5139316465E159fb4bcd5f58918
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Low Thrust Manoeuvres to Perform Large Changes of RAAN Or Inclination in LEO
Facoltà di Ingegneria Corso di Laurea Magistrale in Ingegneria Aerospaziale Master Thesis Low Thrust Manoeuvres To Perform Large Changes of RAAN or Inclination in LEO Academic Tutor: Prof. Lorenzo CASALINO Candidate: Filippo GRISOT July 2018 “It is possible for ordinary people to choose to be extraordinary” E. Musk ii Filippo Grisot – Master Thesis iii Filippo Grisot – Master Thesis Acknowledgments I would like to address my sincere acknowledgments to my professor Lorenzo Casalino, for your huge help in these moths, for your willingness, for your professionalism and for your kindness. It was very stimulating, as well as fun, working with you. I would like to thank all my course-mates, for the time spent together inside and outside the “Poli”, for the help in passing the exams, for the fun and the desperation we shared throughout these years. I would like to especially express my gratitude to Emanuele, Gianluca, Giulia, Lorenzo and Fabio who, more than everyone, had to bear with me. I would like to also thank all my extra-Poli friends, especially Alberto, for your support and the long talks throughout these years, Zach, for being so close although the great distance between us, Bea’s family, for all the Sundays and summers spent together, and my soccer team Belfiga FC, for being the crazy lovable people you are. A huge acknowledgment needs to be address to my family: to my grandfather Luciano, for being a great friend; to my grandmother Bianca, for teaching me what “fighting” means; to my grandparents Beppe and Etta, for protecting me -
6 Orbit Relative to the Sun. Crossing Times
6 Orbit Relative to the Sun. Crossing Times We begin by studying the position of the orbit and ground track of an arbi- trary satellite relative to the direction of the Sun. We then turn more specif- ically to Sun-synchronous satellites for which this relative position provides the very definition of their orbit. 6.1 Cycle with Respect to the Sun 6.1.1 Crossing Time At a given time, it is useful to know the local time on the ground track, i.e., the LMT, deduced in a straightforward manner from the UT once the longitude of the place is given, using (4.49). The local mean time (LMT) on the ground track at this given time is called the crossing time or local crossing time. To obtain the local apparent time (LAT), one must know the day of the year to specify the equation of time ET. In all matters involving the position of the Sun (elevation and azimuth) relative to a local frame, this is the time that should be used. The ground track of the satellite can be represented by giving the crossing time. We have chosen to represent the LMT using colour on Colour Plates IIb, IIIb and VII to XI. For Sun-synchronous satellites such as MetOp-1, it is clear that the cross- ing time (in the ascending or descending direction) depends only on the latitude. At a given place (except near the poles), one crossing occurs during the day, the other at night. For the HEO of the Ellipso Borealis satellite, the stability of the crossing time also shows up clearly. -
Arxiv:2011.13376V1 [Astro-Ph.EP] 26 Nov 2020 Welsh Et Al
On the estimation of circumbinary orbital properties Benjamin C. Bromley Department of Physics & Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 [email protected] Scott J. Kenyon Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 [email protected] ABSTRACT We describe a fast, approximate method to characterize the orbits of satellites around a central binary in numerical simulations. A goal is to distinguish the free eccentricity | random motion of a satellite relative to a dynamically cool orbit | from oscillatory modes driven by the central binary's time-varying gravitational potential. We assess the performance of the method using the Kepler-16, Kepler-47, and Pluto-Charon systems. We then apply the method to a simulation of orbital damping in a circumbinary environment, resolving relative speeds between small bodies that are slow enough to promote mergers and growth. These results illustrate how dynamical cooling can set the stage for the formation of Tatooine-like planets around stellar binaries and the small moons around the Pluto-Charon binary planet. Subject headings: planets and satellites: formation { planets and satellites: individual: Pluto 1. Introduction Planet formation seems inevitable around nearly all stars. Even the rapidly changing gravitational field around a binary does not prevent planets from settling there (e.g., Armstrong et al. 2014). Recent observations have revealed stable planets around binaries involving main sequence stars (e.g., Kepler-16; Doyle et al. 2011), as well as evolved compact stars (the neutron star-white dwarf binary PSR B1620- 26; Sigurdsson et al. 2003). The Kepler mission (Borucki et al. -
