Cold Spring Harbor Symposia on Quantitative Biology, Volume LXXIX: Cognition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Title of the Thesis)*
THE OPTIMALITY OF DECISION MAKING DURING MOTOR LEARNING by Joshua Brent Moskowitz A thesis submitted to the Department of Psychology in conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada (June, 2016) Copyright ©Joshua B. Moskowitz, 2016 Abstract In our daily lives, we often must predict how well we are going to perform in the future based on an evaluation of our current performance and an assessment of how much we will improve with practice. Such predictions can be used to decide whether to invest our time and energy in learning and, if we opt to invest, what rewards we may gain. This thesis investigated whether people are capable of tracking their own learning (i.e. current and future motor ability) and exploiting that information to make decisions related to task reward. In experiment one, participants performed a target aiming task under a visuomotor rotation such that they initially missed the target but gradually improved. After briefly practicing the task, they were asked to selected rewards for hits and misses applied to subsequent performance in the task, where selecting a higher reward for hits came at a cost of receiving a lower reward for misses. We found that participants made decisions that were in the direction of optimal and therefore demonstrated knowledge of future task performance. In experiment two, participants learned a novel target aiming task in which they were rewarded for target hits. Every five trials, they could choose a target size which varied inversely with reward value. Although participants’ decisions deviated from optimal, a model suggested that they took into account both past performance, and predicted future performance, when making their decisions. -
Section 1: MIT Facts and History
1 MIT Facts and History Economic Information 9 Technology Licensing Office 9 People 9 Students 10 Undergraduate Students 11 Graduate Students 12 Degrees 13 Alumni 13 Postdoctoral Appointments 14 Faculty and Staff 15 Awards and Honors of Current Faculty and Staff 16 Awards Highlights 17 Fields of Study 18 Research Laboratories, Centers, and Programs 19 Academic and Research Affiliations 20 Education Highlights 23 Research Highlights 26 7 MIT Facts and History The Massachusetts Institute of Technology is one nologies for artificial limbs, and the magnetic core of the world’s preeminent research universities, memory that enabled the development of digital dedicated to advancing knowledge and educating computers. Exciting areas of research and education students in science, technology, and other areas of today include neuroscience and the study of the scholarship that will best serve the nation and the brain and mind, bioengineering, energy, the envi- world. It is known for rigorous academic programs, ronment and sustainable development, informa- cutting-edge research, a diverse campus commu- tion sciences and technology, new media, financial nity, and its long-standing commitment to working technology, and entrepreneurship. with the public and private sectors to bring new knowledge to bear on the world’s great challenges. University research is one of the mainsprings of growth in an economy that is increasingly defined William Barton Rogers, the Institute’s founding pres- by technology. A study released in February 2009 ident, believed that education should be both broad by the Kauffman Foundation estimates that MIT and useful, enabling students to participate in “the graduates had founded 25,800 active companies. -
Sten Grillner
