JSP Fall 2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Robotics. Sensors and Actuators
Introduction to Computer Vision and Robotics Florian Teich and Tomas Kulvicius* Introduction to Robotics. Sensors and Actuators Large portion of slides are adopted from Florentin Wörgötter, John Hallam and Simon Reich *[email protected] Perception-Action loop Environment Object Eyes Action Perception Arm Brain Perception-Action loop (cont.) Environment Sense Object Cameras Action Perception Robot-arm Computer Act Plan Outline of the course • L1.CV1: Introduction to Computer Vision. Thresholding, Filtering & Connected Coomponents • L2.CV2: Bilateral Filtering, Morphological Operators & Edge Detection • L3.CV3: Corner Detection & Non-Local Filtering • L4.R1: Introduction to Robotics. Sensors and actuators • L5.R2: Movement generation methods • L6.R3: Path planning algorithms • L7.CV4: Line/Circle Detection, Template Matching & Feature Detection • L8.CV5: Segmentation • L9.CV6: Fate Detection, Pedestrian Tracking & Computer Vision in 3D • L10.R4: Robot kinematics and control • L11.R5: Learning algorithms in robotics I: Supervised and unsupervised learning • L12.R6: Learning algorithms in robotics II: Reinforcement learning and genetic algorithms Introduction to Robotics History of robotics • Karel Čapek was one of the most influential Czech writers of the 20th century and a Nobel Prize nominee (1936). • He introduced and made popular the frequently used international word robot, which first appeared in his play R.U.R. (Rossum's Universal Robots) in 1921. 1890-1938 • “Robot” comes from the Czech word “robota”, meaning “forced labor” • Karel named his brother Josef Čapek as the true inventor of the word robot. History of robotics (cont.) • The word "robotics" also comes from science fiction - it first appeared in the short story "Runaround" (1942) by American writer Isaac Asimov. -
On the Impact of Robotics in Behavioral and Cognitive Sciences: from Insect Navigation to Human Cognitive Development
IEEE Transactions on Autonomous Mental Development, Dec 2009 1 On the impact of robotics in behavioral and cognitive sciences: from insect navigation to human cognitive development Pierre-Yves Oudeyer1 Bekey, 2005; Dautenhahn, 2007; Floreano and Abstract— The interaction of robotics with behavioural Mattiussi, 2008; Arbib et al., 2008; Asada et al., 2009). and cognitive sciences has always been tight. As often On the contrary, while there has been many technical described in the literature, the living has inspired the specific articles in the past presenting experiments that construction of many robots. Yet, in this article, we focus changed our understanding of given behavioural or on the reverse phenomenon: building robots can impact importantly the way we conceptualize behaviour and cognitive phenomenon, few synthetic, concise and cognition in animals and humans. I present a series of interdisciplinary overviews exist that specifically focus paradigmatic examples spanning from the modelling of on the potential impact of robotics in behavioural and insect navigation, the experimentation of the role of cognitive sciences, and its conceptualization. morphology to control locomotion, the development of foundational representations of the body and of the (Cordeschi, 2002) presents a thorough technical and self/other distinction, the self-organization of language in comprehensive review targeted at specialists and robot societies, and the use of robots as therapeutic tools historians. (Clark, 1997; Dennet, 1998; Boden, 2006) for children with developmental disorders. Through these emphasize, among other topics, philosophical issues of examples, I review the way robots can be used as operational models confronting specific theories to reality, the use of robots as tools for cognitive sciences. -
Cyborg Insect Drones: Research, Risks, and Governance
CYBORG INSECT DRONES: RESEARCH, RISKS, AND GOVERNANCE By: Heraclio Pimentel Jr. 12/01/2017 TABLE OF CONTENTS INTRODUCTION ............................................................................................................................................................................... 1 I. BACKGROUND: THE RESEARCH ................................................................................................................................................ 2 A. Emergence of HI-MEMS .................................................................................................................................................. 2 B. Technical Background .................................................................................................................................................... 3 C. The State of the Technology ......................................................................................................................................... 4 D. Intended Applications of HI-MEMS ............................................................................................................................ 6 II. RISKS: DUAL-USE APPLICATIONS OF HI-MEMS ................................................................................................................ 8 A. HI-MEMS Pose a Risk to National Security ............................................................................................................. 9 B. HI-MEMS Pose a Threat to Personal Privacy ..................................................................................................... -