EMC18 Abstracts
EUROPEAN MARS CONVENTION 2018 – 26-28 OCT. 2018, LA CHAUX-DE-FONDS, SWITZERLAND EMC18 Abstracts In alphabetical order Name title of presentation Page n° Théodore Besson: Scorpius Prototype 3 Tomaso Bontognali Morphological biosignatures on Mars: what to expect and how to prepare not to miss them 4 Pierre Brisson: Humans on Mars will have to live according to both Martian & Earth Time 5 Michel Cabane: Curiosity on Mars : What is new about organic molecules? 6 Antonio Del Mastro Industrie 4.0 technology for the building of a future Mars City: possibilities and limits of the application of a terrestrial technology for the human exploration of space 7 Angelo Genovese Advanced Electric Propulsion for Fast Manned Missions to Mars and Beyond 8 Olivia Haider: The AMADEE-18 Mars Simulation OMAN 9 Pierre-André Haldi: The Interplanetary Transport System of SpaceX revisited 10 Richard Heidman: Beyond human, technical and financial feasibility, “mass-production” constraints of a Colony project surge. 11 Jürgen Herholz: European Manned Space Projects 12 Jean-Luc Josset Search for life on Mars, the ExoMars rover mission and the CLUPI instrument 13 Philippe Lognonné and the InSight/SEIS Team: SEIS/INSIGHT: Towards the Seismic Discovering of Mars 14 Roland Loos: From the Earth’s stratosphere to flying on Mars 15 EUROPEAN MARS CONVENTION 2018 – 26-28 OCT. 2018, LA CHAUX-DE-FONDS, SWITZERLAND Gaetano Mileti Current research in Time & Frequency and next generation atomic clocks 16 Claude Nicollier Tethers and possible applications for artificial gravity -
United States Patent (19) 11 Patent Number: 5,716,029 Spitzer Et Al
I US005716029A United States Patent (19) 11 Patent Number: 5,716,029 Spitzer et al. 45 Date of Patent: Feb. 10, 1998 54 CONSTANTSUN ANGLE TRANSFER ORBIT Meserole, J., "Launch Costs to GEO Using Solar Powered SEQUENCE AND METHOD USING Orbit Transfer Vehicles". American Institute of Aeronautics ELECTRIC PROPULSION and Astronautic (AIAA) Paper 93-2219. AIAAJSAE (75) Inventors: Arnon Spitzer, Los Angeles, Calif.; ASME/ASEE 29th Joint Propulsion Conference and Solomon A. De Picciotto, Aurora, Colo. Exhibit. Jun. 28-30, 1993. 73 Assignee: Hughes Electronics, Los Angeles, Free, B. "High Altitude Orbit Raising With On-Board Calif. Electric Power", International Electric Propulsion Confer ence Paper 93-205, American Institute Of Aeronautics and (21) Appl. No.: 558,572 Astronautics AIAA/AIDAVDGLA/JSASS 23rd International 22 Filed: Oct. 31, 1995 Electric Propulsion Conference. Sep. 13–16, 1993. Related U.S. Application Data Primary Examiner-Galen L. Barefoot 63 Continuation-in-part of Ser. No. 217,791, Mar. 25, 1994, Attorney, Agent, or Firm-Elizabeth E. Leitereg; Terje Pat No. 5,595,360. Gudmestad; Wanda K. Denson-Low (51) Int. Cl. ... ... B64G 1/10 52 U.S.C. ................................................... 244/158 R 57 ABSTRACT 58) Field of Search ................................ 244/158 R, 164, 244/168, 169, 172 An apparatus and method for translating a spacecraft (102. 108) from an injection orbit (114) about a central body (100) 56) References Cited to synchronous orbit (122) in a time efficient manner. The U.S. PATENT DOCUMENTS spacecraft (102, 108) includes propulsion thrusters (50) 4,943,014 7/1990 Harwood et al. ....................... 244/169 which are fired in predetermined timing sequences con trolled by a controller (64) in relation to the apogee (118) FOREIGN PATENT DOCUMENTS and perigee (120) of the injection orbit (114) and successive 0 047 211 3/1982 European Pat. -
The SKYLON Spaceplane
The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration. -
Gravity Recovery by Kinematic State Vector Perturbation from Satellite-To-Satellite Tracking for GRACE-Like Orbits Over Long Arcs