BK-SFN-HON_V9-160105-Grillner.indd 108 5/6/2016 4:11:20 PM Sten Grillner BORN: Stockholm, Sweden June 14, 1941 EDUCATION: University of Göteborg, Sweden, Med. Candidate (1962) University of Göteborg, Sweden, Dr. of Medicine, PhD (1969) Academy of Science, Moscow, Visiting Scientist (1971) APPOINTMENTS: Docent in Physiology, Medical Faculty, University of Göteborg (1969–1975) Professor, Department of Physiology III, Karolinska Institute (1975–1986) Director, Nobel Institute for Neurophysiology, Karolinska Institute, Professor (1987) Nobel Committee for Physiology or Medicine, Chair, 1995–1997 (1987–1998) Nobel Assembly at the Karolinska Institutet, Member Chair, 2005 (1988–2008) Chairman Department of Neuroscience, Karolinska Institutet (1993–2000) Distinguished Professor, Karolinska Institutet (2010) HONORS AND AWARDS: Member of Academiae Europaea 1990– Member of Royal Swedish Academy of Science 1993– Chairman Section for Biology and Member of Academy Board, 2004–2010 Member of Norwegian Academy of Science and Letters, 1997– Member American Academy of Arts and Sciences, 2004– Honorary Member of the Spanish Medical Academy, 2006– Foreign Associate of Institute of Medicine of the National Academy, United States, 2006– Foreign Associate of the National Academy, United States, 2010– Associate of the Neuroscience Institute, La Jolla, 1989– Member EMBO, 2014– Florman Award, Royal Swedish Academy of Science, 1977 Grass Lecturer to the Society of Neuroscience, Boston, 1983 Greater Nordic Prize of Eric Fernstrom, Lund, Sweden, 1990 Bristol-Myers -
Flexible Corticospinal Control of Muscles
Flexible Corticospinal Control of Muscles Najja J. Marshall Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2021 © 2021 Najja J. Marshall All Rights Reserved Abstract Flexible Corticospinal Control of Muscles Najja J. Marshall The exceptional abilities of top-tier athletes – from Simone Biles’ dizzying gymnastics to LeBron James’ gravity-defying bounds – can easily lead one to forget to marvel at the exceptional breadth of everyday movements. Whether holding a cup of coffee, reaching out to grab a falling object, or cycling at a quick clip, every motor action requires activating multiple muscles with the appropriate intensity and timing to move each limb or counteract the weight of an object. These actions are planned and executed by the motor cortex, which transmits its intentions to motoneurons in the spinal cord, which ultimately drive muscle contractions. A central problem in neuroscience is precisely how neural activity in cortex and the spinal cord gives rise to this diverse range of behaviors. At the level of spinal cord, this problem is considered to be well understood. A foundational tenet in motor control asserts that motoneurons are controlled by a single input to which they respond in a reliable and predictable manner to drive muscle activity, akin to the way that depressing a gas pedal by the same degree accelerates a car to a predictable speed. Theories of how motor cortex flexibly generates different behaviors are less firmly developed, but the available evidence indicates that cortical neurons are coordinated in a similarly simplistic, well-preserved manner. -
Toolmaking and the Origin of Normative Cognition
Preprint, 14 April 2020 Toolmaking and the Origin of Normative Cognition Jonathan Birch Department of Philosophy, Logic and Scientific Method, London School of Economics and Political Science, Houghton Street, London, WC2A 2AE, UK. [email protected] http://personal.lse.ac.uk/birchj1 11,947 words 1 Abstract: We are all guided by thousands of norms, but how did our capacity for normative cognition evolve? I propose there is a deep but neglected link between normative cognition and practical skill. In modern humans, complex motor skills and craft skills, such as skills related to toolmaking and tool use, are guided by internally represented norms of correct performance. Moreover, it is plausible that core components of human normative cognition evolved in response to the distinctive demands of transmitting complex motor skills and craft skills, especially skills related to toolmaking and tool use, through social learning. If this is correct, the expansion of the normative domain beyond technique to encompass more abstract norms of reciprocity, ritual, kinship and fairness involved the elaboration of a basic platform for the guidance of skilled action by technical norms. This article motivates and defends this “skill hypothesis” for the origin of normative cognition and sets out various ways in which it could be empirically tested. Key words: normative cognition, skill, cognitive control, norms, evolution 2 1. The Skill Hypothesis We are all guided by thousands of norms, often without being able to articulate the norms in question. A “norm”, as I will use the term here, is just any standard of correct or appropriate behaviour. -
2010 Buenos Aires, Argentina