BAEN BOOKS TEACHER's GUIDE to GOING INTERSTELLAR Contents
BAEN BOOKS TEACHER’S GUIDE TO GOING INTERSTELLAR Contents: • recommended reading levels • plot summaries • essay outlines • character sketches • guides to each short story/essay including: o prepare to read… . vocabulary* . focus question/initiating activity o quiz/reading comprehension questions—multiple choice/short answer questions o critical thinking questions—higher order open-ended questions which might be utilized for quizzes/tests, class discussion, or essay prompts o suggested activities/inquiry-based exploration—suggestions for activities and projects Recommended reading levels: Going Interstellar is appropriate for a young adult audience. Classroom use of the book is most suitable for upper middle school to high school students. * Some texts in Going Interstellar contain an abundance of high-level vocabulary. For these texts, only the words and terms that are pertinent to supporting a scientific or thematic understanding are included in the “Prepare to Read” section. It is recommended that students use a dictionary while reading Going Interstellar. Background: Published by Baen books in 2012, this anthology combines short science fiction stories with scientific essays, each addressing theories and possible scenarios concerning interstellar space travel. Biographical information on the editors: • LES JOHNSON is a NASA physicist who is an expert on space propulsion systems. He is also a science fiction writer and the author of Back to the Moon. More information about Les can be found at his home website http://www.lesjohnsonauthor.com/. • JACK MCDEVITT has been publishing science fiction since 1981, and is the winner of multiple awards within the field. McDevitt’s devotion to scientifically accurate fiction is evident in his response to a question concerning how he prepares his novels: “The research is simple,” McDevitt says, “I pick up [a] phone and call a physicist” (www.sfwa.org). -
New AI and Robotics F. Bonsignorio Heron Robots Institute of Biorobotics
New AI and Robotics ! ! F. Bonsignorio ! ! ! Heron Robots ! Institute of Biorobotics - SSSA, Pisa ! New AI and Robotics Introduction To take robots out of the factories in everyday life is not a free lunch. Have we the science or even the concept framework to deal with open ended unstructured environments? New AI and Robotics Introduction ! How the new paradigms in AI, from swarm intelligence to morphological computation and complex adaptive systems theory applications, (could) help robotics? Is robotics the science of embodied cognition? Is there a need to extend computation theory to manage the interaction with the physical world? Does robotics needs a 'paradigm change' from top- down symbolic processing to emerging self-organized cognitive behaviors of complez adaptive dynamical systems? New AI and Robotics Introduction Which relations are there between new AI, the US NSF idea of CyberPhysical Systems Science, and the concepts of embodied and situated cognition popular in European cognitive sciences community and a significant part of the robotics community? What does it mean in this context to be 'biomimetic'? New AI and Robotics Caveat :-) ROUTES TO CALIFORNIA AND OREGON 'EMIGRANTS or others desiring to make the overland journey to the Pacific should bear in mind that there are several different routes which may be traveled with wagons, each having its advocates in persons directly or indirectly interested in attracting the tide of emigration and travel over them. Information concerning these routes coming from strangers living or owning property near them, from agents of steam-boats or railways, or from other persons connected with transportation companies, should be received with great caution, and never without corroborating evidence from disinterested sources' From 'The Prairie Traveler', R. -
Space Propulsion.Pdf
Deep Space Propulsion K.F. Long Deep Space Propulsion A Roadmap to Interstellar Flight K.F. Long Bsc, Msc, CPhys Vice President (Europe), Icarus Interstellar Fellow British Interplanetary Society Berkshire, UK ISBN 978-1-4614-0606-8 e-ISBN 978-1-4614-0607-5 DOI 10.1007/978-1-4614-0607-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011937235 # Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) This book is dedicated to three people who have had the biggest influence on my life. My wife Gemma Long for your continued love and companionship; my mentor Jonathan Brooks for your guidance and wisdom; my hero Sir Arthur C. Clarke for your inspirational vision – for Rama, 2001, and the books you leave behind. Foreword We live in a time of troubles. -
Developing Biorobotics for Veterinary Research Into Cat Movements
