approach this analysis involves the detailed, high-density map- to data acquisition always reveals surprises and new npg ping of point-to-point connections between neurons insights. Moreover, because of the scope and size of at synapses1–4. The specialized membrane structures these projects, such efforts will generate unprecedented and synaptic vesicles of synapses can be visualized amounts of data to be analyzed and understood. with an electron microscope, and consequently dense Here we ask what additional information is needed reconstructions of nervous-system connectomes rely beyond connectivity diagrams to understand circuit on electron microscopy of serial brain sections. In a function, informed by the invertebrate circuits whose complementary approach, detailed electrophysiologi- connectivity is known. For the prototypical case, the cal analysis shows how synapses and circuits function complete C. elegans nervous system, the anatomical at high resolution, and is increasingly being applied to connectome was largely established over 25 years large numbers of interconnected neurons. ago14. In a variety of other invertebrate preparations, The first approaches used to map complete circuits connectivity was established using combinations of came from studies of the smaller nervous systems electrophysiological recordings and neuronal tracing 30– of invertebrates. In the 1960s and 1970s, systematic 40 years ago, which enabled researchers to generate electrophysiological recordings from neurons in a wiring map that incorporates activity information. discrete ganglia enabled the identification of neu- Despite their different starting points from anatomy and ronal components of circuits that generate specific electrophysiology, these two approaches have uncovered 1Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA. 2Volen Center, Brandeis University, Waltham, Massachusetts, USA. 3Department of Biology, Brandeis University, Waltham, Massachusetts, USA. Correspondence should be addressed to C.I.B. ([email protected]). RECEIVED 27 FEBRUARY; ACCEPTED 5 APRIL; PUBLISHED ONLINE 30 MAY 2013; DOI:10.1038/NMETH.2451 NATURE METHODS | VOL.10 NO.6 | JUNE 2013 | 483 HISTORICAL PERSPECTIVE FOCUS ON MAPPING THE BRAIN Figure 1 | Connectivity of two a well-studied invertebrate circuits. (a) Connectivity diagram of the crab STG based on electrophysiological AB PD LPG recordings. Red and blue background Electrical synapse shading indicates neurons that are LP IC LG MG GM primarily part of the pyloric and Chemical inhibitory synapses gastric circuits, respectively. Purple PY VD Int1 DG AM shading indicates that some neurons switch between firing in pyloric and gastric time, and that there is no fixed boundary between the pyloric and gastric circuits. Yellow ASJL b PHAR AIMR highlights two neurons that are both ASJR ASIR AINL electrically coupled and reciprocally ALMR PVM PHAL ASIL AIML HSNL PHCR inhibitory. Green highlights one AWALAINRAWAR ASGL AVFL ADLR IL2R ASEL AWBL ADLL of many examples of neurons that IL2L AWBR PVQL ALML PLNR FLPR ADFL VC05AVM PVDR IL2VRIL2VL CEPVRCEPDR ASGR SDQL LUAR ASER ASHR
Recommended publications
  • Building Atlases of the Brain
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. BUILDING AtLASES OF THE BRAIN Mike Hawrylycz With Chinh Dang, Christof Koch, and Hongkui Zeng A Very Brief History of Brain Atlases The earliest known significant works on human anatomy were collected by the Greek physician Claudius Galen around 200 BCE. This ancient corpus remained the dominant viewpoint through the Middle Ages until the classic work De humani corporis fabrica (On the Fabric of the Human Body) by Andreas Vesalius of Padua (1514–1564), the first mod- ern anatomist. Even today many of Vesalius’s drawings are astonishing to study and are largely accurate. For nearly two centuries scholars have recognized that the brain is compartmentalized into distinct regions, and this organization is preserved throughout mammals in general. However, comprehending the structural organization and function of the nervous system remains one of the primary challenges in neuro- science. To analyze and record their findings neuroanatomists develop atlases or maps of the brain similar to those cartographers produce. The state of our understanding today of an integrated plan of brain function remains incomplete. Rather than indicating a lack of effort, this observation highlights the profound complexity and interconnec- tivity of all but the simplest neural structures. Laying the foundation of cellular neuroscience, Santiago Ramón y Cajal (1852– 1934) drew and classified many types of neurons and speculated that the brain consists of an interconnected network of distinct neurons, as opposed to a more continuous web.
    [Show full text]
  • The Creation of Neuroscience
    The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits.
    [Show full text]
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
    life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions.