Claiming CME Credit To claim CME credit for your participation in the MDS 14th Credit Designation International Congress of Parkinson’s Disease and Movement The Movement Disorder Society designates this educational Disorders, International Congress participants must complete activity for a maximum of 35 AMA PRA Category 1 Credits™. and submit an online CME Request Form. This form will be Physicians should only claim credit commensurate with the available beginning June 15. extent of their participation in the activity. Instructions for claiming credit: If you need a Non-CME Certificate of Attendance, please tear • After June 15, visit the MDS Web site. out the Certificate in the back of this Program and write in • Log in after reading the instructions on the page. You will your name. need your International Congress File Number which is located on your name badge or e-mail The Movement Disorder Society has sought accreditation from [email protected]. the European Accreditation Council for Continuing Medical • Follow the on-screen instructions to claim CME Credit for Education (EACCME) to provide CME activity for medical the sessions you attended. specialists. The EACCME is an institution of the European • You may print your certificate from your home or office, or Union of Medical Specialists (UEMS). For more information, save it as a PDF for your records. visit the Web site: www.uems.net. Continuing Medical Education EACCME credits are recognized by the American Medical The Movement Disorder Society is accredited by the Association towards the Physician’s Recognition Award (PRA). Accreditation Council for Continuing Medical Education To convert EACCME credit to AMA PRA category 1 credit, (ACCME) to provide continuing medical education for contact the AMA online at www.ama-assn.org. -
Wellcome Investigators March 2011
Wellcome Trust Investigator Awards Feedback from Expert Review Group members 28 March 2011 1 Roughly 7 months between application and final outcome The Expert Review Groups 1. Cell and Developmental Biology 2. Cellular and Molecular Neuroscience (Zaf Bashir) 3. Cognitive Neuroscience and Mental Health 4. Genetics, Genomics and Population Research (George Davey Smith) 5. Immune Systems in Health and Disease (David Wraith) 6. Molecular Basis of Cell Function 7. Pathogen Biology and Disease Transmission 8. Physiology in Health and Disease (Paul Martin) 9. Population and Public Health (Rona Campbell) 2 Summary Feedback from ERG Panels • The bar is very high across all nine panels • Track record led - CV must demonstrate a substantial impact of your research (e.g. high impact journals, record of ground breaking research, clear upward trajectory etc) To paraphrase Walport ‘to support scientists with the best track records, obviously appropriate to the stage in their career’ • Notable esteem factors (but note ‘several FRSs were not shortlisted’) • Your novelty of your research vision is CRUCIAL. Don’t just carry on doing more of the same • The Trust is not averse to risk (but what about ERG panel members?) • Success rate for short-listing for interview is ~15-25% at Senior Investigator level (3-5 proposals shortlisted from each ERG) • Fewer New Investigator than Senior Investigator applications – an opportunity? • There are fewer applications overall for the second round, but ‘the bar will not be lowered’ The Challenge UoB has roughly 45 existing -
Metastasis and Invasion 3 – Metastasis Science Cancer
CANCER SCIENCE 3 Cancer Science 3 – Metastasis and Invasion 3 – Metastasis Science Cancer www.ipsen.com 2FI 0069 Metastasis and Invasion Tuscany, May 20-23, 2007 24, rue Erlanger – 75016 Paris – Tel.: 33(0)1 44 96 10 10 – Fax: 33(0)1 44 96 11 99 COLLOQUES MÉDECINE ET RECHERCHE Fondation Ipsen SCIENTIFIC REPORT BY APOORVA MANDAVILLI 2 Fondation Ipsen is placed under the auspices of Fondation de France MOLECULAR MARKERS 3 4 Foreword by Inder M. Verma 7 Part I: Molecular markers 9 J. Michael Bishop Senescence and metastasis in mouse models of breast cancer 15 Joan Massagué Metastasis genes and functions 21 Zena Werb Transcriptional regulation of the metastatic program 25 Inder M. Verma BRCA1 maintains constitutive heterochromatin formation: a unifying hypothesis of its function 29 Tak Wah Mak The role of RhoC in development and metastasis 35 Part