Journal of Veterinary Behavior 10 (2015) 248e254 Contents lists available at ScienceDirect Journal of Veterinary Behavior journal homepage: www.journalvetbehavior.com In Brief: Practice and Procedure Developing biorobotics for veterinary research into cat movements Chiara Mariti a,*, Giovanni Gerardo Muscolo b, Jan Peters c,d,e, Domenec Puig f, Carmine Tommaso Recchiuto b, Claudio Sighieri a, Agusti Solanas f, Oskar von Stryk c a Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa, Italy b CVD & E-I Laboratories, Humanot s.r.l., Prato, Italy c Department of Computer Science, Technische Universität Darmstadt, Darmstadt, Germany d Department of Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany e Department of Autonomous Motion, Max Planck Institute for Intelligent Systems, Tübingen, Germany f Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, Tarragona, Spain article info abstract Article history: Collaboration between veterinarians and other professionals such as engineers and computer scientists Received 8 April 2014 will become important in biorobotics for both scientific achievements and the protection of animal Received in revised form welfare. Particularly, cats have not yet become a significant source of inspiration for new technologies in 29 September 2014 robotics. This article suggests a novel approach for the investigation of particular aspects of cat Accepted 31 December 2014 morphology, neurophysiology, and behavior aimed at bridging this gap by focusing on the versatile, Available online 10 January 2015 powerful locomotion abilities of cats and implementing a robotic tool for the measurements of biological parameters of animals and building cat-inspired robotic prototypes. The presented framework suggests Keywords: 3Rs the basis for the development of novel hypotheses and models describing biomechanics, locomotion, biorobotics balancing system, visual perception, as well as learning and adaption of cat motor skills and behavior. -
About the Contributors
553 About the Contributors Jordi Vallverdú is an associate professor for philosophy of science & computing at Universitat Autònoma de Barcelona. He holds a PhD. in philosophy of science (UAB) and a master in history of sciences (physics dept. UAB). After a short research stay as fellowship researcher at Glaxco-Wellcome Institute for the History of Medicine-London (1997) and research assistant of Dr. Jasanoff at J.F.K. School of Government – Harvard University (2000), he worked in computing epistemology issues, bioethics (because of the emotional aspects of cognition; he is listed as EU Biosociety Research Expert) and, espe- cially, on synthetic emotions. He co-leads a research group on this last topic, SETE (Synthetic Emotions in Technological Environments), with which has published several book chapters about computational models of synthetic emotions and their implementation into social robotic systems. “ David Casacuberta is a philosophy of science professor in the Universidad Autònoma de Barcelona (Spain). He has a PhD in philosophy and a master degree in cognitive sciences and language. His cur- rent line of research is the cognitive and social impact of new media, and specially, how the inclusion of artificial intelligence and artificial emotions can produce innovative, more interactive and radically different new types of media. * * * Tom Adi was an assistant professor for computer science in the 1980’s. He taught at universities in Jordan and Saudi Arabia. He received a PhD in industrial computer science in 1978 from Johannes Gutenberg University in Mainz, Germany. While designing a machine translation software in 1985, he discovered a theory of semantics (published in Semiotics and Intelligent Systems Development, 2007). -
A Stroll Through the Worlds of Robots and Animals: Applying Jakob Von Uexkuè Ll's Theory of Meaning to Adaptive Robots and Arti®Cial Life
A stroll through the worlds of robots and animals: Applying Jakob von UexkuÈ ll's theory of meaning to adaptive robots and arti®cial life TOM ZIEMKE and NOEL E. SHARKEY Introduction Much research in cognitive science, and in particular arti®cial intelligence (AI) and arti®cial life (ALife), has since the mid-1980s been devoted to the study of so-called autonomous agents. These are typically robotic systems situated in some environment and interacting with it using sensors and motors. Such systems are often self-organizing in the sense that they arti®cially learn, develop, and evolve in interaction with their environ- ments, typically using computational learning techniques, such as arti®cial neural networks or evolutionary algorithms. Due to the biological inspira- tion and motivation underlying much of this research (cf. Sharkey and Ziemke 1998), autonomous agents are often referred to as `arti®cial organisms', `arti®cial life', `animats' (short for `arti®cial animals') (Wilson 1985), `creatures' (Brooks 1990), or `biorobots' (Ziemke and Sharkey 1998). These terms do not necessarily all mean exactly the same; some of them refer to physical robots only, whereas others include simple soft- ware simulations. But the terms all express the view that the mechanisms referred to are substantially dierent from conventional artifacts and that to some degree they are `life-like' in that they share some of the properties of living organisms. Throughout this article this class of systems will be referred to as `arti®cial organisms' or `autonomous agents/robots' interchangeably. The key issue addressed in this article concerns the semiotic status and relevance of such arti®cial organisms. -