    [Show full text]
  • Challenges and Techniques for Presurgical Brain Mapping with Functional MRI
    Challenges and techniques for presurgical brain mapping with functional MRI The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Silva, Michael A., Alfred P. See, Walid I. Essayed, Alexandra J. Golby, and Yanmei Tie. 2017. “Challenges and techniques for presurgical brain mapping with functional MRI.” NeuroImage : Clinical 17 (1): 794-803. doi:10.1016/j.nicl.2017.12.008. http://dx.doi.org/10.1016/ j.nicl.2017.12.008. Published Version doi:10.1016/j.nicl.2017.12.008 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34651769 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NeuroImage: Clinical 17 (2018) 794–803 Contents lists available at ScienceDirect NeuroImage: Clinical journal homepage: www.elsevier.com/locate/ynicl Challenges and techniques for presurgical brain mapping with functional T MRI ⁎ Michael A. Silvaa,b, Alfred P. Seea,b, Walid I. Essayeda,b, Alexandra J. Golbya,b,c, Yanmei Tiea,b, a Harvard Medical School, Boston, MA, USA b Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA c Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA ABSTRACT Functional magnetic resonance imaging (fMRI) is increasingly used for preoperative counseling and planning, and intraoperative guidance for tumor resection in the eloquent cortex. Although there have been improvements in image resolution and artifact correction, there are still limitations of this modality.
    [Show full text]
  • Functional Brain Mapping and Neuromodulation Enhanced
    In non-clinical populations, brain mapping Neurofeedback and tDCS are also being used to enhance performance and cognitive functions such as reaction time and decision speed in individuals who are functioning in highly-competitive environments. For additional information on these and other recently developed diagnostic tests, treatment interventions and peak performance training, please call The NeuroCognitive Institute and schedule a consultation. One of Many Scientific References on Functional Brain Mapping and Neuromodulation Functional Brain Mapping and the Endeavor to Understand the Working Brain: Signorelli and Chirchiglia (2013). Mind Over Chatter: Plastic up-regulation of the fMRI salience network directly after EEG Neurofeedback. Neuroimage, 65, 324-335 About The NeuroCognitive Institute Established in 1994, The NeuroCognitive Institute is committed to its scientist-practitioner model which requires its clinicians to remain ac- tively involved in neuroscience research. Over the past two decades, NCI has become one of the premiere centers in New Jersey for the diag- nosis and treatment of cognitive and related neurobehavioral and neuro- psychiatric disorders. The team consists of clinical and cognitive neuro- psychologists, cognitive and behavioral neurologists, clinical psycholo- gists, neuropsychiatrists, cognitive and speech and language therapists, as well as, behaviorists, psychotherapists and neuromodulation clini- cians. Locations Morris County: 111 Howard Blvd., Suites 204-205, Mt. Arlington, NJ 07856 Somerset County: Medical Plaza Building., 1 Robertson Drive, Suite 22, Bedminster, NJ 07921 Essex County: Barnabas Health Ambulatory Care Center, Suite 270, Functional Brain Mapping and 200 South Orange Avenue, Livingston, NJ 07039 Neuromodulation Enhanced Contact Us Phone: 973.601.0100 Cognitive Rehabilitation Fax: 973.440.1656 Email: [email protected] Web: neuroci.com We can use functional brain mapping results to identify treatment targets.
    [Show full text]
  • Tor Wager Diana L
    Tor Wager Diana L. Taylor Distinguished Professor of Psychological and Brain Sciences Dartmouth College Email: [email protected] https://wagerlab.colorado.edu Last Updated: July, 2019 Executive summary ● Appointments: Faculty since 2004, starting as Assistant Professor at Columbia ​ University. Associate Professor in 2009, moved to University of Colorado, Boulder in 2010; Professor since 2014. 2019-Present: Diana L. Taylor Distinguished Professor of Psychological and Brain Sciences at Dartmouth College. ● Publications: 240 publications with >50,000 total citations (Google Scholar), 11 papers ​ cited over 1000 times. H-index = 79. Journals include Science, Nature, New England Journal of Medicine, Nature Neuroscience, Neuron, Nature Methods, PNAS, Psychological Science, PLoS Biology, Trends in Cognitive Sciences, Nature Reviews Neuroscience, Nature Reviews Neurology, Nature Medicine, Journal of Neuroscience. ● Funding: Currently principal investigator on 3 NIH R01s, and co-investigator on other ​ collaborative grants. Past funding sources include NIH, NSF, Army Research Institute, Templeton Foundation, DoD. P.I. on 4 R01s, 1 R21, 1 RC1, 1 NSF. ● Awards: Awards include NSF Graduate Fellowship, MacLean Award from American ​ Psychosomatic Society, Colorado Faculty Research Award, “Rising Star” from American Psychological Society, Cognitive Neuroscience Society Young Investigator Award, Web of Science “Highly Cited Researcher”, Fellow of American Psychological Society. Two patents on research products. ● Outreach: >300 invited talks at universities/international conferences since 2005. ​ Invited talks in Psychology, Neuroscience, Cognitive Science, Psychiatry, Neurology, Anesthesiology, Radiology, Medical Anthropology, Marketing, and others. Media outreach: Featured in New York Times, The Economist, NPR (Science Friday and Radiolab), CBS Evening News, PBS special on healing, BBC, BBC Horizons, Fox News, 60 Minutes, others.
