On Small Satellites for Oceanography a Survey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amateur-Satellite Service
Amateur-Satellite Service 1 26/11/2012 Some facts about the amateur-satellite service • Began in 1961 • Pioneered low-cost satellite technology • First privately funded space satellites • First satellite search & rescue (OSCAR 6 & 7) • First inter-satellite transmissions • Early tele-medicine transmissions • Pioneered distributed engineering 2 26/11/2012 Amateur-satellite organizations (by country) • Argentina AMSAT-LU • Australia AMSAT-Australia • Austria AMSAT-OE • Bermuda AMSAT-BDA • Brazil BRAMSAT • Chile AMSAT-CE • Denmark AMSAT-OZ • Germany AMSAT-DL • Finland AMSAT-OH • France AMSAT-France • Israel AMSAT-Israel • Italy AMSAT-Italia 3 26/11/2012 Amateur-satellite organizations (by country)…continued • Korea KITSAT Project • Mexico AMSAT-Mexico • New Zealand AMSAT-ZL • Qatar AMSAT-Qatar • Japan JAMSAT • North America AMSAT-NA • Russia AMSAT-R • South Africa AMSAT-SA • Spain AMSAT-URE • Sweden AMSAT-Sweden • United Kingdom AMSAT-UK • USA, Canada AMSAT-NA 4 26/11/2012 Co-operation with universities to develop & construct amateur-satellites Amateur satellites have been designed and constructed by university students with the help of local amateurs and amateur-satellite organizations. Some examples: ◊ Stellenbosch University (South Africa) ◊ University of Surrey (UK) ◊ University of Mexico ◊ Weber State University (USA) 5 26/11/2012 Student satellite project 6 26/11/2012 Orbiting Satellite Carrying Amateur Radio (OSCARs) Early satellite projects • April 1959 Concept of a satellite built by and for amateurs • OSCAR I Dec 1961 - Jan 1962, -
Orbital Lifetime Predictions
Orbital LIFETIME PREDICTIONS An ASSESSMENT OF model-based BALLISTIC COEFfiCIENT ESTIMATIONS AND ADJUSTMENT FOR TEMPORAL DRAG co- EFfiCIENT VARIATIONS M.R. HaneVEER MSc Thesis Aerospace Engineering Orbital lifetime predictions An assessment of model-based ballistic coecient estimations and adjustment for temporal drag coecient variations by M.R. Haneveer to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday June 1, 2017 at 14:00 PM. Student number: 4077334 Project duration: September 1, 2016 – June 1, 2017 Thesis committee: Dr. ir. E. N. Doornbos, TU Delft, supervisor Dr. ir. E. J. O. Schrama, TU Delft ir. K. J. Cowan MBA TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op- erators work with to schedule science missions and commercial services, as well as use to prove compliance with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years. -
[AMSAT-F] ANS Bulletin Francophone 302
F6HBN-83FR De: [email protected] de la part de JC-Aveni [[email protected]] Envoyé: dimanche 28 octobre 2012 19:58 À: AMSAT- F; Amsat Francophone; Bernard Pidoux; bernard Pidoux Objet: [AMSAT-F] ANS Bulletin Francophone 302 Indicateur de suivi: Assurer un suivi État de l'indicateur: Rouge SB SAT@FRANCA $F-ANS-302-1 ANS bulletin en français 302-1 AMSAT NEWS SERVICE BULLETIN ANS 302 Capture sur Internet et traduction par TK5GH. Information sur l’AMSAT-NA dispo à l’URL : http://www.amsat.org (ou via) AMSAT-NA 850 Sligo Avenue, Suite 600 Silver Spring, Marylet 20910-4703 TEL : 301-589-6062 888-322-6728 FAX : 301-608-3410 Pour s’abonner à la liste du forum voyez à l’URL : http://www.amsat.org/amsat/listserv/menu.html =============================================================== L’ANS est un bulletin hebdomadaire libre d’accès issu de l’AMSAT North America le Radio Amateur Satellite Corporation. Il regroupe toutes les informations des acteurs de cette activité qui partagent le même intérêt pour les projets, les constructions, les lancements, et les opérations sur les satellites radio amateurs. ================================================================ Dans cette édition on trouvera : * Election des directeurs AMSAT 2012 * Fox-1 Satellite en développement * AMSAT News Service a un nouvel éditeur : EMike McCardel, KC8YLD * Japan PRISM Satellite commence son service Ham en AX.25 Store-and-Forward * WS4FSM hôte d'un des plus grand contact ARISS par le nombre d'auditeurs * Raport dispo sur le projet japonnais de sat UNISEC Satellite * 3 cartes FUNcube-2 pour le Clyde Space for UKube-1 Nanosatellite * Corée du Sud, Brésil, Ukraine prêts au vol orbital * NASA Accepte des applications d'élèves pour le HASP Ballon stratos 1 * ARISS Statut du 22 octobre 2012 ANS-302 AMSAT News Service Weekly Bulletins ------------------------------------------------------------------------ AMSAT Board Elects Senior Officers for 2012 Rappel de la liste des Dirigeants importants de la direction de l'AMSAT-NA avant l'ouverture des rencontres du 25 octobre au Symposium. -