Gravity Recovery by Kinematic State Vector Perturbation from Satellite-to-Satellite Tracking for GRACE-like Orbits over Long Arcs by Nlingilili Habana Report No. 514 Geodetic Science The Ohio State University Columbus, Ohio 43210 January 2020 Gravity Recovery by Kinematic State Vector Perturbation from Satellite-to-Satellite Tracking for GRACE-like Orbits over Long Arcs By Nlingilili Habana Report No. 514 Geodetic Science The Ohio State University Columbus, Ohio 43210 January 2020 Copyright by Nlingilili Habana 2020 Preface This report was prepared for and submitted to the Graduate School of The Ohio State University as a dissertation in partial fulfillment of the requirements for the Degree of Doctor of Philosophy ii Abstract To improve on the understanding of Earth dynamics, a perturbation theory aimed at geopotential recovery, based on purely kinematic state vectors, is implemented. The method was originally proposed in the study by Xu (2008). It is a perturbation method based on Cartesian coordinates that is not subject to singularities that burden most conventional methods of gravity recovery from satellite-to-satellite tracking. The principal focus of the theory is to make the gravity recovery process more efficient, for example, by reducing the number of nuisance parameters associated with arc endpoint conditions in the estimation process. The theory aims to do this by maximizing the benefits of pure kinematic tracking by GNSS over long arcs. However, the practical feasibility of this theory has never been tested numerically. In this study, the formulation of the perturbation theory is first modified to make it numerically practicable. It is then shown, with realistic simulations, that Xu’s original goal of an iterative solution is not achievable under the constraints imposed by numerical integration error. -
The Annual Compendium of Commercial Space Transportation: 2012
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly. -
III III || US005595360A United States Patent (19) 11 Patent Number: 5,595,360 Spitzer 45) Date of Patent: Jan
III III || US005595360A United States Patent (19) 11 Patent Number: 5,595,360 Spitzer 45) Date of Patent: Jan. 21, 1997 54) OPTIMAL TRANSFER ORBIT TRAJECTORY Meserole, J., "Launch Costs To GEO Using Solar Powered USENGELECTRIC PROPULSION Orbit Transfer Vehicles', American Institute of Aeronautics and Astronautic (AIAA) Paper 93-2219, AIAA/SAE/ 75) Inventor: Arnon Spitzer, Los Angeles, Calif. ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Jun. 28-30, 1993. (73) Assignee: Hughes Aircraft Company, Los Free, B. "High Altitude Orbit Raising With On-Board Angeles, Calif. Electric Power”, International Electric Propulsion Confer ence Paper 93-205, American Institute Of Aeronautics and (21) Appl. No.: 217,791 Astronautics AIAA/AIDA/DGLA/JSASS 23rd International (22 Filed: Mar 25, 1994 Electric Propulsion Conference, Sep. 13-16, 1993. Parkhash, "Electric Propulsion for Space Missions' Electri (51) int. Cl. ................ B64G 1/10 cal India vol. 19, No. 7, pp. 5-18., Apr. 1979. (52 U.S. C. ........................................................ 244/158 R Davison, "orbit Expansion by Microthrust” Royal Aircraft 58 Field of Search ................................ 244/158 R, 164, Est. Tech Report 67249 Sep. 1967. 244/172, 168, 169 Primary Examiner-Galen L. Barefoot 56 References Cited Attorney, Agent, or Firm-Elizabeth E. Leitereg; Terje Gud U.S. PATENT DOCUMENTS mestad; Wanda K. Denson-Low 4,943,014 7/1990 Harwood et al. ....................... 244/169 57) ABSTRACT FOREIGN PATENT DOCUMENTS An apparatus and method for translating a spacecraft (10) from an injection orbit (16) about a central body (10) to 0047211 3/1982 European Pat. Off. ............... 244/169 geosynchronous orbit (18) in a time efficient manner. -
Launch Options for the Future: a Buyer's Guide (Part 7 Of
— Chapter 3 Enhanced Baseline CONTENTS , Page Improving the Shuttle . 27 Advanced Solid Rocket Motors (ASRMs) . 27 Liquid Rocket Boosters (LRBs) . 28 Lighter Tanks . 29 Improving Shuttle Ground Operations . 29 Improving Existing ELVs . 29 Delta . 30 Atlas-Centaur . ● ● . .* . 30 Titan . ● . ✎ ✎ . 30 Capability . ✎ . ✎ ✎ . ● ✎ ✎ . 30 Table 3-1. Theoretical Lift Capability of Enhanced U.S. Launch Systems. 