    [Show full text]
  • Circular Representation of Human Cortical Networks for Subject and Population-Level Connectomic Visualization
    NeuroImage 60 (2012) 1340–1351 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Full Length Articles Circular representation of human cortical networks for subject and population-level connectomic visualization Andrei Irimia ⁎, Micah C. Chambers, Carinna M. Torgerson, John D. Van Horn Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 635 Charles E Young Drive South, Suite 225, Los Angeles, CA 90095, USA article info abstract Article history: Cortical network architecture has predominantly been investigated visually using graph theory representa- Received 13 September 2011 tions. In the context of human connectomics, such representations are not however always satisfactory Revised 19 January 2012 because canonical methods for vertex–edge relationship representation do not always offer optimal insight Accepted 20 January 2012 regarding functional and structural neural connectivity. This article introduces an innovative framework for Available online 28 January 2012 the depiction of human connectomics by employing a circular visualization method which is highly suitable to the exploration of central nervous system architecture. This type of representation, which we name a Keywords: ‘ ’ Connectomics connectogram , has the capability of classifying neuroconnectivity relationships intuitively and elegantly. A Cortical network multimodal protocol for MRI/DTI neuroimaging data acquisition is here combined with automatic image seg- DTI mentation to (1) extract cortical and non-cortical anatomical structures, (2) calculate associated volumetrics MRI and morphometrics, and (3) determine patient-specific connectivity profiles to generate subject-level and Neuroimaging population-level connectograms. The scalability of our approach is demonstrated for a population of 50 adults.
    [Show full text]
  • Reverse-Engineering the Brain [email protected]
    Prof. Henry Markram Dr. Felix Schürmann Reverse-Engineering the Brain [email protected] http://bluebrainproject.epfl.ch Brain Mind Institute © Blue Brain Project The Electrophysiologist’s View BBP BBP BBP © Blue Brain Project Accurate Models that Relate to Experiment LBCÆPC SBCÆPC NBCÆPC BTCÆPC MCÆPC © Blue Brain Project BBP Phase I: Neocortical Column Create a faithful “in silico” replica at cellular level of a neocortical column of a young rat by the means of: • reverse engineering the biology components • forward constructing functional mathematical models • Building 10,000 morphologically complex neurons • Constructing a circuit with 30,000,000 dynamic synapses • Simulating the column close to real-time © Blue Brain Project Building and Simulating the NCC BBP © Blue Brain Project The Electrocphysiologist’s View - Revisited BBP BBP BBP © Blue Brain Project BBP Phase I: « in vitro » vs. « in silico » BBP BBP BBP BBP in silico in silico in vitro in vitro © Blue Brain Project Level of Detail 0x Channels ,00 Compartment 10 ~20HH style channels/compartment Neuron ~350compartments/neuron Synapses A Rat’s Neocortical Column: IT Challenge: • ~1mm^3 • 3,500,000 compartments • 6 layers • passive (cable, Gauss • > 50 morphological classes Elimination) • ~340 morpho-electrical types • active HH style channels • ~200 types of ion channels • 30,000,000 synapses ~3,000/neuron • 10,000 neurons • dynamic • 18 types of synapses • 30,000,000 synapses • Æ reporting 1 value/compartment Æ 140GB/biol sec © Blue Brain Project Usage of BG/L in the BBP Dedicated 4 rack BG/L @ EPFL with 8192 processors, 2TB of distributed memory, 22.4 TFlop (peak) ÆUsed throughout all parts of the project ÆAllows iteration of complete process within a week • Building: Run evolutionary algorithms for fitting of thousands of single cell models to data typical job size: 2048 procs S.
    [Show full text]
  • Progress and Challenges in Probing the Human Brain
    University of Pennsylvania ScholarlyCommons Neuroethics Publications Center for Neuroscience & Society 10-2015 Progress and Challenges in Probing the Human Brain Russell A. Poldrack Martha J. Farah University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/neuroethics_pubs Part of the Bioethics and Medical Ethics Commons, Neuroscience and Neurobiology Commons, and the Neurosciences Commons Recommended Citation Poldrack, R. A., & Farah, M. J. (2015). Progress and Challenges in Probing the Human Brain. Nature, 526 (7573), 371-379. http://dx.doi.org/10.1038/nature15692 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/neuroethics_pubs/136 For more information, please contact [email protected]. Progress and Challenges in Probing the Human Brain Abstract Perhaps one of the greatest scientific challenges is to understand the human brain. Here we review current methods in human neuroscience, highlighting the ways that they have been used to study the neural bases of the human mind. We begin with a consideration of different levels of description relevant to human neuroscience, from molecules to large-scale networks, and then review the methods that probe these levels and the ability of these methods to test hypotheses about causal mechanisms. Functional MRI is considered in particular detail, as it has been responsible for much of the recent growth of human neuroscience research. We briefly er view its inferential strengths and weaknesses and present examples of new analytic approaches that allow inferences beyond simple localization of psychological processes. Finally, we review the prospects for real-world applications and new scientific challenges for human neuroscience.