Dr. Katherine R. De Kleer
Dr. Katherine R. de Kleer Assistant Professor of Planetary Science & Astronomy, California Institute of Technology web.gps.caltech.edu/∼dekleer Mailing: 1200 E California Blvd, M/C 150-21, Pasadena, CA 91125 Office: 172 S Mudd; (626) 395-4029 [email protected] EDUCATION Ph.D. Astrophysics, University of California, Berkeley Spring 2017 Thesis: \Extreme Worlds of the Outer Solar System: Dynamic Processes on Uranus & Io" Advisor: Prof. Imke de Pater M.A. Astrophysics, University of California, Berkeley Spring 2013 B.Sc. Mathematics, Massachusetts Institute of Technology Spring 2009 B.Sc. Physics with Astronomy Minor, Massachusetts Institute of Technology Spring 2009 Thesis: \Photometry and Transit-Timing Analysis for Eleven Transiting Exoplanets" Advisor: Prof. Joshua Winn RESEARCH Broad interests in planetary astronomy, in particular the surfaces and atmospheres of planets, satellites, and INTERESTS small bodies, and their relationship to interiors and thermochemical histories. ACADEMIC Assistant Professor of Planetary Science & Astronomy, Caltech June 2019-present POSITIONS Heising-Simons Foundation 51 Pegasi b Postdoctoral Fellow, Caltech 2017-2019 Visting Scholar, Keck Observatory June 2017 NSF Graduate Research Fellow, UC Berkeley 2013-2017 Graduate Student Researcher, UC Berkeley 2010; 2012-2013; 2016-2017 Visiting Research Student, Montana State University, Bozeman, Montana Fall 2015; Summer 2016 Visiting Research Student, Max Planck Institute (MPE), Garching, Germany Summer 2012 Visiting Research Student, Tel Aviv University, Tel -
What Does It Look Like to Rebrand Space Travel?
What Does It Look Like To Rebrand Space Travel? ADVERTISING In an endeavor to make out-of-this-world travel sexy again, the Commercial Spaceflight Federation is working to design glamorous and inclusive experiences for the modern age BY IDO LECHNER 18 JULY 2016 Armstrong’s footprints on the moon is a well-documented moment in history, a part of a timeline known as the Space Age which took place nearly fifty years ago. Since then, humanity has made tremendous advancements in space exploration and technology, yet the Space Age belongs to the past – few would say we’re still in it. But if the world’s first commercial spaceline Virgin Galactic, alongside aerospace manufacturers SpaceX and Blue Origin have anything to say about the matter, it would likely be that we’re living on the cusp of major breakthroughs, such as the standardization of reusable rockets and interplanetary colonization are within reach. To help the Commercial Spaceflight Federation (CSF) – the leading voice within the industry, composed of some 70+ key players in the field – innovation firm Viceroy Creative spearheaded a strategic shift aimed to make space sexy again. David Moritz, Founder and CEO of Viceroy Creative shared his thoughts on how the rebranding came about and how it will reshape spaceflight in the eyes of the public: “When we talk about the CSF, we’re talking about many companies that are heavily involved with making commercial spaceflight a reality, and most of them are fresh faces – it’s really a niche ecosystem of startups,” Moritz points out. “It all started when I noticed that most of the astronauts working for these companies don’t look as badass as they should. -
Intergalactic Spreading of Intelligent Life and Sharpening the Fermi Paradox
Eternity in six hours: intergalactic spreading of intelligent life and sharpening the Fermi paradox Stuart Armstronga,∗, Anders Sandberga aFuture of Humanity Institute, Philosophy Department, Oxford University, Suite 8, Littlegate House 16/17 St. Ebbe's Street, Oxford, OX1 1PT UK Abstract The Fermi paradox is the discrepancy between the strong likelihood of alien intelligent life emerging (under a wide variety of assumptions), and the ab- sence of any visible evidence for such emergence. In this paper, we extend the Fermi paradox to not only life in this galaxy, but to other galaxies as well. We do this by demonstrating that traveling between galaxies { indeed even launching a colonisation project for the entire reachable universe { is a rela- tively simple task for a star-spanning civilization, requiring modest amounts of energy and resources. We start by demonstrating that humanity itself could likely accomplish such a colonisation project in the foreseeable future, should we want to, and then demonstrate that there are millions of galaxies that could have reached us by now, using similar methods. This results in a considerable sharpening of the Fermi paradox. Keywords: Fermi paradox, interstellar travel, intergalactic travel, Dyson shell, SETI, exploratory engineering 1. Introduction 1.1. The classical Fermi paradox The Fermi paradox, or more properly the Fermi question, consists of the apparent discrepancy between assigning a non-negligible probability for intelligent life emerging, the size and age of the universe, the relative rapidity ∗Corresponding author Email addresses: [email protected] (Stuart Armstrong), [email protected] (Anders Sandberg) Preprint submitted to Acta Astronautica March 12, 2013 with which intelligent life could expand across space or otherwise make itself visible, and the lack of observations of any alien intelligence.