II: Motility and invasiveness 37 Robert Weinberg Mechanisms of malignant progression 43 Daniel Louvard Fascin, a novel target of b-catenin-Tcf signaling, is expressed at the invasive front of human colon cancer 49 Gerhard Christofori Distinct mechanisms of tumor cell invasion and metastasis 55 Douglas Hanahan Multiple parameters influence acquisition by solid tumors CONTENTS of a capability for invasive growth 59 Part III : Mechanisms of metastasis 61 Richard Hynes Cellular mechanisms contributing to metastasis 67 Ann Chambers Novel imaging approaches for studying tumor metastasis 73 Jeffrey Pollard Macrophages are a cellular toolbox that tumors sequester to promote their progression to malignancy 79 Wolf-Hervé Fridman T effector/memory cells, the ultimate control of metastasis in humans 85 Kari Alitalo Inhibition of lymphangiogenesis and metastasis 91 Shahin Rafii Contribution of CXCR4+VEGFR1+ pro-angiogenic hematopoietic cells to tumor oncogenesis 97 Part IV : Cancer stem cells 99 Paolo Comoglio Invasive growth : a MET-driven genetic program for cancer and stem cells 105 Hans Clevers Wnt and Notch cooperate to maintain proliferative compartments in crypts and intestinal neoplasia 111 Owen N. -
Why Dream? a Conjecture on Dreaming
Why dream? A Conjecture on Dreaming Marshall Stoneham London Centre for Nanotechnology University College London Gower Street, London WC1E 6BT, UK PACS classifications: 87.19.-j Properties of higher organisms; 87.19.L- Neuroscience; 87.18.-h Biological complexity Abstract I propose that the need for sleep and the occurrence of dreams are intimately linked to the physical processes underlying the continuing replacement of cells and renewal of biomolecules during the lives of higher organisms. Since one major function of our brains is to enable us to react to attack, there must be truly compelling reasons for us to take them off-line for extended periods, as during sleep. I suggest that most replacements occur during sleep. Dreams are suggested as part of the means by which the new neural circuitry (I use the word in an informal sense) is checked. 1. Introduction Sleep is a remarkably universal phenomenon among higher organisms. Indeed, many of them would die without sleep. Whereas hibernation, a distinct phenomenon, is readily understood in terms of energy balance, the reasons for sleep and for associated dreaming are by no means fully established. Indeed, some of the standard ideas are arguably implausible [1]. This present note describes a conjecture as to the role of dreaming. The ideas, in turn, point to a further conjecture about the need for sleep. I have tried to avoid any controversial assumptions. All I assume about the brain is that it comprises a complex and (at least partly) integrated network of components, and has several functions, including the obvious ones of control of motion, analysis of signals from sensors, computing (in the broadest sense), memory, and possibly other functions. -
Dynamics of Excitatory-Inhibitory Neuronal Networks With
I (X;Y) = S(X) - S(X|Y) in c ≈ p + N r V(t) = V 0 + ∫ dτZ 1(τ)I(t-τ) P(N) = 1 V= R I N! λ N e -λ www.cosyne.org R j = R = P( Ψ, υ) + Mγ (Ψ, υ) σ n D +∑ j n k D k n MAIN MEETING Salt Lake City, UT Feb 27 - Mar 2 ................................................................................................................................................................................................................. Program Summary Thursday, 27 February 4:00 pm Registration opens 5:30 pm Welcome reception 6:20 pm Opening remarks 6:30 pm Session 1: Keynote Invited speaker: Thomas Jessell 7:30 pm Poster Session I Friday, 28 February 7:30 am Breakfast 8:30 am Session 2: Circuits I: From wiring to function Invited speaker: Thomas Mrsic-Flogel; 3 accepted talks 10:30 am Session 3: Circuits II: Population recording Invited speaker: Elad Schneidman; 3 accepted talks 12:00 pm Lunch break 2:00 pm Session 4: Circuits III: Network models 5 accepted talks 3:45 pm Session 5: Navigation: From phenomenon to mechanism Invited speakers: Nachum Ulanovsky, Jeffrey Magee; 1 accepted talk 5:30 pm Dinner break 7:30 pm Poster Session II Saturday, 1 March 7:30 am Breakfast 8:30 am Session 6: Behavior I: Dissecting innate movement Invited speaker: Hopi Hoekstra; 3 accepted talks 10:30 am Session 7: Behavior II: Motor learning Invited speaker: Rui Costa; 2 accepted talks 11:45 am Lunch break 2:00 pm Session 8: Behavior III: Motor performance Invited speaker: John Krakauer; 2 accepted talks 3:45 pm Session 9: Reward: Learning and prediction Invited speaker: Yael -