    [Show full text]
  • A Case Study of a Blue Brain Working on the Neural Network Concept
    International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com International Journal of Multidisciplinary Research and Growth Evaluation ISSN: 2582-7138 Received: 03-06-2021; Accepted: 19-06-2021 www.allmultidisciplinaryjournal.com Volume 2; Issue 4; July-August 2021; Page No. 201-206 A case study of a blue brain working on the neural network concept Neha Verma Student, Department of Computer Applications, RIMT University, Mandi Gobindgarh, Punjab, India Corresponding Author: Neha Verma Abstract Blue brain is the name of the world's first virtual brain So IBM is trying to create an artificial brain that can think, initiated and founded by the scientist Henry Markram at response and take decisions like human brain. It is called EPFL in Lausanne Switzerland. The main aim behind this "Blue Brain". Hence this paper consists of the concepts of project is to save knowledge of the human brain for decades. Blue Brain, the requirements of the Blue Brain project, It is a well known fact that human doesn't live for thousands various strategies undertaken to build the Blue Brain, of years and the intelligence is also lost after a person's death. advantages and disadvantages and many more. Keywords: Neurons, Nanobots, Blue Gene, Virtual mind, Neuroscience 1. Introduction As we know the human brain is most powerful creation of God and it is very complex to understand the circuit of human brain. However with the advancement in technology, now it is possible to create a virtual brain so in future, the human brains are going to be attacked by the blue brain and it is going to be very useful for all of us.
    [Show full text]
  • Advanced CLARITY Methods for Rapid and High-Resolution Imaging of Intact Tissues Raju Tomer, Phd, and Karl Deisseroth, Phd
    Advanced CLARITY Methods for Rapid and High-Resolution Imaging of Intact Tissues Raju Tomer, PhD, and Karl Deisseroth, PhD Department of Bioengineering Department of Psychiatry and Behavioral Sciences CNC Program, Howard Hughes Medical Institute Stanford University Stanford, California © 2014 Tomer Advanced CLARITY Methods for Rapid and High-Resolution Imaging of Intact Tissues 37 Introduction causally relevant to animal behavior. Suitable light- CLARITY is a method for chemical transformation based imaging approaches, combined with specific of intact biological tissues into a hydrogel-tissue genetic or histochemical molecular labeling methods, hybrid, which becomes amenable to interrogation have emerged as important tools for visualizing the with light and macromolecular labels while retaining structural, molecular, and functional architecture of fine structure and native biological molecules. This biological tissues, with a particularly vital role to play emerging accessibility of information from large in emerging brainwide, high-resolution neuroanatomy. intact samples has created both new opportunities and new challenges. In this chapter, we describe next- Confocal methods revolutionized light microscopy generation methods spanning multiple dimensions of by enabling optical sectioning in thick (tens of the CLARITY workflow. These methods range from a micrometers) fluorescently labeled samples, thereby novel approach to simple, reliable, and efficient lipid allowing three-dimensional (3D) reconstruction removal without electrophoretic
    [Show full text]
  • New Trends in Connectomics
    FOCUS FEATURE: New Trends in Connectomics Editorial: New Trends in Connectomics 1 2,3,4,5 Olaf Sporns and Danielle S. Bassett 1Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA 2Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA 3Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA 4Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA 5Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA ABSTRACT Connectomics is an integral part of network neuroscience. The field has undergone rapid Downloaded from http://direct.mit.edu/netn/article-pdf/02/02/125/1092204/netn_e_00052.pdf by guest on 28 September 2021 expansion over recent years and increasingly involves a blend of experimental and computational approaches to brain connectivity. This Focus Feature on “New Trends in an open access journal Connectomics” aims to track the progress of the field and its many applications across different neurobiological systems and species. The idea that connections among neural elements are crucial for brain function has been central to modern neuroscience almost since its inception. Building on this idea, the emerg- ing field of connectomics adds several new and important components. First, connectomics provides comprehensive maps of neural connections, with the ultimate goal of achieving com- plete coverage of any given nervous system. Second, connectomics delivers insights into the principles that underlie network architecture and uncovers how these principles support net- work function. These dual aims can be accomplished through the confluence of new experi- mental techniques for mapping connections and new network science methods for modeling and analyzing the resulting large connectivity datasets.
    [Show full text]