31 Chapter 3 Enhanced Baseline The ENHANCED BASELINE option is the U.S. Government’s “Best Buy” if . it desires a space program with current or slightly greater levels of activity. By making in- cremental improvements to existing launch vehicles, production and launch facilities, the U.S. could increase its launch capacity to about 1.4 million pounds per year to LEO. The investment required would be low compared to building new vehicles; however, the ade- quacy of the resulting fleet resiliency and dependability is uncertain. This option would not provide the low launch costs (e.g. 10 percent of current costs) sought for SDI deploy- ment or an aggressive civilian space initiative, like a piloted mission to Mars, IMPROVING THE SHUTTLE The Shuttle, though a remarkable tech- . reducing the number of factory joints and nological achievement, never achieved its in- the number of parts, tended payload capacity and recent safety . designing the ASRMs so that the Space modifications have further degraded its per- Shuttle Main Engines no longer need to formance by approximately 4,800 pounds. be throttled during the region of maxi- Advanced Solid Rocket Motors (ASRMs) or mum dynamic pressure, Liquid Rocket Boosters (LRBs) have the potential to restore some of this perfor- ● replacing asbestos-bearing materials, mance; studies on both are underway. -
BAEN BOOKS TEACHER's GUIDE to GOING INTERSTELLAR Contents
BAEN BOOKS TEACHER’S GUIDE TO GOING INTERSTELLAR Contents: • recommended reading levels • plot summaries • essay outlines • character sketches • guides to each short story/essay including: o prepare to read… . vocabulary* . focus question/initiating activity o quiz/reading comprehension questions—multiple choice/short answer questions o critical thinking questions—higher order open-ended questions which might be utilized for quizzes/tests, class discussion, or essay prompts o suggested activities/inquiry-based exploration—suggestions for activities and projects Recommended reading levels: Going Interstellar is appropriate for a young adult audience. Classroom use of the book is most suitable for upper middle school to high school students. * Some texts in Going Interstellar contain an abundance of high-level vocabulary. For these texts, only the words and terms that are pertinent to supporting a scientific or thematic understanding are included in the “Prepare to Read” section. It is recommended that students use a dictionary while reading Going Interstellar. Background: Published by Baen books in 2012, this anthology combines short science fiction stories with scientific essays, each addressing theories and possible scenarios concerning interstellar space travel. Biographical information on the editors: • LES JOHNSON is a NASA physicist who is an expert on space propulsion systems. He is also a science fiction writer and the author of Back to the Moon. More information about Les can be found at his home website http://www.lesjohnsonauthor.com/. • JACK MCDEVITT has been publishing science fiction since 1981, and is the winner of multiple awards within the field. McDevitt’s devotion to scientifically accurate fiction is evident in his response to a question concerning how he prepares his novels: “The research is simple,” McDevitt says, “I pick up [a] phone and call a physicist” (www.sfwa.org). -
ミルスペース 140710------[What’S New in Virtual Library?]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -ミルスペース 140710- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - [What’s New in Virtual Library?] AW&ST Aviation Week & Space Technology 1406F_Contents.pdf, Cover.jpg 140630AWST_Contents.pdf, Cover.jpg 1405F_Contents.pdf, Cover.jpg NASA Spaceport Magazine 1404F_Contents.pdf, Cover.jpg 1407ksc_Spaceport_Mag_27pages.pdf 1403F_Contents.pdf, Cover.jpg 1407ksc_Spaceport_Mag_Contents.pdf, Cover.jpg Military Technology BIS Space Flight 1406MT_Contents.pdf, Cover.jpg 1407SF_Contents.pdf, Cover.jpg [What’s New in Real Library?] [謝辞] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2014.7.10 12:30 http://sankei.jp.msn.com/wired/ スマートフォンが国際宇宙ステーション・ロボットの頭脳に 7 月 11 日に ISS に向け打上げる宇宙船には、グーグル 3D ヴィジョン Satellites」(姿勢保持、連動、方向修正同期型実験衛星)の略で、 搭載スマホ「Tango」が積込まれる。ISS 船内で浮遊しながら飛行士た 将来的には、ISS 船外での危険作業を含め、宇宙飛行士の代わりに ちを支援するロボットに利用される。 日常雑務をこなせるようになることが期待されていた。ただし、2006 年に 初めて ISS に送込まれたときには、正確な浮遊動作をする以外に大し たことはできなかった。カリフォルニア州マウンテンヴューにある NASA のエ イムズ研究センタの研究者たちは、2010 年から、SPHERES を改良す る最も優れた方法を探すべく取組んできた。 悩んだ結果、スマホにた どり着いた。 「SPHERES 高度化プロジェクト・マネージャー」のクリス・プ ロヴェンチャーは、Reuters に次のように話している。「われわれは、通信 やカメラ、処理能力の向上、加速度計をはじめとする各種センサなどを NASA は 7 月 11 日(米時間)、ISS に向けて、グーグル新型スマートフ 追加したかった。どうすればよいか頭を悩ませていたときに、その答えは ォンを乗せた宇宙船を打上げ予定。3D ヴィジョン技術「Tango」(日本 自分たちの手の中にあったことに気づいた。つまり、スマートフォンを使お 語版記事) うということになったのだ」 グーグルの「Tango」技術を搭載したスマートフ http://wired.jp/2014/05/26/google-creating-project-tango-tablets-with ォンには、SPHERES が利用するための 3D マップの作成に使用できる -3d-computer-vision/ 赤外線深度センサなど、魅力的な多数の技術が搭載されている。もち