Orbital Debris: a Chronology
NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................ -
Cubesat Communication Systems 2003-2013: a Historical Look
CubeSat Communication Systems 2003-2013: A Historical Look Bryan Klofas SRI International [email protected] Nanosatellite Ground Station Workshop San Luis Obispo, California 23 April 2013 Two Survey Papers • “A Survey of CubeSat Communication Systems” – Paper presented at the CubeSat Developers’ Workshop 2008 – By Bryan Klofas, Jason Anderson, and Kyle Leveque – Covers the CubeSats from start of program to 2008 • “A Survey of CubeSat Communication Systems: 2009-2012” – Paper presented at the CubeSat Developers’ Workshop 2013 – By Bryan Klofas and Kyle Leveque – Covers the CubeSats from 2009 to ELaNa-6/NROL-36 launch in 2012 Slide 2 Summary of CubeSat Launches 2003 to 2013 • Eurockot (30 June 2003) • Dnepr Launch 2 (17 Apr 2007) – AAU1 CubeSat – CSTB1 – DTUsat-1 – AeroCube-2 – CanX-1 – CP4 – Cute-1 – Libertad-1 – QuakeSat-1 – CAPE1 – XI-IV – CP3 • SSETI Express (27 Oct 2005) – MAST – XI-V • NLS-4/PSLV-C9 (28 Apr 2008) – NCube-2 – Delfi-C3 – UWE-1 – SEEDS-2 • M-V-8 (22 Feb 2006) – CanX-2 – Cute-1.7+APD – AAUSAT-II • Minotaur 1 (11 Dec 2006) – Compass-1 – GeneSat-1 Slide 3 Summary of CubeSat Launches 2003 to 2013 • Minotaur-1 (19 May 2009) • NLS-6/PSLV-C15 (12 July 2010) – AeroCube-3 – Tisat-1 – CP6 – StudSat – HawkSat-1 • STP-S26 (19 Nov 2010) – PharmaSat – RAX-1 • ISILaunch 01 (23 Sep 2009) – O/OREOS – BEESAT-1 – NanoSail-D2 – UWE-2 • Falcon 9-002 (8 Dec 2010) – ITUpSAT-1 – Perseus (4) – SwissCube – QbX (2) • H-IIA F17 (20 May 2010) – SMDC-ONE – Hayato – Mayflower – Waseda-SAT2 – PSLV-C18 (12 Oct 2011) – Negai-Star – Jugnu Slide 4 Summary -
Development of Magnetometer-Based Orbit And
DEVELOPMENT OF MAGNETOMETER-BASED ORBIT AND ATTITUDE DETERMINATION FOR NANOSATELLITES THOMAS WRIGHT A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN EARTH AND SPACE SCIENCE YORK UNIVERSITY, TORONTO, ONTARIO AUGUST, 2014 © THOMAS WRIGHT, 2014 Abstract Attitude and orbit determination are critical parts of nanosatellite mission operations. The ability to perform attitude and orbit determination autonomously could lead to a wider array of mission possibilities for nanosatellites. This research examines the feasibility of using low-cost magnetometer measurements as a method of autonomous, simultaneous orbit and attitude determination for the novel application of redundancy on nanosatellites. Individual Extended Kalman Filters (EKFs) are developed for both attitude determination and orbit determination. Simulations are run to compare the developed systems with previous work on attitude and orbit determination. The EKFs are combined to provide both attitude and orbit determination simultaneously. Simulations are run and show that this approach for autonomous attitude and orbit determination on nanosatellites provides 8.5 and 12.5 km of attitude and orbit knowledge, respectively. The results of the simulations are then validated using Hardware-In-The-Loop (HITL) testing. Additionally, a Helmholtz cage is evaluated for future use in the HITL test setup. ii Acknowledgements I would like to acknowledge my supervisors Professor Sunil Bisnath and Professor Regina Lee for their guidance and support. I will carry the skills they helped me to develop through the rest of my career. I would also like to thank the grad students in both the GNSS and YuSEND Labs for their assistance and encouragement throughout my studies. -
Future Technologies
MANEKSHAW PAPER No. 47, 2014 Future Technologies Puneet Bhalla D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V KNOWLEDGE WORLD Centre for Land Warfare Studies KW Publishers Pvt Ltd New Delhi New Delhi Editorial Team Editor-in-Chief : Maj Gen Dhruv C Katoch SM, VSM (Retd) Managing Editor : Ms Avantika Lal D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V Centre for Land Warfare Studies RPSO Complex, Parade Road, Delhi Cantt, New Delhi 110010 Phone: +91.11.25691308 Fax: +91.11.25692347 email: [email protected] website: www.claws.in The Centre for Land Warfare Studies (CLAWS), New Delhi, is an autonomous think tank dealing with national security and conceptual aspects of land warfare, including conventional and sub-conventional conflicts and terrorism. CLAWS conducts research that is futuristic in outlook and policy-oriented in approach. © 2014, Centre for Land Warfare Studies (CLAWS), New Delhi Disclaimer: The contents of this paper are based on the analysis of materials accessed from open sources and are the personal views of the author. The contents, therefore, may not be quoted or cited as representing the views or policy of the Government of India, or Integrated Headquarters of MoD (Army), or the Centre for Land Warfare Studies. KNOWLEDGE WORLD www.kwpub.com Published in India by Kalpana Shukla KW Publishers Pvt Ltd 4676/21, First Floor, Ansari Road, Daryaganj, New Delhi 110002 Phone: +91 11 23263498 / 43528107 email: [email protected] l www.kwpub.com Contents 1. -