Catherine Thorn
Catherine Thorn School of Behavioral and Brain Sciences The University of Texas at Dallas 800 West Campbell Road, Mail Station BSB14 Richardson, TX 75080-3021 (972)883-7234 [email protected] EDUCATIONAL HISTORY 2010 Ph.D., Massachusetts Institute of Technology. Electrical Engineering and Computer Science Doctoral Thesis: Simultaneous Activation of Multiple Memory Systems during Learning: Insights from Electrophysiology and Modeling (PI: Ann Graybiel) 2004 S.M., Massachusetts Institute of Technology. Electrical Engineering Master’s Thesis: Characterization of I-V Medication Changes in MIMIC II (PI: Roger Mark) 2002 B.S., Georgia Institute of Technology. Electrical Engineering PROFESSIONAL EXPERIENCE 2018- Assistant Professor, Behavioral and Brain Sciences, University of Texas at Dallas 2014-2017 Postdoctoral Fellow, Pfizer Inc., Cambridge, MA 2011-2014 Postdoctoral Fellow, Moore Laboratory, Brown University, Providence, RI 2010-2011 Postdoctoral Associate, Graybiel Laboratory, MIT, Cambridge, MA TEACHING EXPERIENCE 2018- Assistant Professor, Behavioral and Brain Sciences, University of Texas at Dallas Courses taught: Neurophysiology, Health Disparities in Neuroscience, Seminar in Modern Systems Neuroscience Methods 2014 Faculty, Marine Biological Laboratory, Neural Systems & Behavior Course, Somatosensory module 2004-2005 Teaching Assistant, 6.002 – Introduction to Circuits and Electronics, MIT 2003 Instructor, Women in Technology Program, MIT RESEARCH INTERESTS Research in the Thorn Lab at the University of Texas at Dallas aims to understand the neurobiological mechanisms that underlie motor cortical plasticity and motor learning, in healthy subjects and in disease states. Our work combines multiple techniques, including in vivo electrophysiology, optogenetics, pharmacology and rodent behavior, to characterize learning- related changes in neural signaling at multiple levels of investigation – from single neurons to behaving animal. -
Program Book
2 16 HBM GENEVA 22ND ANNUAL MEETING OF THE ORGANIZATION FOR HUMAN BRAIN MAPPING PROGRAM June 26-30, 2016 Palexpo Exhibition and Congress Centre | Geneva, Switzerland Simultaneous Multi-Slice Accelerate advanced neuro applications for clinical routine siemens.com/sms Simultaneous Multi-Slice is a paradigm shift in MRI Simulataneous Multi-Slice helps you to: acquisition – helping to drastically cut neuro DWI 1 scan times, and improving temporal resolution for ◾ reduce imaging time for diffusion MRI by up to 68% BOLD fMRI significantly. ◾ bring advanced DTI and BOLD into clinical routine ◾ push the limits in brain imaging research with 1 MAGNETOM Prisma, Head/Neck 64 acceleration factors up to 81 2 3654_MR_Ads_SMS_7,5x10_Zoll_DD.indd 1 24.03.16 09:45 WELCOME We would like to personally welcome each of you to the 22nd Annual Meeting TABLE OF CONTENTS of the Organization for Human Brain Mapping! The world of neuroimaging technology is more exciting today than ever before, and we’ll continue our Welcome Remarks . .3 tradition of bringing inspiration to you through the exceptional scientific sessions, General Information ..................6 poster presentations and networking forums that ensure you remain at the Registration, Exhibit Hours, Social Events, cutting edge. Speaker Ready Room, Hackathon Room, Evaluations, Mobile App, CME Credits, etc. Here is but a glimpse of what you can expect and what we hope to achieve over Daily Schedule ......................10 the next few days. Sunday, June 26: • Talairach Lecture presenter Daniel Wolpert, Univ. Cambridge UK, who Educational Courses Full Day:........10 will share his work on how humans learn to make skilled movements MR Diffusion Imaging: From the Basics covering probabilistic models of learning, the role and content in activating to Advanced Applications ............10 motor memories and the intimate interaction between decision making and Anatomy and Its Impact on Structural and Functional Imaging ..................11 sensorimotor control.