A Methodology for Cubesat Mission Selection Luis Zea, Victor Ayerdi, Sergio Argueta, and Antonio Muñoz Universidad Del Valle De Guatemala, Guatemala City, Guatemala
Zea, L. et al. (2016): JoSS, Vol. 5, No. 3, pp. 483–511 (Peer-reviewed article available at www.jossonline.com) www.DeepakPublishing.com www. JoSSonline.com A Methodology for CubeSat Mission Selection Luis Zea, Victor Ayerdi, Sergio Argueta, and Antonio Muñoz Universidad del Valle de Guatemala, Guatemala City, Guatemala Abstract Over 400 CubeSats have been launched during the first 13 years of existence of this 10 cm cube-per unit standard. The CubeSat’s flexibility to use commercial-off-the-shelf (COTS) parts and its standardization of in- terfaces have reduced the cost of developing and operating space systems. This is evident by satellite design projects where at least 95 universities and 18 developing countries have been involved. Although most of these initial projects had the sole mission of demonstrating that a space system could be developed and operated in- house, several others had scientific missions on their own. The selection of said mission is not a trivial process, however, as the cost and benefits of different options need to be carefully assessed. To conduct this analysis in a systematic and scholarly fashion, a methodology based on maximizing the benefits while considering program- matic risk and technical feasibility was developed for the current study. Several potential mission categories, which include remote sensing and space-based research, were analyzed for their technical requirements and fea- sibility to be implemented on CubeSats. The methodology helps compare potential missions based on their rele- vance, risk, required resources, and benefits. The use of this flexible methodology—as well as its inputs and outputs—is demonstrated through a case study. -
Nanosatelliitide Tehnoloogia Arengutrendid
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace at Tartu University Library TARTU ÜLIKOOL Loodus- ja tehnoloogiateaduskond Füüsika Instituut Erik Kulu Nanosatelliitide tehnoloogia arengutrendid Magistritöö (30 EAP) Juhendaja: Mart Noorma Tartu 2014 SISUKORD 1 Sissejuhatus ........................................................................................................................ 4 2 Metoodika ........................................................................................................................... 6 3 Nanosatelliidid ja nende areng ........................................................................................... 8 3.1 Nanosatelliitide arendamise hetkeseis ....................................................................... 13 3.2 Nanosatelliitide projektide omadused ....................................................................... 16 4 Nanosatelliitide projektide seos haridusega, innovatsiooniga ja teaduse populariseerimisega ................................................................................................................. 18 4.1 Nanosatelliitide hariduslikud aspektid ...................................................................... 18 4.1.1 Hariduslikud projektid ülikoolides .................................................................... 20 4.1.2 Hariduslikud projektid ettevõtetes ..................................................................... 20 4.1.3 Hariduslikud programmid kosmoseagentuurides ............................................. -
Gr-Satellites Documentation Release 3.0.0
gr-satellites Documentation Release 3.0.0 Daniel Estévez Jul 11, 2020 Contents: 1 Introduction 3 2 Installation 5 2.1 Dependencies...............................................5 2.2 Optional dependencies..........................................6 2.3 Downloading...............................................6 2.4 Building and installing..........................................6 2.5 PYTHONPATH.............................................7 2.6 Downloading sample recordings.....................................7 3 Overview 9 3.1 Command line tool............................................9 3.2 Satellite decoder block..........................................9 3.3 Components............................................... 10 3.4 Low level blocks............................................. 10 4 gr_satellites command line tool 11 4.1 Basic usage................................................ 11 4.2 Ouput options.............................................. 16 4.3 Telemetry submission.......................................... 17 4.4 File and image receiver.......................................... 19 4.5 Other topics............................................... 19 5 Satellite decoder block 23 5.1 Command line options.......................................... 24 6 Components 25 6.1 Data sources............................................... 25 6.2 Demodulators.............................................. 26 6.3 Deframers................................................ 30 6.4 Transports................................................ 35 -
Istnanosat-1 Quality Assurance, Risk Management and Assembly, Integration and Verification Planning
ISTNanosat-1 Quality Assurance, Risk Management and Assembly, Integration and Verification Planning Pedro Filipe Rodrigues Coelho Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor: Prof. Rui M. Rocha Co-Supervisor: Prof. Moisés S. Piedade Examination Committee Chairperson: Prof. João Miranda Lemos Supervisor: Prof. Rui M. Rocha Co-Supervisor: Prof. Moisés S. Piedade Members of the Committee: Prof. Agostinho A. da Fonseca May 2016 ii Acknowledgments To Professor Rui Rocha and Professor Moisés Piedade, I have to thank the opportunity to work in the ISTNanoSat-1 Project, the guidance throughout the project and the most required pushes for this project conclusion. I would like to thank Laurent Marchand and Nicolas Saillen for the support, drive and belief. It would never have been possible to complete this work without their support and flexibility as well as their drive in my professional endeavors. To all the friendships university brought and endured in my life, that shared the worst and best of university, the late nights of work and study, the challenging exchange of ideas and ideals and all the growing into adulthood. To all my friends in ESA/ESTEC, for filling the best possible work experience with the best personnel environment. Their joy and enthusiasm in work and life were and will always be an inspiration in my life. A lei, bella Annalisa coppia di ballo, per essere la musica e la giola in tutti i76955+ momenti… À minha família, Mãe, Pai e Irmã, pelo amor incondicional, paciência e crença sem limites. Não tenho como retribuir o esforço incansável, todo o carinho e a educação modelar, senão agarrar o futuro pelo qual tanto lutaram comigo. -
A Sample AMS Latex File
PLEASE SEE CORRECTED APPENDIX A IN CORRIGENDUM, JOSS VOL. 6, NO. 3, DECEMBER 2017 Zea, L. et al. (2016): JoSS, Vol. 5, No. 3, pp. 483–511 (Peer-reviewed article available at www.jossonline.com) www.DeepakPublishing.com www. JoSSonline.com A Methodology for CubeSat Mission Selection Luis Zea, Victor Ayerdi, Sergio Argueta, and Antonio Muñoz Universidad del Valle de Guatemala, Guatemala City, Guatemala Abstract Over 400 CubeSats have been launched during the first 13 years of existence of this 10 cm cube-per unit standard. The CubeSat’s flexibility to use commercial-off-the-shelf (COTS) parts and its standardization of in- terfaces have reduced the cost of developing and operating space systems. This is evident by satellite design projects where at least 95 universities and 18 developing countries have been involved. Although most of these initial projects had the sole mission of demonstrating that a space system could be developed and operated in- house, several others had scientific missions on their own. The selection of said mission is not a trivial process, however, as the cost and benefits of different options need to be carefully assessed. To conduct this analysis in a systematic and scholarly fashion, a methodology based on maximizing the benefits while considering program- matic risk and technical feasibility was developed for the current study. Several potential mission categories, which include remote sensing and space-based research, were analyzed for their technical requirements and fea- sibility to be implemented on CubeSats. The methodology helps compare potential missions based on their rele- vance, risk, required resources, and benefits.